
CS256/Winter 2009 Lecture #2

Zohar Manna

SPL (Simple Programming Language)
Syntax

Basic Statements

• skip

• assignment

(u1, . . . , uk)︸ ︷︷ ︸
variables

:= (e1, . . . , ek)︸ ︷︷ ︸
expressions

• await c

(where c is a boolean expression)

special case: halt ≡ await f

• Communication by message-passing

α ⇐ e (send)

α ⇒ u (receive)

(where α is a channel)

• Semaphore operations

request r (r > 0 → r := r − 1)

release r (r := r + 1)

(where r is an integer variable) 2-2

SPL (CON’T)

Schematic Statements

In Mutual-Exclusion programs:

• noncritical

may not terminate

• critical

terminates

In Producer-Consumer programs:

• produce x

terminates – assign nonzero value to x

• consume y

terminates

2-3

No program variables are modified by

schematic statements. One exception:

“x” in produce x

SPL (CON’T)

Compound Statements

• Conditional
if c then S1 else S2
if c then S

• Concatenation
S1; · · · ; Sk

Example:

when c do S ≡ await c; S

• Selection
S1 or · · · or Sk

• while
while c do S

Example:

loop forever do S ≡ while t do S

2-4

SPL (CON’T)

Compound Statements (Con’t)

• Cooperation Statement

ℓ: [ℓ1:S1; ℓ̂1:︸ ︷︷ ︸
process

] ‖ · · · ‖ [ℓk:Sk; ℓ̂k:]; ℓ̂ :

S1, . . . , Sk are parallel to one another

interleaved execution.

entry step: from ℓ to ℓ1, ℓ2, . . . , ℓk,

exit step: from ℓ̂1, ℓ̂2, . . . , ℓ̂k to ℓ̂.

• Block

[local declaration︸ ︷︷ ︸; S]

local variable , . . . , variable : type where ϕi︸︷︷︸
y1 = e1, . . . , yn = en

2-5

SPL (CON’T)

Basic types – boolean, integer, character, . . .

Structured types – array, list, set, . . .

Static variable initialization

(variables get initialized at the

start of the execution)

2-6

Programs

P ::
[
declaration; P1 :: [ℓ1:S1; ℓ̂1:] ‖ · · · ‖

Pk :: [ℓk:Sk; ℓ̂k:]
]

P1, . . . , Pk are top-level processes

Variables in P called program variables

Declaration

mode variable, . . . , variable︸ ︷︷ ︸
program variables

: type where ϕi

y y
in (not modified) constraints on

local initial values

out

ϕ1 ∧ . . . ∧ ϕn data-precondition of the program

2-7

Channel Declaration

• synchronous channels

(no buffering capacity)

mode α1, α2, . . . , αn: channel of type

• asynchronous channels

(unbounded buffering capacity)

mode α1, α2, . . . , αn: channel [1..] of type

where ϕi

– ϕi is optional

– ϕi = Λ (empty list) by default

2-8

Foundations for SPL Semantics

Labels

ℓ : S

• Label ℓ identifies statement S

• Equivalence Relation ∼L between labels:

– For ℓ: [ℓ1:S1; . . . ; ℓk:Sk]

ℓ ∼L ℓ1

– For ℓ: [ℓ1:S1 or . . . or ℓk:Sk]

ℓ ∼L ℓ1 ∼L · · · ∼L ℓk

– For ℓ: [local declaration; ℓ1:S1]

ℓ ∼L ℓ1

2-9

Note: For ℓ : [ℓ1 : S1|| . . . ||ℓk : Sk]

ℓ 6∼L ℓ1 6∼L ℓ2 6∼L . . .

because of the entry step

Example: In Figure 0.1

ℓ0 ∼L ℓ1
ℓ2 ∼L ℓ3 ∼L ℓ5

2-10

Figure 0.1

A Fully Labeled Program GCD-F

2-11

Locations

[ℓ]

Identify site of control

• [ℓ] is the location corresponding to label ℓ.

• Multiple labels identifying different statements may

identify the same location.

