CS256/Winter 2009 Lecture $#2$

Zohar Manna

SPL (Simple Programming Language) Syntax

Basic Statements

- skip
- assignment

$$
\underbrace{(u_1, \dots, u_k)}_{\text{variables}} := \underbrace{(e_1, \dots, e_k)}_{\text{expressions}}
$$

 \bullet await c

(where c is a boolean expression)

special case: halt \equiv await F

• Communication by message-passing

$$
\alpha \Leftarrow e \qquad \qquad \text{(send)}
$$

- $\alpha \Rightarrow u$ (receive) (where α is a channel)
- Semaphore operations
	- request r $(r > 0 \rightarrow r := r 1)$ release r $(r := r + 1)$ (where r is an integer variable) $_{2-2}$

SPL (CON'T)

Schematic Statements

In Mutual-Exclusion programs:

• noncritical

may not terminate

• critical

terminates

In Producer-Consumer programs:

• produce x

terminates – assign nonzero value to x

 \bullet consume y

terminates

No program variables are modified by schematic statements. One exception: " x " in produce x

SPL (CON'T)

Compound Statements

- Conditional if c then S_1 else S_2 if c then S
- Concatenation $S_1; \cdots; S_k$

Example:

when c do $S \equiv$ await c; S

- Selection S_1 or \cdots or S_k
- while

while c do S

Example:

loop forever do $S \equiv$ while T do S

SPL (CON'T)

Compound Statements (Con't)

- Cooperation Statement
	- ℓ : $\left[\ell_1: S_1; \ell_1\right]$ process **process** $\exists \parallel \cdots \parallel [\ell_k: S_k; \ell_k: \;]; \; \ell$:
	- S_1, \ldots, S_k are parallel to one another interleaved execution.

entry step: from ℓ to $\ell_1, \ell_2, \ldots, \ell_k$, exit step: from $\ell_1, \ell_2, \ldots, \ell_k$ to ℓ .

• Block

 $[local \ *declaration*; S]$ {z } local variable , ..., variable : type where φ_i $y_1 = e_1, \ldots, y_n = e_n$

SPL (CON'T)

Basic types – boolean, integer, character, . . .

Structured types – array, list, set, \dots

Static variable initialization (variables get initialized at the start of the execution)

Programs

 P :: $\left[\text{declaration}; \ P_1 \right] : \ \left[\ell_1: S_1; \ \hat{\ell}_1: \ \right] \parallel \ \cdots \ \parallel$ P_k :: $[\ell_k: S_k; \ \hat{\ell}_k:]$

 P_1, \ldots, P_k are top-level processes Variables in P called program variables

Declaration

out

mode variable, ..., variable: type where φ_i program variables \mathbb{R} \downarrow \mathbb{R} \mathbb{L} \downarrow in (not modified) constraints on **local** initial values

 $\varphi_1 \wedge \ldots \wedge \varphi_n$ data-precondition of the program

Channel Declaration

• synchronous channels (no buffering capacity)

mode $\alpha_1, \alpha_2, \ldots, \alpha_n$: channel of type

• asynchronous channels (unbounded buffering capacity)

mode $\alpha_1, \alpha_2, \ldots, \alpha_n$: channel [1..] of type where φ_i

 φ_i is optional

 $-\varphi_i = \Lambda$ (empty list) by default

Foundations for SPL Semantics

Labels $\ell : S$

- Label ℓ identifies statement S
- $\bullet\,$ Equivalence Relation ${\sim}_L$ between labels:
	- $-$ For ℓ : $[\ell_1: S_1; \ldots; \ell_k: S_k]$ $\ell \sim_L \ell_1$

- For
$$
\ell
$$
: $[\ell_1: S_1 \text{ or } \dots \text{ or } \ell_k: S_k]$
 $\ell \sim_L \ell_1 \sim_L \cdots \sim_L \ell_k$

