CS256 /Winter 2009 Lecture #2

Zohar Manna

SPL (Simple Programming Language)
Syntax

Basic Statements

skip
assignment

(ug,...,u) = (e1,...,ex)
variables expressions

await c

(where ¢ is a boolean expression)
special case: halt = await F

Communication by message-passing

o <= e (send)

o = u (receive)
(where v is a channel)

Semaphore operations

request r (r>0—-r:=r—1)

release r (r:=r4+1)
(where 7 is an integer variable) 9.9

SPL (CON’T)

Schematic Statements
In Mutual-Exclusion programs:

e noncritical
may not terminate
e critical

terminates

In Producer-Consumer programs:

e produce x

terminates — assign nonzero value to x

e consume y

terminates

No program variables are modified by
schematic statements. One exception:
“2” in produce x

SPL (CON’T)

Compound Statements

Conditional
if ¢ then Sq else S
if ¢ then S

Concatenation

S1; -+ Sk

Example:

whencdo S = awaitc¢; S

Selection
Syor---or S

while
while cdo S

Example:

loop forever do S = while Tdo S

2-4

SPL (CON’T)

Compound Statements (Con’t)

e Cooperation Statement

0[Sy b1l I [S Gt 1 2
Process

S1, ..., are parallel to one another
interleaved execution.

entry step: from £ to 01,40, ..., 4,
exit step: from £1,4o,..., 4} to L.

e Block

[local deglaration; S]

local ' able : t h ;

ocal variable , ..., variable : type w ere ¢;,
Yyir — €1, -5 Yn — €n

25

SPL (CON’T)
Basic types — boolean, integer, character, ...

Structured types — array, list, set, ...

Static variable initialization
(variables get initialized at the
start of the execution)

2-6

Programs

P :: l|declaration; Py :: [€1:57; Z13 1l
Py i [0 Sk O]}

Py, ..., P, are top-level processes
Variables in P called program variables

Declaration

mode variable, ..., variable: type where o;
programvvariables

in (not modified) constraints on

local initial values

out

Y1 A ... A pp data-precondition of the program

2-7

Channel Declaration

e synchronous channels
(no buffering capacity)

mode a1, ap,...,an: channel of type

e asynchronous channels
(unbounded buffering capacity)

mode a1, o, . ..,an: channel [1..] of type
where ¢,

— (p; is optional

— ¢; = A (empty list) by default

2-8

| Foundations for SPL Semantics

Labels
l: 5

e Label ¢ identifies statement S

e Equivalence Relation ~ between labels:

— For £: [01:51;...;€;: Sl

0 ~p 0y

— For £: [¢1:S1 or ... or £: S|

Co~p by g v Ay

— For ¢: [local declaration; £1:51]

0 ~p 0y

2-9

Note: For £: [61 : S1||... ||k : Skl

€A b A Ly 2L
because of the entry step

Example: In Figure 0.1
o ~r £1

by ~p b3~ U5

2-10

in a, b :integer wherea >0, b >0
local 41, ys: integer where y; =a, y2 =10
out g . integer

_121: while m 7& (15 do

£3: await y1 > yo; £4: 1 = y1 — Y2
£9: or

fs: await yo > y1; ot Y2 = y2 — U1

fr g=

Figure 0.1

A Fully Labeled Program GCD-F

2-11

Locations
[4]

Identify site of control
in a, b :integer wherea >0, 6 >0

e [/] is the location corresponding to label £. local g1, 3. integer where 41 — a, 15 — b
out g : integer
e Multiple labels identitying different statements may
identify the same location.