[ℓ] = {ℓ′ | ℓ′ ∼L ℓ}

Example: Fig 0.1: A fully labeled program

[ℓ0] = [ℓ1] = {ℓ0, ℓ1} [ℓ6] = {ℓ6}
[ℓ2] = {ℓ2, ℓ3, ℓ5} [ℓ7] = {ℓ7}
[ℓ4] = {ℓ4} [ℓ8] = {ℓ8}

Example: Fig 0.2: A partially labeled program

ℓ0/
ℓ3 → ℓa

2
ℓ5 → ℓb

2

shortcut: label ℓ2 “represents” {ℓ2, ℓa
2, ℓb

2}
2-12

Figure 0.2

A Partially Labeled Program GCD

2-13

Post Location

ℓ:S; ℓ̂: post(S) = [ℓ̂]

• For [ℓ1:S1; ℓ̂1:] ‖ · · · ‖ [ℓk:Sk; ℓ̂k:]

post(Si) = [ℓ̂i], for every i = 1, . . . , k

• For S = [ℓ1:S1; . . . ; ℓk:Sk]

post(Si) = [ℓi+1], for i = 1, . . . , k−1
post(Sk) = post(S)

• For S = [ℓ1:S1 or . . . or ℓk:Sk]

post(S1) = · · · = post(Sk) = post(S)

• For S = [if c then S1 else S2]

post(S1) = post(S2) = post(S)

• For [ℓ : while c do S′]
post(S′) = [ℓ]

2-14

Example: Post Locations of Fig 0.2

post(ℓ1) = [ℓ7]

post(ℓ2) = post(ℓ4)

= post(ℓ6) = [ℓ1]

post(ℓa
2) = [ℓ4]

post(ℓb
2) = [ℓ6]

post(ℓ7) = [ℓ8]

2-15

Ancestor

S is an ancestor of S′
if S′ is a substatement of S

S is a common ancestor of S1 and S2

if it is an ancestor of both S1 and S2

S is a least common ancestor (LCA) of S1 and S2

if S is a common ancestor of S1 and S2

and any other common ancestor

of S1 and S2 is an ancestor of S

LCA is unique for given statements S1 and S2

Example:
[
S1; [S2‖S3]; S4

]
‖ S5

LCA of S2, S3 [S2‖S3]

LCA of S2, S4

[
S1; [S2‖S3]; S4

]
LCA of S2, S5

[
S1; [S2‖S3]; S4

]
‖ S5

2-16

Parallel Labels

• Statements S and S̃ are parallel if

their LCA is a cooperation statement

that is different from statements S and S̃

Example: S =
[
S1; [S2‖S3]; S4

]
‖ S5

Statements LCA

S2 parallel to S3 S2 ‖ S3

S2 parallel to S5 S

S2 not parallel to S4 [S1; · · · ; S4] not coop.

S2 not parallel to S2 ‖ S3 S2 ‖ S3 same

• parallel labels – labels of parallel statements

2-17

Conflicting Labels

conflicting labels – not equivalent and
not parallel

Example:

ℓ1:S1;

ℓ2:
(
[ℓ3:S3; ℓ̂3:] ‖ [ℓ4:S4; ℓ̂4:]

)
;

ℓ5:S5; ℓ̂5:

 ‖ [ℓ6:S6; ℓ̂6:]

ℓ3 is parallel to each of {ℓ4, ℓ̂4, ℓ6, ℓ̂6}
and in conflict with each of

{ℓ1, ℓ2, ℓ̂3, ℓ5, ℓ̂5}

ℓ6 and ℓ̂6 are in conflict with each other

but are parallel to each of

{ℓ1, ℓ2, ℓ3, ℓ̂3, ℓ4, ℓ̂4, ℓ5, ℓ̂5}

2-18

Critical References

Writing References:

x := . . . α ⇒ u produce x request r

↑ ↑ ↑ ↑

release r

↑

Reading References: all other references

critical reference of a variable in S if:

• writing ref to a variable that has reading

or writing refs in S′ (parallel to S)

• reading reference to a variable that has

writing references in S′ (parallel to S)

• reference to a channel

2-19

Limited Critical References (LCR)

Statement obeys LCR restriction (LCR-Statement)
if each test (for await, conditional, while)
and entire statement (for assignment)
contains at most one critical reference.

Example: Fig 0.3

ℓ2, m1, m3 are LCR-Statements

ℓ1, m2 violate the LCR-requirement

LCR-Program: only LCR-statements

Interleaved vs. Concurrent Execution

Claim : If P is an LCR program, then the

interleaving computations of P and the

concurrent executions of P give the same results.

Discussion & explanation: Blue Book.

2-20

Figure 0.3

Critical references

2-21

SPL Semantics

Transition Semantics:

SPL P computation of Py x
FTS Φ → computation of Φ

Given an SPL-program P , we can construct

the corresponding FTS Φ = 〈V, Θ, T ,J , C〉:

• system variables V

Y = {y1, . . . , yn} – program variables of P

domains: as declared in P

π – control variable

domain: sets of locations in P

V = Y ∪ {π}

2-22

SPL Semantics (Con’t)

Comments:

– For label ℓ, at−ℓ: [ℓ] ∈ π

at ′−ℓ: [ℓ] ∈ π′

Note: When going from an SPL program to an FTS we

lose the sequential nature of the program. We need to

model control explicitly in the FTS: π can be viewed as

a program counter.