– For ℓ : [local *declaration*; ℓ_1 : S_1] $\ell \sim_L \ell_1$

Note: For $\ell : [\ell_1 : S_1 || \dots || \ell_k : S_k]$ $\ell \not\sim_L \ell_1 \not\sim_L \ell_2 \not\sim_L \ldots$ because of the entry step

in *a*, *b* : integer where $a > 0$, $b > 0$ local y_1 , y_2 : integer where $y_1 = a$, $y_2 = b$ out q $:$ integer

$$
\begin{bmatrix}\n\ell_1: \text{ while } y_1 \neq y_2 \text{ do} \\
\ell_0: \begin{bmatrix}\n\ell_3: \text{ await } y_1 > y_2; \ell_4: y_1 := y_1 - y_2 \\
\text{or} \\
\ell_5: \text{ await } y_2 > y_1; \ell_6: y_2 := y_2 - y_1\n\end{bmatrix}\n\end{bmatrix}
$$
\n
$$
\ell_8:
$$

A Fully Labeled Program GCD-F

Locations [ℓ]

Identify site of control

- \bullet [ℓ] is the location corresponding to label ℓ .
- Multiple labels identifying different statements may identify the same location. $[\ell] = {\ell' | \ell' \sim_L \ell}$

 $\ell_{\!0}$ $\ell_3 \rightarrow \ell_2^a$ $\sum_{i=1}^{\infty}$ $\ell_5\;\rightarrow\; \ell_2^b$ 2

shortcut: label ℓ_2 "represents" $\{\ell_2, \ell_2^a, \ell_2^b\}$

a, b : integer where $a > 0$, $b > 0$ in local y_1 , y_2 : integer where $y_1 = a$, $y_2 = b$ out q $:$ integer

$$
\begin{bmatrix}\n\ell_1: \text{ while } y_1 \neq y_2 \text{ do} \\
\ell_2: \begin{bmatrix}\n\ell_2^a: \text{ await } y_1 > y_2; & \ell_4: y_1 := y_1 - y_2 \\
\text{or} \\
\ell_2^b: \text{ await } y_2 > y_1; & \ell_6: y_2 := y_2 - y_1\n\end{bmatrix} \\
\ell_7: \ g := y_1\n\end{bmatrix}
$$

A Partially Labeled Program GCD

Post Location

 $\ell: S; \hat{\ell}:$ post $(S) = [\hat{\ell}]$

- For $[\ell_1: S_1; \ell_1:] || \cdots || [\ell_k: S_k; \ell_k:]$ $post(S_i) = [\hat{\ell}_i],$ for every $i = 1, ..., k$
- For $S = [\ell_1: S_1; \ldots; \ell_k: S_k]$ $post(S_i) = [\ell_{i+1}],$ for $i = 1, ..., k-1$ $post(S_k) = post(S)$
- For $S = [\ell_1: S_1 \text{ or } \dots \text{ or } \ell_k: S_k]$ $post(S_1) = \cdots = post(S_k) = post(S)$
- For $S = \{$ if c then S_1 else S_2 $post(S_1) = post(S_2) = post(S)$
- For $[\ell : \text{while } c \text{ do } S']$ $post(S') = [\ell]$

Example: Post Locations of Fig 0.2 $post(\ell_1) = [\ell_7]$ $post(\ell_2) = post(\ell_4)$ $=$ post (ℓ_6) $=$ $[\ell_1]$ $post(\ell_2^a)$ $_{2}^{a}) = [\ell_{4}]$ $\mathit{post}(\ell_2^b)$ $_{2}^{b}) = [\ell_{6}]$ $post(\ell_7) = [\ell_8]$

Ancestor

- S is an <u>ancestor</u> of S^\prime if S' is a substatement of S
- S is a common ancestor of S_1 and S_2 if it is an ancestor of both S_1 and S_2
- S is a least common ancestor (LCA) of S_1 and S_2 if S is a common ancestor of S_1 and S_2 and any other common ancestor of S_1 and S_2 is an ancestor of S

