# CS256/Winter 2009 Lecture #2

Zohar Manna

### SPL (Simple Programming Language) Syntax

### **Basic Statements**

- skip
- assignment  $\underbrace{(u_1, \dots, u_k)}_{\text{variables}} := \underbrace{(e_1, \dots, e_k)}_{\text{expressions}}$
- await c

(where c is a boolean expression)

special case: halt  $\equiv$  await F

- Communication by message-passing
  - $\begin{array}{ll} \alpha \ \Leftarrow \ e & (\text{send}) \\ \alpha \ \Rightarrow \ u & (\text{receive}) \end{array}$

(where  $\alpha$  is a channel)

• Semaphore operations request r  $(r > 0 \rightarrow r := r - 1)$ release r (r := r + 1)(where r is an integer variable) 2-2

### Schematic Statements

In Mutual-Exclusion programs:

### • noncritical

may not terminate

# • critical

terminates

In Producer-Consumer programs:

### • produce x

terminates – assign nonzero value to x

• consume y

terminates

No program variables are modified by schematic statements. One exception: "x" in **produce** x

### **Compound Statements**

- Conditional if c then  $S_1$  else  $S_2$ if c then S
- Concatenation  $S_1; \dots; S_k$

Example: when  $c \operatorname{do} S \equiv \operatorname{await} c; S$ 

- <u>Selection</u>  $S_1$  or  $\cdots$  or  $S_k$
- while while c do S

Example:

**loop forever do**  $S \equiv$ while T **do** S

### Compound Statements (Con't)

• Cooperation Statement

$$\ell: [\underbrace{\ell_1:S_1; \ \hat{\ell}_1:}_{\text{process}}] \parallel \cdots \parallel [\ell_k:S_k; \ \hat{\ell}_k:]; \ \hat{\ell}:$$

 $S_1, \ldots, S_k$  are <u>parallel</u> to one another <u>interleaved</u> execution.

 $\underbrace{\text{entry step: from } \ell \text{ to } \ell_1, \ell_2, \dots, \ell_k,}_{\text{exit step: from } \widehat{\ell_1}, \widehat{\ell_2}, \dots, \widehat{\ell_k} \text{ to } \widehat{\ell}.}$ 

• <u>Block</u>

 $[ \underline{local declaration}; S ]$ 

local variable,..., variable: type where  $\underbrace{\varphi_i}_{y_1 = e_1, \ldots, y_n = e_n}$ 

Basic types – boolean, integer, character, ...

<u>Structured types</u> – array, list, set,  $\ldots$ 

Static variable initialization (variables get initialized at the start of the execution)

### Programs

$$P :: \begin{bmatrix} declaration; P_1 :: [\ell_1:S_1; \hat{\ell}_1:] \parallel \cdots \parallel \\ P_k :: [\ell_k:S_k; \hat{\ell}_k:] \end{bmatrix}$$

 $P_1, \ldots, P_k$  are top-level processes Variables in P called program variables

### Declaration

mode variable, ..., variable: type where  $\varphi_i$ program variables in (not modified) local

out

constraints on initial values

 $\varphi_1 \wedge \ldots \wedge \varphi_n$  data-precondition of the program

2-7

# **Channel Declaration**

• synchronous channels (no buffering capacity)

mode  $\alpha_1, \alpha_2, \ldots, \alpha_n$ : channel of type

asynchronous channels

 (unbounded buffering capacity)
 mode α<sub>1</sub>, α<sub>2</sub>, ..., α<sub>n</sub>: channel [1..] of type
 where φ<sub>i</sub>

 $-\varphi_i$  is optional

 $-\varphi_i = \Lambda$  (empty list) by default

### Foundations for SPL Semantics

### Labels

 $\ell : S$ 

- Label  $\ell$  identifies statement S
- Equivalence Relation  $\sim_L$  between labels:
  - For  $\ell$ :  $[\ell_1: S_1; \ldots; \ell_k: S_k]$  $\ell \sim_L \ell_1$
  - For  $\ell$ :  $[\ell_1: S_1 \text{ or } \dots \text{ or } \ell_k: S_k]$  $\ell \sim_L \ell_1 \sim_L \dots \sim_L \ell_k$
  - For  $\ell$ : [local declaration;  $\ell_1: S_1$ ]  $\ell \sim_L \ell_1$

