CS256/Winter 2009 Lecture #2

Zohar Manna

SPL (Simple Programming Language) Syntax

Basic Statements

- skip
- assignment

$$\underbrace{(u_1, \dots, u_k)}_{\text{variables}} := \underbrace{(e_1, \dots, e_k)}_{\text{expressions}}$$

• await c

(where c is a boolean expression)

special case: halt \equiv await F

• Communication by message-passing

$$\alpha \Leftarrow e$$
 (send)
 $\alpha \Rightarrow u$ (receive)
(where α is a channel)

• Semaphore operations

request
$$r$$
 $(r > 0 \rightarrow r := r - 1)$
release r $(r := r + 1)$
(where r is an integer variable)

SPL (CON'T)

Schematic Statements

In Mutual-Exclusion programs:

noncritical

may not terminate

• critical

terminates

In Producer-Consumer programs:

ullet produce x

terminates – assign nonzero value to \boldsymbol{x}

 \bullet consume y

terminates

No program variables are modified by schematic statements. One exception: "x" in **produce** x

SPL (CON'T)

Compound Statements

• Conditional

if c then S_1 else S_2 if c then S

• Concatenation

 $S_1; \cdots; S_k$

Example:

when $c \operatorname{do} S \equiv \operatorname{await} c$; S

• <u>Selection</u>

$$S_1$$
 or \cdots or S_k

• while while $c \operatorname{do} S$

Example:

loop forever do $S \equiv \text{while T do } S$

SPL (CON'T)

Compound Statements (Con't)

• Cooperation Statement

$$\ell$$
: $[\ell_1: S_1; \hat{\ell}_1:] \parallel \cdots \parallel [\ell_k: S_k; \hat{\ell}_k:]; \hat{\ell}:$

 S_1, \ldots, S_k are <u>parallel</u> to one another <u>interleaved</u> execution.

entry step: from ℓ to $\ell_1, \ell_2, \dots, \ell_k$, exit step: from $\widehat{\ell_1}, \widehat{\ell_2}, \dots, \widehat{\ell_k}$ to $\widehat{\ell}$.

• <u>Block</u>

[$\underline{local} \ \underline{declaration}; \ S$]

local variable,..., variable: type where φ_i $y_1 = e_1, \ldots, y_n = e_n$

SPL (CON'T)

Basic types – boolean, integer, character, ...

Structured types – array, list, set, ...

Static variable initialization
(variables get initialized at the start of the execution)

Programs

$$P :: \left[declaration; \ P_1 :: \left[\ell_1 : S_1; \ \widehat{\ell}_1 : \ \right] \parallel \cdots \parallel \right.$$

$$\left. P_k :: \left[\ell_k : S_k; \ \widehat{\ell}_k : \ \right] \right]$$

 P_1, \dots, P_k are <u>top-level</u> processes Variables in P called program variables

Declaration

in (not modified)localout

 $\varphi_1 \wedge \ldots \wedge \varphi_n$ data-precondition of the program

Channel Declaration

• synchronous channels (no buffering capacity)

$$mode \ \alpha_1, \alpha_2, \dots, \alpha_n$$
: channel of $type$

• asynchronous channels (unbounded buffering capacity)

mode
$$\alpha_1, \alpha_2, \dots, \alpha_n$$
: channel [1..] of type where φ_i

- $-\varphi_i$ is optional
- $-\varphi_i = \Lambda$ (empty list) by default

Foundations for SPL Semantics

Labels $\ell:S$

- ullet Label ℓ identifies statement S
- Equivalence Relation \sim_L between labels:
 - For ℓ : $[\ell_1: S_1; \dots; \ell_k: S_k]$ $\ell \sim_L \ell_1$
 - For ℓ : $[\ell_1: S_1 \text{ or } \dots \text{ or } \ell_k: S_k]$ $\ell \sim_L \ell_1 \sim_L \dots \sim_L \ell_k$
 - For ℓ : [local declaration; ℓ_1 : S_1] $\ell \sim_L \ell_1$

Note: For $\ell : [\ell_1 : S_1 || \dots || \ell_k : S_k]$ $\ell \not\sim_L \ell_1 \not\sim_L \ell_2 \not\sim_L \dots$ because of the entry step