LCA is unique for given statements S_1 and S_2

Parallel Labels

 \bullet Statements S and \widetilde{S} are parallel if their LCA is a cooperation statement that is different from statements S and \widetilde{S}

• parallel labels – labels of parallel statements

Conflicting Labels

Example:

conflicting labels – not equivalent and not parallel

IF. ℓ_1 : S_1 ; $\ell_2: ([\ell_3: S_3; \hat{\ell}_3:] || [\ell_4: S_4; \hat{\ell}_4:]);$ $\ell_5: S_5; \ell_5:$ $\overline{}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ \parallel [ℓ_6 : S_6 ; ℓ_6 :]

 ℓ_3 is parallel to each of $\{\ell_4, \hat{\ell}_4, \ell_6, \hat{\ell}_6\}$ and in conflict with each of $\{\ell_1, \ell_2, \hat{\ell}_3, \ell_5, \hat{\ell}_5\}$

 ℓ_6 and $\hat{\ell}_6$ are in conflict with each other but are parallel to each of $\{\ell_1, \ell_2, \ell_3, \hat{\ell}_3, \ell_4, \hat{\ell}_4, \ell_5, \hat{\ell}_5\}$

Critical References

Limited Critical References (LCR)

Statement obeys LCR restriction (LCR-Statement) if each test (for await, conditional, while) and entire statement (for assignment) contains at most one critical reference.

Example: Fig 0.3

- ℓ_2, m_1, m_3 are LCR-Statements
- ℓ_1, m_2 violate the LCR-requirement

LCR-Program: only LCR-statements

Interleaved vs. Concurrent Execution

Claim: If P is an LCR program, then the interleaving computations of P and the concurrent executions of P give the same results.

Discussion & explanation: *Blue Book.*

$$
P_1 :: \begin{bmatrix} \ell_1: & b := b & 0 \\ \ell_2: & y_1 := y_1 - 1 \\ \ell_3: & \end{bmatrix} \quad || \quad P_2 :: \begin{bmatrix} m_1: & \text{av} \\ m_2: & b \\ m_3: & y_2 \end{bmatrix}
$$

$$
\begin{bmatrix} m_1: \text{ await } y_1 + y_2 \le n \\ m_2: \boxed{b} := \boxed{b} / y_2 \\ m_3: y_2 := y_2 + 1 \\ m_4: \end{bmatrix}
$$

Critical references

SPL Semantics

Transition Semantics:

SPL P

\ncomputation of P

\n
$$
\downarrow \qquad \qquad \uparrow
$$
\nFTS

\n
$$
\Phi \rightarrow \text{computation of } \Phi
$$

Given an SPL-program P , we can construct the corresponding FTS $\Phi = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$:

- $\bullet\,$ system variables V
	- $Y = \{y_1, \ldots, y_n\}$ program variables of P domains: as declared in P
	- π control variable

domain: sets of locations in P

 $V = Y \cup {\pi}$

SPL Semantics (Con't)

Comments:

– For label ℓ, at−ℓ: [ℓ] ∈ π $at'_-\ell$: $[\ell] \in \pi'$

Note: When going from an SPL program to an FTS we lose the sequential nature of the program. We need to model control explicitly in the FTS: π can be viewed as a program counter.

SPL Semantics (Con't)

Example: Fig 0.1 $V = {\pi, a, b, y_1, y_2, q}$ π - ranges over subsets of $\{[\ell_1], [\ell_2], [\ell_4], [\ell_6], [\ell_7], [\ell_8]\}$ a, b, \ldots, g - range over integers