2-23

SPL Semantics (Con’t)

Example: Fig 0.1

V = {π, a, b, y1, y2, g}
π - ranges over subsets of

{[ℓ1], [ℓ2], [ℓ4], [ℓ6], [ℓ7], [ℓ8]}
a, b, . . . , g - range over integers

• Initial Condition Θ

For P ::
[
dec;

[
P1 :: [ℓ1:S1; ℓ̂1:] ‖ · · · ‖

Pk :: [ℓk:Sk; ℓ̂k:]
]]

with data-precondition ϕ,

Θ: π = {[ℓ1], . . . , [ℓk]} ∧ ϕ

Example: Fig 0.1

Θ: π = {[ℓ1]} ∧
a > 0 ∧ b > 0 ∧ y1 = a ∧ y2 = b︸ ︷︷ ︸

data-precondition

2-24

Figure 0.2

A Partially Labeled Program GCD

2-25

SPL Semantics (Con’t)

• Transitions T

T = {τI} ∪
{

transitions associated with
the statements of P

}

where τI is the “idling transition”

ρI : V ′ = V

abbreviation

– pres(U):
∧

u∈U

(u′ = u) (where U ⊆ V)

the value of u ∈ U are preserved

– move(L, L̂): L ⊆ π ∧ π′ = (π−L) ∪ L̂

where L, L̂ are sets of locations

– move(ℓ, ℓ̂): move({[ℓ]}, {[ℓ̂]})

2-26

SPL Semantics (Con’t)

We list the transitions (transition relations)

associated with the statements of P

ℓ : S ρℓ

Basic Statements

ℓ: skip; ℓ̂: → move(ℓ, ℓ̂) ∧ pres(Y)

ℓ: u := e; ℓ̂: → move(ℓ, ℓ̂) ∧ u′ = e

∧ pres
(
Y−{u}

)

2-27

SPL Semantics (Con’t)

Basic Statements (Con’t)

ℓ: await c; ℓ̂: → move(ℓ, ℓ̂) ∧ c ∧ pres(Y)

ℓ: request r; ℓ̂: → move(ℓ, ℓ̂) ∧ r > 0

∧ r′ = r − 1

∧ pres
(
Y−{r}

)

ℓ: release r; ℓ̂: → move(ℓ, ℓ̂) ∧ r′ = r + 1

∧ pres
(
Y−{r}

)

2-28

SPL Semantics (Con’t)

Basic Statements (Con’t)

asynchronous send

ℓ: α ⇐ e; ℓ̂: → move(ℓ, ℓ̂) ∧ α′ = α • e

∧ pres
(
Y−{α}

)
asynchronous receive

ℓ: α ⇒ u; ℓ̂: → move(ℓ, ℓ̂) ∧ |α| > 0

∧ α = u′ • α′
∧ pres

(
Y−{u, α}

)
synchronous send-receive

ℓ: α ⇐ e; ℓ̂: m: α ⇒ u; m̂:

move
(
{ℓ, m}, {ℓ̂, m̂}

)
∧ u′ = e ∧ pres

(
Y−{u}

)

2-29

SPL Semantics (Con’t)

Schematic Statements ρℓ

ℓ: noncritical; ℓ̂: → move(ℓ, ℓ̂) ∧ pres
(
Y

)
(nontermination modeled by τℓ /∈ J)

ℓ: critical; ℓ̂: → move(ℓ, ℓ̂) ∧ pres
(
Y

)

2-30

SPL Semantics (Con’t)

Compound Statements

ℓ:
[
if c then ℓ1:S1 else ℓ2:S2

]
; ℓ̂: →

ρℓ: ρt
ℓ
∨ ρf

ℓ
where

ρt
ℓ
: move(ℓ, ℓ1) ∧ c ∧ pres(Y)

ρf
ℓ
: move(ℓ, ℓ2) ∧ ¬c ∧ pres(Y)

ℓ:
[
while c do [ℓ̃: S̃]

]
; ℓ̂: →

ρℓ: ρt
ℓ
∨ ρf

ℓ
where

ρt
ℓ
: move(ℓ, ℓ̃) ∧ c ∧ pres(Y)

ρf
ℓ
: move(ℓ, ℓ̂) ∧ ¬c ∧ pres(Y)

ℓ:
[
[ℓ1:S1; ℓ̂1:] ‖ · · · ‖ [ℓk:Sk; ℓ̂k:]

]
; ℓ̂: →

ρe
ℓ
: move

(
{ℓ}, {ℓ1, . . . , ℓk}

)
∧ pres(Y) (entry)

ρx
ℓ
: move

(
{ℓ̂1, . . . , ℓ̂k}, {ℓ̂ }

)
∧ pres(Y) (exit)