Example: In Figure 0.1 $\ell_0 \sim_L \ell_1$ $\ell_2 \sim_L \ell_3 \sim_L \ell_5$

in a, b: integer where a > 0, b > 0local y_1, y_2 : integer where $y_1 = a, y_2 = b$ out g: integer

$$\begin{bmatrix} \ell_1 \colon \mathbf{while} \ y_1 \neq y_2 \ \mathbf{do} \\ \ell_2 \colon \begin{bmatrix} \ell_3 \colon \mathbf{await} \ y_1 > y_2; \ \ell_4 \colon \ y_1 := y_1 - y_2 \\ \mathbf{or} \\ \ell_5 \colon \mathbf{await} \ y_2 > y_1; \ \ell_6 \colon \ y_2 := y_2 - y_1 \end{bmatrix} \end{bmatrix} \\ \ell_8 \colon$$

Figure 0.1

A Fully Labeled Program GCD-F

2-10

Locations

 $[\ell]$

Identify site of control

- $[\ell]$ is the location corresponding to label ℓ .
- Multiple labels identifying different statements may identify the same location.

$$[\ell] = \{\ell' \mid \ell' \sim_L \ell\}$$

Example: Fig 0.1: A fully labeled program

$$[\ell_0] = [\ell_1] = \{\ell_0, \ell_1\}$$

$$[\ell_6] = \{\ell_6\}$$

$$[\ell_2] = \{\ell_2, \ell_3, \ell_5\}$$

$$[\ell_7] = \{\ell_7\}$$

$$\ell_2] = \{\ell_2, \ell_3, \ell_5\} \qquad [\ell_7] = \{\ell_7\}$$

$$[\ell_4] = {\ell_4} \qquad [\ell_8] = {\ell_8}$$

Example: Fig 0.2: A partially labeled program

$$\ell_0$$

$$\ell_3 \rightarrow \ell_2^a$$

$$\ell_5 \rightarrow \ell_2^b$$

shortcut: label ℓ_2 "represents" $\{\ell_2, \, \ell_2^a, \, \ell_2^b\}$

a, b : integer where a > 0, b > 0local y_1, y_2 : integer where $y_1 = a, y_2 = b$ \mathbf{out} q: integer

$$\begin{bmatrix} \ell_1 \text{: while } y_1 \neq y_2 \text{ do} \\ & \ell_2 \text{: await } y_1 > y_2; \ \ell_4 \text{: } y_1 := y_1 - y_2 \\ & \text{or} \\ & \ell_2 \text{: await } y_2 > y_1; \ \ell_6 \text{: } y_2 := y_2 - y_1 \end{bmatrix} \\ \ell_7 \text{: } g := y_1 \\ \ell_8 \text{: } \end{bmatrix}$$

Figure 0.2

A Partially Labeled Program GCD

Post Location

$$\ell: S; \ \widehat{\ell}: post(S) = [\widehat{\ell}]$$

- For $[\ell_1: S_1; \ \widehat{\ell}_1: \] \parallel \cdots \parallel [\ell_k: S_k; \ \widehat{\ell}_k: \]$ $post(S_i) = [\widehat{\ell}_i], \text{ for every } i = 1, \dots, k$
- For $S = [\ell_1: S_1; \dots; \ell_k: S_k]$ $post(S_i) = [\ell_{i+1}], \text{ for } i = 1, \dots, k-1$ $post(S_k) = post(S)$
- For $S = [\ell_1 : S_1 \text{ or } \dots \text{ or } \ell_k : S_k]$ $post(S_1) = \dots = post(S_k) = post(S)$
- For $S = [\text{if } c \text{ then } S_1 \text{ else } S_2]$ $post(S_1) = post(S_2) = post(S)$
- For $[\ell : \mathbf{while} \ c \ \mathbf{do} \ S']$ $post(S') = [\ell]$

Example: Post Locations of Fig 0.2

$$post(\ell_1) = [\ell_7]$$

$$post(\ell_2) = post(\ell_4)$$
$$= post(\ell_6) = [\ell_1]$$

$$post(\ell_2^a) = [\ell_4]$$

$$post(\ell_2^b) = [\ell_6]$$

$$post(\ell_7) = [\ell_8]$$

Ancestor

- S is an <u>ancestor</u> of S' if S' is a substatement of S
- S is a <u>common ancestor</u> of S_1 and S_2 if it is an ancestor of both S_1 and S_2
- S is a <u>least common ancestor</u> (<u>LCA</u>) of S_1 and S_2 if S is a common ancestor of S_1 and S_2 and any other common ancestor of S_1 and S_2 is an ancestor of S_1