[E] — {f’ ‘ gl ~T E} 51: while mn 7& Y2 do

€3 await y1 > y2; f4: y1 1= y1 — Y2
£o: or
Eg: await y2 > y1; g y2 1= Y2 — ¥1

Example: Fig 0.1: A fully labeled program

[€o] = [€1] = {40, €1} [le] = {46} tr:g=u1

[62] = {€2, 43, (5} [67] = {¢7} R]
[€a] = {€a} [¢s] = {¢s}

Example: Fig 0.2: A partially labeled program Figure 0.2

%

b3 — 1% A Partially Labeled Program GCD

ls — 05

shortcut: label £o “represents” {£o, 44, 6%}
2-12 213

Post Location

~

0:8; ¢ post(S) = [£]

For [€1:S1; £1: 11| -+ || [€x: Sk: &g]

post(S;) = [¢], foreveryi=1,...,k

For S = [€1:571;...;4,: Sk]

post(S;) = [liyq], fori=1,..., k-1
post(Sy) = post(S)

For S = [¢1: 51 or ... or ¢;:S}]
post(S1) = -+ = post(Sy) = post(S)

For S = [if ¢ then Sq else S5]
post(S1) = post(Sp) = post(S)

For [£ : while ¢ do 5]

post(S) = [{]
2-14

Example: Post Locations of Fig 0.2

post(€1) = [£7]

post(£4)
= post(lg) = [l1]

post(€2)

post(¢3) = [ta]
post(¢5) = [¢]

post(€7) = [(g]

2-15

Ancestor

S is an ancestor of S’
if S’ is a substatement of S

S is a common ancestor of S and So

if it is an ancestor of both S1 and S5

S is a least common ancestor (LCA) of S1 and S5

if S is a common ancestor of S1 and Sp
and any other common ancestor
of §1 and S5 is an ancestor of S

LCA is unique for given statements S1 and Sp

Parallel Labels

e Statements S and S are parallel if

their LCA is a cooperation statement
that is different from statements S and S

Example: {51; [S2]|S3]; 54] | Ss

LCA of Sp, S3 [S2]153]
LCA of Sp, Sa S1; [92]|S3]; S
LCA of Sy, Ss [51; [S2]1S3]; 54} | Ss

Example: S = [S1; [S2]1S3]: Sa] | Ss

Statements LCA

Sp parallel to S3 Sy || S3

So parallel to Ss S

S5 not parallel to Sg [S1; ---; S4] not coop.

S not parallel to Sy || S5 So || S3 same

e parallel labels — labels of parallel statements

2-16

2-17

Conflicting Labels

conflicting labels — not equivalent and
not parallel

Example:

£1:57;
£y ([53353; 03:1 || [€a: Sa; Z41]>;
65155; 251

¢3 is parallel to each of {lg4, 4,06, 26}
and in conflict with each of

{61762,Z3,65,Z5}

¢e and 26 are in conflict with each other
but are parallel to each of

{51762,£3,Zé,64,Z4,£5,Z5}

| [6: Se: £6:]

2-18

Critical References

Writing References:

r.:= ... «a = u producezxz requestr
T T T T
release r

n

Reading References: all other references

critical reference of a variable in S if:

e writing ref to a variable that has reading
or writing refs in S’ (parallel to S)

e reading reference to a variable that has
writing references in S’ (parallel to S)

e reference to a channel

2-19

Limited Critical References (LCR)

Statement obeys LCR restriction (LCR-Statement)
if each test (for await, conditional, while)
and entire statement (for assignment)
contains at most one critical reference.

Example: Fig 0.3 » :| @ y my: await [y, |[+y2 <n
15| = Y

{5, , are LCR-Statements ; .

2,1, M3 Pro e[y =y —1 l[Py m2 @ /v2

{1, mo violate the LCR-requirement o mg: Y2 :=y2 + 1

3 THy:
LCR-Program: only LCR-statements
Figure 0.3

Interleaved vs. Concurrent Execution

Critical references
Claim : If P is an LCR program, then the

interleaving computations of P and the

concurrent executions of P give the same results.

Discussion & explanation: Blue Book.