2-31

Grouped Statements 〈S〉
executed in a single atomic step

Example:

〈x := y + 1; z := 2x + 1〉
x′ = y + 1 ∧ z′ = 2y + 3

the same as (x, z) := (y + 1, 2y + 3)

Example:

〈a := 3; a := 5〉︸ ︷︷ ︸
a′ = 5

a = 3 is never visible to the outside
world, nor to other processes

2-32

SPL Semantics (Con’t)

• Justice Set J
All transitions except

τI and all transitions associated

with noncritical statements

• Compassion Set C
All transitions associated with

send, receive, request statements

2-33

Computations of Programs

local x: integer where x = 1

P1 ::

ℓ0:

ℓa
0: await x = 1

or

ℓb
0: skip

ℓ1:

 ‖ P2 ::

[
m0: while t do

[m1: x := −x]

]

Fig O.4 Process P1 terminates in all

computations.

σ: 〈π: {ℓ0, m0}, x: 1〉 m0−→ 〈π: {ℓ0, m1}, x: 1〉 m1−→

〈π: {ℓ0, m0}, x:−1〉 m0−→ 〈π: {ℓ0, m1}, x:−1〉 m1−→

〈π: {ℓ0, m0}, x: 1〉 m0−→ · · ·

σ is not a computation. Unjust towards ℓb
0

(enabled on all states but never taken)

2-34

Computations of Programs (Con’t)

local x: integer where x = 1

P1 ::

ℓ0:

ℓa
0: await x = 1

or

ℓb
0: await x 6= 1

ℓ1:

 ‖ P2 ::

[
m0: while t do

[m1: x := −x]

]

Fig 0.5 skip → await x 6= 1

σ: 〈π: {ℓ0, m0}, x: 1〉 m0−→ 〈π: {ℓ0, m1}, x: 1〉 m1−→

〈π: {ℓ0, m0}, x:−1〉 m0−→ 〈π: {ℓ0, m1}, x:−1〉 m1−→

〈π: {ℓ0, m0}, x: 1〉 m0−→ · · ·

σ is a computation –

since none of the just transitions are

continually enabled.

2-35

Computations of Programs (Con’t)

local x: integer where x = 1

P1 ::

ℓ0: if x = 1 then

ℓ1: skip

else

ℓ2: skip
ℓ3:

 ‖ P2 ::

[
m0: while t do

[m1: x := −x]

]

Fig 0.6 Process P1 terminates in all

computations.

σ: 〈π: {ℓ0, m0}, x: 1〉 m0−→ 〈π: {ℓ0, m1}, x: 1〉 m1−→
〈π: {ℓ0, m0}, x:−1〉 m0−→ 〈π: {ℓ0, m1}, x:−1〉 m1−→
〈π: {ℓ0, m0}, x: 1〉 m0−→ · · ·

σ is not a computation –
since ℓ0 is continually enabled,
but not taken.

2-36

Control Configurations

L =
{
[ℓ1], . . . , [ℓk]

}
of P is called conflict-free

if no [ℓi] conflicts with [ℓj], for i 6= j.

L is called a (control) configuration of P

if it is a maximal conflict-free set.

Example:

local x: integer where x = 0

P1 ::

[
ℓ0: x := 1

ℓ1:

]
‖ P2 ::

[
m0: await x = 1

m1:

]

Configurations{
[ℓ0], [m0]

}
,

{
[ℓ0], [m1]

}
,{

[ℓ1], [m0]
}
,

{
[ℓ1], [m1]

}

2-37

SPL Semantics (Con’t)

accessible configuration –

appears as value of π in some accessible state

Example:

{
[ℓ0], [m1]

}
does not appear in any accessible state

Is a given configuration accessible?

Undecidable

2-38

The Mutual-Exclusion Problem

loop forever do
noncritical

· · · · · · · · ·
critical

· · · · · · · · ·

‖

loop forever do
noncritical

· · · · · · · · ·
critical

· · · · · · · · ·

Requirements:

• Exclusion

While one of the processes is in its critical section,

the other is not

• Accessibility

Whenever a process is at the noncritical section exit,

it must eventually reach its critical section

Example: mutual exclusion by semaphores

Fig. 0.7

2-39

local y: integer where y = 1

ℓ0: loop forever do
ℓ1: noncritical

ℓ2: request y

ℓ3: critical

ℓ4: release y

︸ ︷︷ ︸

P1

‖

m0: loop forever do
m1: noncritical

m2: request y

m3: critical

m4: release y

︸ ︷︷ ︸

P2

Fig. 0.7 Program mux-sem

2-40

Message-Passing Programs

Example: Producer-Consumer Fig. 0.9

assumption:

channel send ≤ N values

Fig. 0.9 Program prod-cons

2-41