# **Note:** For $\ell$ : $[\ell_1 : S_1 || \dots || \ell_k : S_k]$ $\ell \not\sim_L \ell_1 \not\sim_L \ell_2 \not\sim_L \dots$ because of the entry step

Example: In Figure 0.1  $\ell_0 \sim_L \ell_1$  $\ell_2 \sim_L \ell_3 \sim_L \ell_5$  in a, b: integer where a > 0, b > 0local  $y_1, y_2$ : integer where  $y_1 = a, y_2 = b$ out g: integer

$$\ell_{0}: \begin{bmatrix} \ell_{1}: \text{ while } y_{1} \neq y_{2} \text{ do} \\ & \ell_{3}: \text{ await } y_{1} > y_{2}; \ \ell_{4}: \ y_{1} := y_{1} - y_{2} \\ \text{ or } \\ & \ell_{5}: \text{ await } y_{2} > y_{1}; \ \ell_{6}: \ y_{2} := y_{2} - y_{1} \end{bmatrix} \\ \ell_{7}: \ g := y_{1} \end{bmatrix}$$

### Figure 0.1

### A Fully Labeled Program GCD-F

# Locations

# $[\ell]$

Identify site of control

- $[\ell]$  is the location corresponding to label  $\ell$ .
- Multiple labels identifying different statements may identify the same location.

 $[\ell] = \{\ell' \mid \ell' \sim_L \ell\}$ 

Example: Fig 0.1: A fully labeled program  $[\ell_0] = [\ell_1] = \{\ell_0, \ell_1\}$   $[\ell_6] = \{\ell_6\}$   $[\ell_2] = \{\ell_2, \ell_3, \ell_5\}$   $[\ell_7] = \{\ell_7\}$  $[\ell_4] = \{\ell_4\}$   $[\ell_8] = \{\ell_8\}$ 

Example: Fig 0.2: A partially labeled program  $\ell_0'$   $\ell_3 \rightarrow \ell_2^a$  $\ell_5 \rightarrow \ell_2^b$ 

shortcut: label  $\ell_2$  "represents"  $\{\ell_2, \ell_2^a, \ell_2^b\}$ 

in a, b: integer where a > 0, b > 0local  $y_1, y_2$ : integer where  $y_1 = a, y_2 = b$ out g: integer

$$\begin{array}{l} \ell_1: \ \textbf{while} \ y_1 \neq y_2 \ \textbf{do} \\ \\ \ell_2: \ \begin{bmatrix} \ell_2^a: \ \textbf{await} \ y_1 > y_2; \ \ell_4: \ y_1 := y_1 - y_2 \\ \textbf{or} \\ \\ \ell_2^b: \ \textbf{await} \ y_2 > y_1; \ \ell_6: \ y_2 := y_2 - y_1 \end{bmatrix} \\ \\ \ell_7: \ g := y_1 \\ \ell_8: \end{array}$$

### Figure 0.2

### A Partially Labeled Program GCD

#### **Post Location**

 $\ell: S; \ \hat{\ell}: \qquad post(S) = [\hat{\ell}]$ 

• For  $[\ell_1: S_1; \hat{\ell}_1: ] \parallel \cdots \parallel [\ell_k: S_k; \hat{\ell}_k: ]$  $post(S_i) = [\hat{\ell}_i]$ , for every  $i = 1, \dots, k$ 

• For 
$$S = [\ell_1 : S_1; \dots; \ell_k : S_k]$$
  
 $post(S_i) = [\ell_{i+1}], \text{ for } i = 1, \dots, k-1$   
 $post(S_k) = post(S)$ 

- For  $S = [\ell_1 : S_1$  or ... or  $\ell_k : S_k]$  $post(S_1) = \cdots = post(S_k) = post(S)$
- For  $S = [\text{if } c \text{ then } S_1 \text{ else } S_2]$  $post(S_1) = post(S_2) = post(S)$
- For  $[\ell : \text{while } c \text{ do } S']$  $post(S') = [\ell]$