• Initial Condition Θ For P :: $\left[\text{dec}; \left[P_1: \left[\ell_1: S_1; \ \hat{\ell}_1: \ \right] \parallel \cdots \parallel \right]\right]$ $P_k :: [\ell_k : S_k; \hat{\ell}_k :]]$ with data-precondition φ ,

$$
\Theta: \pi = \{[\ell_1], \ldots, [\ell_k]\} \wedge \varphi
$$

Example: Fig 0.1 Θ: $\pi = \{[\ell_1]\}\wedge$ $a > 0 \land b > 0 \land y_1 = a \land y_2 = b$ data-precondition

a, b : integer where $a > 0$, $b > 0$ in local y_1 , y_2 : integer where $y_1 = a$, $y_2 = b$ out q $:$ integer

$$
\begin{bmatrix}\n\ell_1: \text{ while } y_1 \neq y_2 \text{ do} \\
\ell_2: \begin{bmatrix}\n\ell_2^a: \text{ await } y_1 > y_2; & \ell_4: y_1 := y_1 - y_2 \\
\text{or} \\
\ell_2: \text{ await } y_2 > y_1; & \ell_6: y_2 := y_2 - y_1\n\end{bmatrix} \\
\ell_7: \ g := y_1\n\end{bmatrix}
$$

A Partially Labeled Program GCD

SPL Semantics (Con't)

• Transitions τ

$$
\mathcal{T} = \{\tau_I\} \cup \left\{\begin{array}{l}\text{transitions associated with} \\ \text{the statements of } P\end{array}\right\}
$$

where τ_I is the "idling transition" ρ_I : $V' = V$

abbreviation

-
$$
pres(U): \bigwedge_{u \in U} (u' = u)
$$
 (where $U \subseteq V$) the value of $u \in U$ are preserved

- $-$ move (L, \hat{L}) : $L \subseteq \pi \land \pi' = (\pi L) \cup \hat{L}$ where L, \hat{L} are sets of locations
- $\text{ move}(\ell, \hat{\ell})$: $\text{ move}(\{[\ell]\}, \{[\hat{\ell}]\})$

SPL Semantics (Con't)

We list the transitions (transition relations) associated with the statements of P

$\ell : S$	ρ_{ℓ}		
Basic Statements	ℓ : skip; $\hat{\ell}$:	\rightarrow	$move(\ell, \hat{\ell}) \land pres(Y)$
$\ell : \overline{u} := \overline{e}; \hat{\ell} : \longrightarrow$	$move(\ell, \hat{\ell}) \land \overline{u}' = \overline{e}$		
$\land pres(Y - {\overline{u}})$			

SPL Semantics (Con't)

Basic Statements (Con't)

ℓ: await *c*; $\hat{\ell}$: → move $(\ell, \hat{\ell}) \wedge c \wedge pres(Y)$

$$
\ell: \text{ request } r; \hat{\ell}: \longrightarrow \text{ move}(\ell, \hat{\ell}) \land r > 0
$$
\n
$$
\land \text{ r'} = r - 1
$$
\n
$$
\land \text{ pres}(Y - \{r\})
$$

$$
\ell: \text{ release } r; \hat{\ell}: \rightarrow \text{ move}(\ell, \hat{\ell}) \land r' = r + 1 \land \text{ pres}(Y - \{r\})
$$

SPL Semantics (Con't)

Basic Statements (Con't)

$$
\begin{array}{ll}\n\text{asynchronous send} \\
\ell: \ \alpha \Leftarrow e; \ \hat{\ell}: \\
\hline\n\end{array} \rightarrow \text{move}(\ell, \hat{\ell}) \ \land \ \alpha' = \alpha \bullet e \\
\land \ \text{pres}(Y - \{\alpha\})
$$

$$
\begin{array}{ll}\n\text{asynchronous receive} \\
\ell: \ \alpha \Rightarrow u; \ \hat{\ell}: \\
\hline\n\end{array}\n\rightarrow\n\text{move}\n\begin{array}{ll}\n(\ell, \hat{\ell}) \ \wedge \ |\alpha| > 0 \\
\wedge \ \alpha = u' \cdot \alpha'\n\end{array}
$$

$$
\wedge \ \alpha = u' \bullet \alpha'
$$

$$
\wedge \ pres(Y - \{u, \alpha\})
$$

synchronous send-receive

l: $\alpha \Leftarrow e$; $\hat{\ell}$: m: $\alpha \Rightarrow u$; \hat{m} :