LCA is unique for given statements S_1 and S_2

Example:
$$\begin{bmatrix} S_1; & [S_2 || S_3]; & S_4 \end{bmatrix} || S_5$$

LCA of S_2 , S_3 $[S_2 || S_3]$

LCA of S_2 , S_4 $[S_1; & [S_2 || S_3]; & S_4]$

LCA of S_2 , S_5 $[S_1; & [S_2 || S_3]; & S_4] || S_5$

Parallel Labels

• Statements S and \widetilde{S} are parallel if their LCA is a cooperation statement that is different from statements S and \widetilde{S}

Example: $S = [S_1; [S_2 S_3]; S_4] S_5$		
<u>Statements</u>	<u>LCA</u>	
S_2 parallel to S_3 S_2 parallel to S_5 S_2 not parallel to S_4 S_2 not parallel to $S_2 \parallel S_3$	$S_2 \parallel S_3$ S $[S_1; \dots; S_4]$ not coop. $S_2 \parallel S_3$ same	

• parallel labels – labels of parallel statements

Conflicting Labels

conflicting labels – not equivalent and not parallel

Example:

 ℓ_3 is parallel to each of $\{\ell_4, \hat{\ell}_4, \ell_6, \hat{\ell}_6\}$ and in conflict with each of $\{\ell_1, \ell_2, \hat{\ell}_3, \ell_5, \hat{\ell}_5\}$

 ℓ_6 and $\hat{\ell}_6$ are in conflict with each other but are parallel to each of $\{\ell_1, \ell_2, \ell_3, \hat{\ell}_3, \ell_4, \hat{\ell}_4, \ell_5, \hat{\ell}_5\}$

Critical References

Writing References:

$$x := \dots \quad \alpha \Rightarrow u \quad \mathbf{produce} \ x \quad \mathbf{request} \ r$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\mathbf{release} \ r$$

Reading References: all other references

critical reference of a variable in S if:

- writing ref to a variable that has reading or writing refs in S' (parallel to S)
- reading reference to a variable that has writing references in S' (parallel to S)
- reference to a channel

Limited Critical References (LCR)

Statement obeys <u>LCR restriction</u> (<u>LCR-Statement</u>) if each test (for await, conditional, while) and entire statement (for assignment) contains at most one critical reference.

Example: Fig 0.3

 ℓ_2, m_1, m_3 are LCR-Statements

 ℓ_1, m_2 violate the LCR-requirement

LCR-Program: only LCR-statements

Interleaved vs. Concurrent Execution

Claim: If P is an LCR program, then the interleaving computations of P and the concurrent executions of P give the same results.

Discussion & explanation: Blue Book.

$$P_1::$$
 $egin{bmatrix} \ell_1\colon egin{bmatrix} b \coloneqq b \cdot y_1 \ \ell_2\colon egin{bmatrix} y_1 \coloneqq y_1 - 1 \ \ell_3 \colon \end{bmatrix}$
 $\mid \mid P_2::$
 $\begin{bmatrix} m_1: & await & y_1 \end{bmatrix} + y_2 \leq n \ m_2: & b \coloneqq b / y_2 \ m_3: & y_2 \coloneqq y_2 + 1 \ m_4: \end{bmatrix}$

Figure 0.3

Critical references

2-20

SPL Semantics

Transition Semantics:

$$\begin{array}{ccc} \mathrm{SPL} \; \mathrm{P} & & \mathrm{computation} \; \mathrm{of} \; \mathrm{P} \\ \downarrow & & \uparrow \\ \mathrm{FTS} \; \varPhi \; \to \; \mathrm{computation} \; \mathrm{of} \; \varPhi \end{array}$$

Given an SPL-program P, we can construct the corresponding FTS $\Phi = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$:

ullet system variables V

$$Y = \{y_1, \dots, y_n\}$$
 – program variables of P domains: as declared in P π – control variable domain: sets of locations in P $V = Y \cup \{\pi\}$

SPL Semantics (Con't)

Comments:

- For label
$$\ell$$
, at_{ℓ} : $[\ell] \in \pi$ at'_{ℓ} : $[\ell] \in \pi'$

Note: When going from an SPL program to an FTS we lose the sequential nature of the program. We need to model control explicitly in the FTS: π can be viewed as a program counter.