**Example:** Post Locations of Fig 0.2

$$post(\ell_1) = [\ell_7]$$

$$post(\ell_2) = post(\ell_4)$$

$$= post(\ell_6) = [\ell_1]$$

$$post(\ell_2^a) = [\ell_4]$$

$$post(\ell_2^b) = [\ell_6]$$

$$post(\ell_7) = [\ell_8]$$

#### Ancestor

S is an <u>ancestor</u> of S'if S' is a substatement of S

S is a <u>common ancestor</u> of  $S_1$  and  $S_2$ if it is an ancestor of both  $S_1$  and  $S_2$ 

S is a <u>least common ancestor</u> (LCA) of  $S_1$  and  $S_2$ if S is a common ancestor of  $S_1$  and  $S_2$ and any other common ancestor of  $S_1$  and  $S_2$  is an ancestor of S

LCA is unique for given statements  $S_1$  and  $S_2$ 

Example: 
$$\begin{bmatrix} S_1; & [S_2 || S_3]; & S_4 \end{bmatrix} || S_5$$
  
LCA of  $S_2, & S_3 & [S_2 || S_3]$   
LCA of  $S_2, & S_4 & [S_1; & [S_2 || S_3]; & S_4]$   
LCA of  $S_2, & S_5 & [S_1; & [S_2 || S_3]; & S_4] || S_5$ 

# Parallel Labels

• <u>Statements</u> S and  $\tilde{S}$  are <u>parallel</u> if their LCA is a cooperation statement that is different from statements S and  $\tilde{S}$ 

| Example: $S = [S_1; [S_2    S_3]; S_4]    S_5$                                                                                 |                                                                                       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| <u>Statements</u>                                                                                                              | <u>LCA</u>                                                                            |  |  |
| $S_2$ parallel to $S_3$<br>$S_2$ parallel to $S_5$<br>$S_2$ not parallel to $S_4$<br>$S_2$ not parallel to $S_2 \parallel S_3$ | $S_2 \parallel S_3$<br>S<br>$[S_1; \dots; S_4]$ not coop.<br>$S_2 \parallel S_3$ same |  |  |

• parallel labels – labels of parallel statements

# **Conflicting Labels**

<u>conflicting labels</u> – not equivalent and not parallel

Example:  $\left[ \begin{array}{c} \ell_1: S_1; \\ \ell_2: \left( [\ell_3: S_3; \ \hat{\ell}_3: ] \parallel [\ell_4: S_4; \ \hat{\ell}_4: ] \right); \\ \ell_5: S_5; \ \hat{\ell}_5: \end{array} \right] \parallel [\ell_6: S_6; \ \hat{\ell}_6: ]$  $\ell_3$  is parallel to each of  $\{\ell_4, \hat{\ell}_4, \ell_6, \hat{\ell}_6\}$ and in conflict with each of  $\{\ell_1, \ell_2, \hat{\ell}_3, \ell_5, \hat{\ell}_5\}$  $\ell_6$  and  $\hat{\ell}_6$  are in conflict with each other but are parallel to each of  $\{\ell_1, \ell_2, \ell_3, \hat{\ell}_3, \ell_4, \hat{\ell}_4, \ell_5, \hat{\ell}_5\}$ 

### **Critical References**

Writing References:

| $x := \ldots$ | $\alpha \Rightarrow u$ | $\mathbf{produce}\;x$ | request | r          |
|---------------|------------------------|-----------------------|---------|------------|
| ↑             | $\uparrow$             | $\uparrow$            |         | $\uparrow$ |
|               |                        |                       |         |            |
|               |                        |                       | release | r          |
|               |                        |                       |         | $\uparrow$ |

Reading References: all other references

 $\underline{\text{critical reference}}$  of a variable in S if:

- writing ref to a variable that has reading or writing refs in S' (parallel to S)
- reading reference to a variable that has writing references in S' (parallel to S)
- reference to a channel

# Limited Critical References (LCR)

Statement obeys <u>LCR restriction</u> (<u>LCR-Statement</u>) if each test (for await, conditional, while) and entire statement (for assignment) contains at most one critical reference.

Example: Fig 0.3

 $\ell_2, m_1, m_3$  are LCR-Statements

 $\ell_1, m_2$  violate the LCR-requirement

LCR-Program: only LCR-statements

### Interleaved vs. Concurrent Execution

**Claim :** If P is an LCR program, then the interleaving computations of P and the concurrent executions of P give the same results.