2-20 2-21

'SPL Semantics|

Transition Semantics:

SPL P computation of P

| |

FTS & — computation of @

Given an SPL-program P, we can construct

the corresponding FTS @ = (V,0,7,7,C):

e system variables V'

Y = {y1,...,yn} — program variables of P
domains: as declared in P

7 — control variable
domain: sets of locations in P

V=Y U{n}

2-22

SPL Semantics (Con’t)
Comments:

— Forlabel £, at_¢: [flen
at’ 02 [0] € o’

Note: When going from an SPL program to an F'T'S we
lose the sequential nature of the program. We need to
model control explicitly in the FT'S: 7 can be viewed as

a prograrn counter.

2-23

SPL Semantics (Con’t)

Example: Fig0.1

V= {7Ta a, b7 Y1,Y2, g}
7 - ranges over subsets of

{[‘61]7 [£2]7 [64]a [66]7 [67]7 [68]}

a,b, ..., g - range over integers

e [nitial Condition ©
For P :: [dec; [Pl o[Sy e 1 |l
Py [€y: Sk £]H

with data-precondition ¢,
O m={[l1],..., (]} N ¢

Example: Fig0.1

6: m={lul} A
a>0ANb>0 AN yg=a A yr=0>
data—pregondition

2-24

in a, b :integer wherea >0, 6 >0
local 71, yo: integer where y| =a, yo =10
out g : integer

¢1: while y; +# y2 do
5. await y1 > yo; £40 y1 = y1 — ¥2
EQ: or
Eg: await yo > y1; 46 y2 = y2 — Y1

9=y
fg:

Figure 0.2

A Partially Labeled Program GCD

2-25

SPL Semantics (Con’t)

e 'Transitions 7

transitions associated with
T ={m}V { the statements of P }

where 7, is the “idling transition”

p; V=V
abbreviation
— pres(U): A\ (v =) (where U C V)
uelU

the value of u € U are preserved

— move(L,L): LC7® A #' =(x—L)UL
where L, L are sets of locations

~

— move(¢,0): move({[4]},{[€]})

2-26

SPL Semantics (Con’t)

We list the transitions (transition relations)
associated with the statements of P

£S5 Py

|Basic Statements

-~

¢: skip; £: — move(£,€) A pres(Y)

0:wi=c¢e, L — move(£,0) N W =e
A pres(Y—{U})

2-27

SPL Semantics (Con’t)
Basic Statements (Con’t)

0: await ¢; 2 — move(4,€) A ¢ A pres(Y)

~

¢: request r; £: — move(£,£) A r >0
ANrl=r—1
A pres(Y—{r})

¢: release r; 0: — move(€,€) AN v =r 41
A pres(Y—{r})

2-28

SPL Semantics (Con’t)
Basic Statements (Con’t)

asynchronous send

-~

la<e; L — move(€,€) N o/ =aee
A pres(Y—{a})

asynchronous receive

0 a=u; l — move(4,£) A |a|> 0

AN a=u ed

A pres (Y—{u, a})

synchronous send-receive

-~

U a<=e; V: m. o= u, m:

move({é,m},{@, ﬁ}) ANu' =e A pres(Y—{u})

2-29

SPL Semantics (Con’t)

’ Schematic Statements ‘ Py

¢: noncritical; ¢: — move(£,€) A pres <Y>
(nontermination modeled by 7, ¢ J)

¢: critical; ¢: — move(€,0) A pres(Y)

2-30

SPL Semantics (Con’t)

Compound Statements

¢: |if ¢ then £1: .S else /5: 52:| 0>
Py p, V p, where
p,: move(£,£1) N c A pres(Y)

p,: move(£,£2) A —c A pres(Y)

¢: |while cdo [¢:S]]; £: —
pyip, NV p, Where
P, move(£,£) A ¢ A pres(Y)

Py move(£,£) A —c A pres(Y)

~

¢ [[21:81; 01N - Il [0 Sk Zk:]]; 0 —
Py move({ﬁ}, {61,...,£k}) A pres(Y) (entry)

Py move({zl,...,zk}, {Z}) A pres(Y) (exit)

2-31

Grouped Statements
executed in a single atomic step

(S)