Example: Fig 0.1 $V = \{\pi, a, b, y_1, y_2, g\}$ π - ranges over subsets of $\{[\ell_1], [\ell_2], [\ell_4], [\ell_6], [\ell_7], [\ell_8]\}$ a, b, \dots, g - range over integers

ullet Initial Condition Θ

For
$$P:: \left[\text{dec}; \left[P_1 :: \left[\ell_1 : S_1; \ \widehat{\ell}_1 : \ \right] \parallel \cdots \parallel \right. \right.$$

$$\left. P_k :: \left[\ell_k : S_k; \ \widehat{\ell}_k : \ \right] \right] \right]$$
with data-precondition φ ,
$$\Theta: \pi = \left\{ \left[\ell_1 \right], \ldots, \left[\ell_k \right] \right\} \wedge \varphi$$

Example: Fig 0.1

$$\Theta$$
: $\pi = \{[\ell_1]\} \land a > 0 \land b > 0 \land y_1 = a \land y_2 = b$

data-precondition

in a, b: integer where a > 0, b > 0local y_1, y_2 : integer where $y_1 = a, y_2 = b$ out g: integer

$$\begin{bmatrix} \ell_1 \colon \mathbf{while} \ y_1 \neq y_2 \ \mathbf{do} \\ & \ell_2 \colon \begin{bmatrix} \ell_2^a \colon \mathbf{await} \ y_1 > y_2; \ \ell_4 \colon \ y_1 := y_1 - y_2 \\ \mathbf{or} \\ & \ell_2^b \colon \mathbf{await} \ y_2 > y_1; \ \ell_6 \colon \ y_2 := y_2 - y_1 \end{bmatrix} \\ \ell_7 \colon \ g := y_1 \\ \ell_8 \colon \end{bmatrix}$$

Figure 0.2

A Partially Labeled Program GCD

ullet Transitions ${\mathcal T}$

$$\mathcal{T} = \{\tau_I\} \cup \left\{ \begin{array}{l} \text{transitions associated with} \\ \text{the statements of } P \end{array} \right\}$$

where τ_I is the "idling transition"

$$\rho_I$$
: $V' = V$

abbreviation

- pres(U): $\bigwedge_{u \in U} (u' = u)$ (where $U \subseteq V$) the value of $u \in U$ are preserved
- $move(L, \widehat{L})$: $L \subseteq \pi \land \pi' = (\pi L) \cup \widehat{L}$ where L, \widehat{L} are sets of locations
- $move(\ell, \hat{\ell})$: $move(\{[\ell]\}, \{[\hat{\ell}]\})$

SPL Semantics (Con't)

We list the transitions (transition relations) associated with the statements of P

$$\underline{\ell:S}$$

Basic Statements

$$\ell$$
: skip; $\widehat{\ell}$: \rightarrow $move(\ell, \widehat{\ell}) \land pres(Y)$

$$\ell \colon \overline{u} := \overline{e}; \ \widehat{\ell} \colon \longrightarrow move(\ell, \widehat{\ell}) \land \overline{u}' = \overline{e} \\ \land pres(Y - \{\overline{u}\})$$

Basic Statements (Con't)

$$\ell$$
: await c ; $\hat{\ell}$: \rightarrow $move(\ell, \hat{\ell}) \land c \land pres(Y)$

$$\ell$$
: request r ; $\hat{\ell}$: \rightarrow $move(\ell, \hat{\ell}) \land r > 0$ $\land r' = r - 1$ $\land pres(Y - \{r\})$

$$\ell$$
: release r ; $\hat{\ell}$: \rightarrow $move(\ell, \hat{\ell}) \land r' = r + 1$ $\land pres(Y - \{r\})$

SPL Semantics (Con't)

Basic Statements (Con't)

asynchronous send

$$\ell: \alpha \Leftarrow e; \ \widehat{\ell}: \longrightarrow move(\ell, \widehat{\ell}) \land \alpha' = \alpha \bullet e \land pres(Y - \{\alpha\})$$

asynchronous receive

$$\ell: \ \alpha \Rightarrow u; \ \widehat{\ell}: \qquad \to \qquad move(\ell, \widehat{\ell}) \ \land \ |\alpha| > 0$$

$$\land \ \alpha = u' \bullet \alpha'$$

$$\land \ pres(Y - \{u, \alpha\})$$

synchronous send-receive

$$\ell$$
: $\alpha \leftarrow e$; $\hat{\ell}$: m : $\alpha \Rightarrow u$; \hat{m} :

$$move(\{\ell, m\}, \{\widehat{\ell}, \widehat{m}\}) \land u' = e \land pres(Y - \{u\})$$