Discussion & explanation: *Blue Book*.

$$P_{1}:: \begin{bmatrix} \ell_{1}: b := b \cdot y_{1} \\ \ell_{2}: y_{1}:= y_{1} - 1 \\ \ell_{3}: \end{bmatrix} \mid P_{2}:: \begin{bmatrix} m_{1}: \text{ await } y_{1} + y_{2} \le n \end{bmatrix}$$
$$m_{2}: b := b / y_{2}$$
$$m_{3}: y_{2}:= y_{2} + 1$$
$$m_{4}:$$

Figure 0.3

### Critical references

# SPL Semantics

Transition Semantics:

$$\begin{array}{ccc} \text{SPL P} & \text{computation of P} \\ \downarrow & & \uparrow \\ \text{FTS } \varPhi & \rightarrow & \text{computation of } \varPhi \end{array}$$

Given an SPL-program P, we can construct the corresponding FTS  $\Phi = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$ :

• system variables V

 $Y = \{y_1, \dots, y_n\} - \text{program variables of } P$ domains: as declared in P $\pi$  - control variable domain: sets of locations in P $V = Y \cup \{\pi\}$ 

### **Comments:**

- For label 
$$\ell$$
,  $at_{\ell}$ :  $[\ell] \in \pi$   
 $at'_{\ell}$ :  $[\ell] \in \pi'$ 

**Note:** When going from an SPL program to an FTS we lose the sequential nature of the program. We need to model control explicitly in the FTS:  $\pi$  can be viewed as a program counter.

Example: Fig 0.1  

$$V = \{\pi, a, b, y_1, y_2, g\}$$
  
 $\pi$  - ranges over subsets of  
 $\{[\ell_1], [\ell_2], [\ell_4], [\ell_6], [\ell_7], [\ell_8]\}$   
 $a, b, \dots, g$  - range over integers

• Initial Condition 
$$\Theta$$
  
For  $P :: \left[ \text{dec}; \left[ P_1 :: \left[ \ell_1 : S_1; \ \hat{\ell}_1 : \ \right] \parallel \cdots \parallel \right] \right]$   
 $P_k :: \left[ \ell_k : S_k; \ \hat{\ell}_k : \ \right] \right]$   
with data-precondition  $\varphi$ ,  
 $\Theta$ :  $\pi = \{ [\ell_1], \ldots, \ [\ell_k] \} \land \varphi$ 

Example: Fig 0.1  

$$\Theta: \pi = \{ [\ell_1] \} \land$$

$$\underbrace{a > 0 \land b > 0 \land y_1 = a \land y_2 = b}_{\text{data-precondition}}$$

2-24

in a, b: integer where a > 0, b > 0local  $y_1, y_2$ : integer where  $y_1 = a, y_2 = b$ out g: integer

$$\begin{array}{l} \ell_1: \ \textbf{while} \ y_1 \neq y_2 \ \textbf{do} \\ \\ \ell_2: \ \begin{bmatrix} \ell_2^a: \ \textbf{await} \ y_1 > y_2; \ \ell_4: \ y_1 := y_1 - y_2 \\ \textbf{or} \\ \\ \ell_2^b: \ \textbf{await} \ y_2 > y_1; \ \ell_6: \ y_2 := y_2 - y_1 \end{bmatrix} \\ \\ \ell_7: \ g := y_1 \\ \ell_8: \end{array}$$

### Figure 0.2

### A Partially Labeled Program GCD

• <u>Transitions</u>  $\mathcal{T}$ 

 $\mathcal{T} = \{\tau_I\} \cup \left\{ \begin{array}{l} \text{transitions associated with} \\ \text{the statements of } P \end{array} \right\}$ 

where  $\tau_I$  is the "idling transition"  $\rho_I: V' = V$ 

abbreviation

- pres(U):  $\bigwedge_{u \in U} (u' = u)$  (where  $U \subseteq V$ ) the value of  $u \in U$  are preserved
- move(L,  $\widehat{L}$ ):  $L \subseteq \pi \land \pi' = (\pi L) \cup \widehat{L}$ where L,  $\widehat{L}$  are sets of locations