Example:
(r=y+1;, z:=2x+ 1)

the same as (z,2) := (y + 1, 2y + 3)

Example:
\(a:=3;a:=5>
a';5

a = 3 is never visible to the outside
world, nor to other processes

2-32

SPL Semantics (Con’t)

e Justice Set J
All transitions except

T, and all transitions associated
with noncritical statements

e Compassion Set C

All transitions associated with
send, receive, request statements

2-33

Computations of Programs

local x: integer where z = 1

[G- await x = 1]
ln: or mo. while T do
R | Ps o Py :
¢4 skip [m1: 1= —x]
_Eli
Fig 0.4 Process Py terminates in all
computations.
ot (m: {lo,mo}, x: 1) =% (m:{lo,m1},z:1) =
(m: {lo,mo}, z: —1) % (m:{lo,m1},x:—1) 5

mo

<7TZ {50, mo}, x: 1>

o is a computation. Unjust towards Elc’)
(enabled on all states but never taken)

2-34

Computations of Programs (Con’t)

local z: integer where x = 1

§: await z =1]
lo: or | Py mgq: while T do
. 2 ..
E%: await ¢ £~ 1 [mq1: x = —x]
(1 |
Fig 0.5 skip — awaitx #1

o {m:{lg, mg},x: 1)

<7TZ {50, mo}, X 1>

mQ
—

m

mo
— s ...

o 1s a computation —

(m:{lo,m1},2: 1)

(m: {lo,mo}, x: —1) —% (m:{lg,m1},z:—1)

mi
—

mi
—

since none of the just transitions are

continually enabled.

2-35

Computations of Programs (Con’t)

local z: integer where z = 1
[4g: if z = 1 then]

f1: skip mo: while T do
else | P2 o
[m1: 1= —x]
lo: skip

l3:

Fig 0.6 Process Pp terminates in all

computations.

o. <7TI {Eo,mo},wi 1> ﬂ <7TZ {Eo,ml},a}: 1> %

mQ mi

(m: {lg,mo},xz: —1) — (m:{lyp,m1},z:—1) —

mo

<7T: {607m0},$: 1> _ ...

ols a computation —

since £q is continually enabled,
but not taken.

2-36

Control Configurations

L = {[61], ey [Ek]} of P is called conflict-free

if no [¢;] conflicts with [£;],

for 1 # j.

L is called a (control) configuration of P

if 1t 1s a maximal conflict-fre

e set.

Example:

local x: integer where z = 0

lo: z:=1
Py _ | P> ::
lq:

Configurations

{[€0], [mol}, {ltol, [mal},
{lea], Imol}, {[a], [mal}

mq: await x = 1

mi.

2-37

SPL Semantics (Con’t)

accessible configuration —

appears as value of 7 in some accessible state

Example:

{[EO], [ml]} does not appear in any accessible state

[s a given configuration accessible?
Undecidable

2-38

The Mutual-Exclusion Problem

loop forever do loop forever do
[noncritical] [noncritical]
critical critical
Requirements:

e Exclusion

While one of the processes is in its critical section,
the other is not

e Accessibility
Whenever a process is at the noncritical section exit,
it must eventually reach its critical section

Example: mutual exclusion by semaphores

Fig. 0.7

2-39

local y: integer where y = 1

Message-Passing Programs

Fig. 0.7 Program MUX-SEM

05: loop forever do 'mo: loop forever do
/1: noncritical] m1: noncritical]
¢5: request y I mo:. request y
¢3: critical m3. critical
44 release y 'my: release y
P1 P2

2-40

Example: Producer-Consumer Fig. 0.9
assumption:
channel send < N values
local send, ack: channel [1.] of integer
where send = A, ack = [1,...,1]

[local z, ¢ integer
fg: loop forever do
Prod :: ?1: produce z ||
fo: ack =t
fa: send <

Cons ::

L

N
[local y: integer

mo: loop forever do

mi: send =y
mo: ack <1

msz: consume y

Fig. 0.9 Program PROD-CONS

2-41