Schematic Statements

 ho_ℓ

 ℓ : noncritical; $\hat{\ell}$: $\rightarrow move(\ell, \hat{\ell}) \land pres(Y)$ (nontermination modeled by $\tau_{\ell} \notin \mathcal{J}$)

 ℓ : critical; $\widehat{\ell}$: \rightarrow $move(\ell, \widehat{\ell}) \land pres(Y)$

SPL Semantics (Con't)

Compound Statements

$$\ell: \left[\text{if } c \text{ then } \ell_1 : S_1 \text{ else } \ell_2 : S_2 \right]; \ \hat{\ell}: \rightarrow$$

$$\rho_{\ell} : \rho_{\ell}^{\mathrm{T}} \vee \rho_{\ell}^{\mathrm{F}} \text{ where}$$

$$\rho_{\ell}^{\mathrm{T}} : \ move(\ell, \ell_1) \ \land \ c \ \land \ pres(Y)$$

$$\rho_{\ell}^{\mathrm{F}} : \ move(\ell, \ell_2) \ \land \ \neg c \ \land \ pres(Y)$$

$$\ell: \left[\mathbf{while} \ c \ \mathbf{do} \ [\widetilde{\ell}: \widetilde{S} \] \right]; \ \widehat{\ell}: \rightarrow$$

$$\rho_{\ell}: \rho_{\ell}^{\mathrm{T}} \lor \rho_{\ell}^{\mathrm{F}} \ \text{where}$$

$$\rho_{\ell}^{\mathrm{T}}: \ move(\ell, \widetilde{\ell}) \ \land \ c \ \land \ pres(Y)$$

$$\rho_{\ell}^{\mathrm{F}}: \ move(\ell, \widehat{\ell}) \ \land \ \neg c \ \land \ pres(Y)$$

$$\ell: \left[[\ell_1: S_1; \ \widehat{\ell}_1:] \parallel \cdots \parallel [\ell_k: S_k; \ \widehat{\ell}_k:] \right]; \ \widehat{\ell}: \rightarrow$$

$$\rho_{\ell}^{\mathrm{E}}: \ move\left(\{\ell\}, \ \{\ell_1, \dots, \ell_k\} \right) \ \land \ pres(Y) \ (\text{entry})$$

$$\rho_{\ell}^{\mathrm{X}}: \ move\left(\{\widehat{\ell}_1, \dots, \widehat{\ell}_k\}, \ \{\widehat{\ell}\} \right) \ \land \ pres(Y) \ (\text{exit})$$

Grouped Statements

 $\langle S \rangle$

executed in a single atomic step

Example:

$$\langle x := y + 1; \ z := 2x + 1 \rangle$$

$$\langle x := y + 1; \ z := 2x + 1 \rangle$$

 $x' = y + 1 \quad \land \quad z' = 2y + 3$

the same as (x, z) := (y + 1, 2y + 3)

Example:

$$\underbrace{\langle a := 3; a := 5 \rangle}_{a' = 5}$$

a = 3 is never visible to the outside world, nor to other processes

SPL Semantics (Con't)

ullet Justice Set ${\mathcal J}$

All transitions except au_I and all transitions associated with **noncritical** statements

ullet Compassion Set ${\mathcal C}$

All transitions associated with send, receive, request statements

Computations of Programs

local x: integer where x = 1

$$P_{1} :: \begin{bmatrix} \ell_{0}^{a} : \text{ await } x = 1 \\ \text{ or } \\ \ell_{0}^{b} : \text{ skip} \end{bmatrix} \parallel P_{2} :: \begin{bmatrix} m_{0} : \text{ while T do} \\ [m_{1} : x := -x] \end{bmatrix} \qquad P_{1} :: \begin{bmatrix} \ell_{0}^{a} : \text{ await } x = 1 \\ \text{ or } \\ \ell_{0}^{b} : \text{ await } x \neq 1 \end{bmatrix} \parallel P_{2} :: \begin{bmatrix} m_{0} : \text{ while T do} \\ [m_{1} : x := -x] \end{bmatrix}$$

Fig 0.4 Process P_1 terminates in all computations.

$$\sigma: \langle \pi : \{\ell_0, m_0\}, x : 1 \rangle \xrightarrow{m_0} \langle \pi : \{\ell_0, m_1\}, x : 1 \rangle \xrightarrow{m_1} \langle \pi : \{\ell_0, m_0\}, x : -1 \rangle \xrightarrow{m_0} \langle \pi : \{\ell_0, m_1\}, x : -1 \rangle \xrightarrow{m_1} \langle \pi : \{\ell_0, m_0\}, x : 1 \rangle \xrightarrow{m_0} \cdots$$