 $move(\{\ell, m\}, \{\hat{\ell}, \widehat{m}\}) \ \wedge \ u' = e \ \wedge \ pres(Y - \{u\})$

2-29

SPL Semantics (Con't)

Schematic Statements ρ_{ℓ} $\ell \colon \textbf{noncritical}; \,\, \widehat{\ell} \colon \quad \to \quad \quad move(\ell, \widehat{\ell}\,) \ \wedge \ \mathit{pres}\big(Y\big)$ (nontermination modeled by $\tau_{\ell} \notin \mathcal{J}$)

l: critical; $\hat{\ell}$: \longrightarrow move $(\ell, \hat{\ell}) \land pres(Y)$

SPL Semantics (Con't)

Compound Statements

- $\ell \colon \left[\text{if } c \text{ then } \ell_1 \colon S_1 \text{ else } \ell_2 \colon S_2 \right]; \text{ } \widehat{\ell} \colon \rightarrow \ell_1$ $\rho_{\ell} : \rho_{\ell}^{T} \vee \rho_{\ell}^{F}$ where $\rho_{\scriptscriptstyle \ell}^{\rm T}$: \mathcal{L}^{T} : move $(\ell, \ell_1) \wedge c \wedge pres(Y)$ $\rho_{_\rho}^{\rm F}$: $\mathcal{L}^{\text{F}}_{\ell}: \text{ move}(\ell, \ell_2) \ \wedge \ \neg c \ \wedge \ \text{pres}(Y)$
- $\ell \colon \left[\text{while } c \text{ do } [\widetilde{\ell} ; \widetilde{S}\,]\right]; \ \widehat{\ell} \colon \to \ell$ $\rho_{\ell} \colon \rho_{\ell}^{\rm T} \vee \rho_{\ell}^{\rm F}$ where $\rho_{\scriptscriptstyle \ell}^{\rm T}$: \mathcal{L}^{T} : move $(\ell, \ell) \wedge c \wedge pres(Y)$ $\rho_{_\rho}^{\rm F}$: $\mathcal{F}_\ell: \mathit{move}(\ell, \ell) \ \wedge \ \neg c \ \wedge \ \mathit{pres}(Y)$

$$
\ell: \left[[\ell_1: S_1; \ \hat{\ell}_1:] \parallel \cdots \parallel [\ell_k: S_k; \ \hat{\ell}_k:] \right]; \ \hat{\ell}: \rightarrow
$$
\n
$$
\rho_{\ell}^{\text{E}}: \ \text{move}\left(\{\ell\}, \ \{\ell_1, \ldots, \ell_k\} \right) \ \wedge \ \text{pres}(Y) \ \text{(entry)}
$$
\n
$$
\rho_{\ell}^{\text{X}}: \ \text{move}\left(\{\hat{\ell}_1, \ldots, \hat{\ell}_k\}, \ \{\hat{\ell}\} \right) \ \wedge \ \text{pres}(Y) \ \text{(exit)}
$$
\n
$$
^{2\cdot 31}
$$

Grouped Statements $\langle S \rangle$

executed in a single atomic step

Example: $\langle x := y + 1; \ z := 2x + 1 \rangle$ $x' = y + 1 \quad \wedge \quad z' = 2y + 3$ the same as $(x, z) := (y + 1, 2y + 3)$

Example: $\underline{\langle a := 3; a := 5 \rangle}$ $a' = 5$

 $a = 3$ is never visible to the outside world, nor to other processes

SPL Semantics (Con't)

- \bullet Justice Set $\mathcal J$ All transitions except τ_I and all transitions associated with **noncritical** statements
- \bullet Compassion Set $\mathcal C$ All transitions associated with send, receive, request statements

Computations of Programs

Computations of Programs (Con't)

$$
\text{local } x: \text{ integer where } x = 1
$$
\n
$$
P_1 :: \begin{bmatrix} \ell_0^a: \text{ await } x = 1 \\ \ell_0: \begin{bmatrix} \ell_0^b: \text{as} \\ \text{or} \\ \ell_1: \end{bmatrix} \end{bmatrix} \parallel P_2 :: \begin{bmatrix} m_0: \text{while } T \text{ do} \\ [m_1: x := -x] \end{bmatrix}
$$