 $- move(\ell, \hat{\ell}): move(\{[\ell]\}, \{[\hat{\ell}]\})$ 

We list the transitions (transition relations) associated with the statements of P

| $\underline{\ell}:S$                                     |               | $\underline{ ho_\ell}$                                                                         |
|----------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------|
| Basic Statem                                             | ents          |                                                                                                |
| $\ell$ : skip; $\widehat{\ell}$ :                        | $\rightarrow$ | $move(\ell, \widehat{\ell}) \land pres(Y)$                                                     |
| $\ell$ : $\overline{u} := \overline{e}$ ; $\hat{\ell}$ : | $\rightarrow$ | $move(\ell, \hat{\ell}) \land \overline{u}' = \overline{e} \ \land pres(Y - \{\overline{u}\})$ |

# Basic Statements (Con't)

$$\begin{split} \ell: \text{ await } c; \ \widehat{\ell}: & \to & move(\ell, \widehat{\ell}) \land c \land pres(Y) \\ \ell: \text{ request } r; \ \widehat{\ell}: & \to & move(\ell, \widehat{\ell}) \land r > 0 \\ & \land r' = r - 1 \\ & \land pres(Y - \{r\}) \end{split}$$

$$\ell: \text{ release } r; \ \widehat{\ell}: \longrightarrow move(\ell, \widehat{\ell}) \land r' = r + 1 \\ \land pres(Y - \{r\})$$

### Basic Statements (Con't)

$$\underline{\operatorname{asynchronous send}} \\ \widehat{\ell}: \ \alpha \Leftarrow e; \ \widehat{\ell}: \qquad \rightarrow \qquad \operatorname{move}(\ell, \widehat{\ell}) \ \land \ \alpha' = \alpha \bullet e \\ \land \ \operatorname{pres}(Y - \{\alpha\}) \\ \underline{\operatorname{asynchronous receive}} \\ \widehat{\ell}: \ \alpha \Rightarrow u; \ \widehat{\ell}: \qquad \rightarrow \qquad \operatorname{move}(\ell, \widehat{\ell}) \ \land \ |\alpha| > 0 \\ \land \ \alpha = u' \bullet \alpha' \\ \land \ \operatorname{pres}(Y - \{u, \alpha\}) \\ \end{array}$$

 $\frac{\text{synchronous send-receive}}{\ell: \ \alpha \Leftarrow e; \ \hat{\ell}: \ m: \ \alpha \Rightarrow u; \ \widehat{m}:$  $move(\{\ell, m\}, \{\hat{\ell}, \widehat{m}\}) \land u' = e \land pres(Y - \{u\})$ 

2-29

 $\ell$ : critical;  $\hat{\ell}$ :  $\rightarrow$  move $(\ell, \hat{\ell}) \land pres(Y)$ 

**Compound Statements** 

$$\ell: \left[ \text{if } c \text{ then } \ell_1 : S_1 \text{ else } \ell_2 : S_2 \right]; \ \widehat{\ell}: \rightarrow$$
$$\rho_{\ell}: \rho_{\ell}^{\mathrm{T}} \lor \rho_{\ell}^{\mathrm{F}} \text{ where}$$
$$\rho_{\ell}^{\mathrm{T}}: move(\ell, \ell_1) \land c \land pres(Y)$$
$$\rho_{\ell}^{\mathrm{F}}: move(\ell, \ell_2) \land \neg c \land pres(Y)$$

$$\begin{split} \ell: \left[ \mathbf{while} \ c \ \mathbf{do} \ [\tilde{\ell}: \tilde{S} \ ] \right]; \ \hat{\ell}: \to \\ \rho_{\ell}: \rho_{\ell}^{\mathrm{T}} \lor \rho_{\ell}^{\mathrm{F}} \ \text{where} \\ \rho_{\ell}^{\mathrm{T}}: \ move(\ell, \tilde{\ell}) \ \land \ c \ \land \ pres(Y) \\ \rho_{\ell}^{\mathrm{F}}: \ move(\ell, \hat{\ell}) \ \land \ \neg c \ \land \ pres(Y) \end{split}$$