 σ is not a computation. Unjust towards ℓ_0^b (enabled on all states but never taken)

Computations of Programs (Con't)

local x: integer where x = 1

$$P_1 :: \begin{bmatrix} \ell_0 \colon \begin{bmatrix} \ell_0^a \colon \text{ await } x = 1 \\ \text{ or } \\ \ell_0^b \colon \text{ await } x \neq 1 \end{bmatrix} \end{bmatrix} \parallel P_2 :: \begin{bmatrix} m_0 \colon \text{ while } T \text{ do} \\ [m_1 \colon x := -x] \end{bmatrix}$$

Fig 0.5 skip \rightarrow await $x \neq 1$

$$\sigma: \langle \pi : \{\ell_0, m_0\}, x : 1 \rangle \xrightarrow{m_0} \langle \pi : \{\ell_0, m_1\}, x : 1 \rangle \xrightarrow{m_1} \langle \pi : \{\ell_0, m_0\}, x : -1 \rangle \xrightarrow{m_0} \langle \pi : \{\ell_0, m_1\}, x : -1 \rangle \xrightarrow{m_1} \langle \pi : \{\ell_0, m_0\}, x : 1 \rangle \xrightarrow{m_0} \cdots$$

 σ is a computation – since none of the just transitions are continually enabled.

Computations of Programs (Con't)

local x: integer where x = 1

$$P_1 :: \begin{bmatrix} \ell_0 \colon \mathbf{if} \ x = 1 \ \mathbf{then} \\ \ell_1 \colon \mathbf{skip} \\ \mathbf{else} \\ \ell_2 \colon \mathbf{skip} \end{bmatrix} \parallel P_2 :: \begin{bmatrix} m_0 \colon \mathbf{while} \ \mathrm{T} \ \mathbf{do} \\ [m_1 \colon x := -x] \end{bmatrix}$$

Fig 0.6 Process P_1 terminates in all computations.

$$\sigma: \langle \pi : \{\ell_0, m_0\}, x : 1 \rangle \xrightarrow{m_0} \langle \pi : \{\ell_0, m_1\}, x : 1 \rangle \xrightarrow{m_1} \langle \pi : \{\ell_0, m_0\}, x : -1 \rangle \xrightarrow{m_0} \langle \pi : \{\ell_0, m_1\}, x : -1 \rangle \xrightarrow{m_1} \langle \pi : \{\ell_0, m_0\}, x : 1 \rangle \xrightarrow{m_0} \cdots$$

 σ is [not] a computation – since ℓ_0 is continually enabled, but not taken.

Control Configurations

 $L = \{ [\ell_1], \dots, [\ell_k] \}$ of P is called <u>conflict-free</u> if no $[\ell_i]$ conflicts with $[\ell_j]$, for $i \neq j$.

L is called a (<u>control</u>) <u>configuration</u> of P if it is a maximal <u>conflict-free</u> set.

Example:

local x: integer where x = 0

$$P_1 :: \begin{bmatrix} \ell_0 : x := 1 \\ \ell_1 : \end{bmatrix} \parallel P_2 :: \begin{bmatrix} m_0 : \text{ await } x = 1 \\ m_1 : \end{bmatrix}$$

Configurations

$$\{[\ell_0], [m_0]\}, \{[\ell_0], [m_1]\}, \{[\ell_1], [m_0]\}, \{[\ell_1], [m_1]\}$$

 $\frac{\text{accessible configuration}}{\text{appears as value of } \pi \text{ in some accessible state}}$

Example:

 $\{[\ell_0], [m_1]\}$ does not appear in any accessible state

Is a given configuration accessible?

Undecidable

The Mutual-Exclusion Problem

loop forever do	loop forever do		
$\lceil ext{noncritical} \rceil$			$\lceil ext{noncritical} ceil$
critical			critical

Requirements:

• Exclusion

While one of the processes is in its critical section, the other is not

• Accessibility

Whenever a process is at the noncritical section exit, it must eventually reach its critical section

Example: mutual exclusion by semaphores
Fig. 0.7

local y: integer where y = 1

Fig. 0.7 Program MUX-SEM

Message-Passing Programs

Example: Producer-Consumer Fig. 0.9 assumption: channel send $\leq N$ values

Fig. 0.9 Program PROD-CONS