Fig 0.4 Process P_1 terminates in all computations.

$$
\sigma: \langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: 1 \rangle \xrightarrow{m_1}
$$

$$
\langle \pi: \{\ell_0, m_0\}, x: -1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: -1 \rangle \xrightarrow{m_1}
$$

$$
\langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \cdots
$$

 σ is not a computation. Unjust towards ℓ_0^b 0 (enabled on all states but never taken)

$$
\text{local } x: \text{ integer where } x = 1
$$
\n
$$
P_1 :: \begin{bmatrix} \ell_0: & \begin{bmatrix} \ell_0^a: \text{ await } x = 1 \\ \text{or} \\ \ell_0: \text{ await } x \neq 1 \end{bmatrix} \end{bmatrix} \parallel P_2 :: \begin{bmatrix} m_0: \text{while } T \text{ do} \\ [m_1: x := -x] \end{bmatrix}
$$
\n
$$
\boxed{\text{Fig 0.5} \quad \text{skip } \rightarrow \text{ await } x \neq 1}
$$

$$
\sigma: \langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: 1 \rangle \xrightarrow{m_1}
$$

$$
\langle \pi: \{\ell_0, m_0\}, x: -1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: -1 \rangle \xrightarrow{m_1}
$$

$$
\langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \cdots
$$

 σ is a computation since none of the just transitions are continually enabled.

Computations of Programs (Con't)

$$
\begin{bmatrix}\n\ell_0: & \text{if } x = 1 \text{ then} \\
\ell_1: & \text{skip} \\
\text{else} \\
\ell_2: & \text{skip}\n\end{bmatrix}\n\begin{bmatrix}\n\ell_0: & \text{if } x = 1 \text{ then} \\
\ell_1: & \text{skip} \\
\ell_2: & \text{skip}\n\end{bmatrix}\n\begin{bmatrix}\nm_0: & \text{while } T \text{ do} \\
\lfloor m_1: x := -x \rfloor\n\end{bmatrix}
$$

Fig 0.6 Process P_1 terminates in all computations.

$$
\sigma: \langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: 1 \rangle \xrightarrow{m_1} \langle \pi: \{\ell_0, m_0\}, x: -1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: -1 \rangle \xrightarrow{m_1} \langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \cdots
$$

 σ is not a computation – since ℓ_0 is continually enabled, but not taken.

Control Configurations

 $L = \{[\ell_1], \ldots, [\ell_k]\}\$ of P is called <u>conflict-free</u> if no $[\ell_i]$ conflicts with $[\ell_j]$, for $i \neq j$.

 L is called a (control) configuration of P if it is a maximal conflict-free set.

Example:
\nlocal *x*: integer where
$$
x = 0
$$

\n
$$
P_1 :: \begin{bmatrix} \ell_0: x := 1 \\ \ell_1: \end{bmatrix} \parallel P_2 :: \begin{bmatrix} m_0: \text{ await } x = 1 \\ m_1: \end{bmatrix}
$$
\nConfigurations
\n
$$
\{[\ell_0], [m_0] \}, \{[\ell_0], [m_1] \}, \{[\ell_1], [m_1] \}
$$

SPL Semantics (Con't)

accessible configuration – appears as value of π in some accessible state

Example:

 $\{[\ell_0], [m_1]\}$ does not appear in any accessible state

Is a given configuration accessible?

Undecidable

The Mutual-Exclusion Problem

Requirements:

• Exclusion

While one of the processes is in its critical section, the other is not

• Accessibility

Whenever a process is at the noncritical section exit, it must eventually reach its critical section

Example: mutual exclusion by semaphores Fig. 0.7

Message-Passing Programs

Fig. 0.9 Program PROD-CONS

Fig. 0.7 Program mux-sem