$$\ell: \left[ [\ell_1: S_1; \ \hat{\ell}_1: ] \parallel \cdots \parallel [\ell_k: S_k; \ \hat{\ell}_k: ] \right]; \ \hat{\ell}: \rightarrow \\ \rho_{\ell}^{\mathrm{E}}: \ move(\{\ell\}, \ \{\ell_1, \dots, \ell_k\}) \land \ pres(Y) \ (\text{entry}) \\ \rho_{\ell}^{\mathrm{X}}: \ move(\{\hat{\ell}_1, \dots, \hat{\ell}_k\}, \ \{\hat{\ell}\}) \land \ pres(Y) \ (\text{exit}) \\ \\ 2-31 \end{cases}$$

# **Grouped Statements**

$$\langle S \rangle$$

executed in a single atomic step

Example:  

$$\langle x := y + 1; z := 2x + 1 \rangle$$
  
 $x' = y + 1 \land z' = 2y + 3$   
the same as  $(x, z) := (y + 1, 2y + 3)$ 

Example:  

$$\underbrace{\langle a := 3; a := 5 \rangle}_{a' = 5}$$

$$a = 3 \text{ is never visible to the outside world, nor to other processes}$$

• Justice Set  $\mathcal{J}$ 

All transitions except

 $\tau_{I}$  and all transitions associated with **noncritical** statements

• Compassion Set  $\mathcal{C}$ 

All transitions associated with <u>send</u>, <u>receive</u>, request statements

### **Computations of Programs**

local x: integer where 
$$x = 1$$
  
 $P_1 :: \begin{bmatrix} \ell_0^a: \text{ await } x = 1 \\ \text{or} \\ \ell_0^b: \text{ skip} \end{bmatrix} \| P_2 :: \begin{bmatrix} m_0: \text{ while } T \text{ do} \\ [m_1: x := -x] \end{bmatrix}$ 

Fig 0.4 Process  $P_1$  terminates in all computations.

$$\sigma: \langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: 1 \rangle \xrightarrow{m_1} \rangle$$
$$\langle \pi: \{\ell_0, m_0\}, x: -1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: -1 \rangle \xrightarrow{m_1} \rangle$$
$$\langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \cdots$$

 $\sigma \text{ is not a computation. Unjust towards } \ell^b_0$  (enabled on all states but never taken)

local x: integer where 
$$x = 1$$
  
 $P_1 :: \begin{bmatrix} \ell_0: & \begin{bmatrix} \ell_0^a: \text{ await } x = 1 \\ \text{or} & \\ \ell_0: & \end{bmatrix} \end{bmatrix} \parallel P_2 :: \begin{bmatrix} m_0: \text{ while } T \text{ do} \end{bmatrix} \\ \begin{bmatrix} m_1: & x := -x \end{bmatrix}$ 

Fig 0.5 skip 
$$\rightarrow$$
 await  $x \neq 1$ 

$$\sigma: \langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: 1 \rangle \xrightarrow{m_1} \rangle$$
$$\langle \pi: \{\ell_0, m_0\}, x: -1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: -1 \rangle \xrightarrow{m_1} \rangle$$
$$\langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \cdots$$

 $\sigma$  is a computation – since none of the just transitions are continually enabled.

### Computations of Programs (Con't)

local x: integer where 
$$x = 1$$
  
 $\ell_0$ : if  $x = 1$  then  
 $\ell_1$ : skip  
else  
 $\ell_2$ : skip  
 $\ell_3$ :  
 $\begin{pmatrix} l_0 : if x = 1 \text{ then} \\ l_1 : skip \\ l_2 : if x = 1 \text{ then} \\ l_2 : l_2$ 

Fig 0.6 Process  $P_1$  terminates in all computations.

$$\sigma: \langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: 1 \rangle \xrightarrow{m_1} \langle \pi: \{\ell_0, m_0\}, x: -1 \rangle \xrightarrow{m_0} \langle \pi: \{\ell_0, m_1\}, x: -1 \rangle \xrightarrow{m_1} \langle \pi: \{\ell_0, m_0\}, x: 1 \rangle \xrightarrow{m_0} \cdots$$

 $\sigma$  is not a computation – since  $\ell_0$  is continually enabled, but not taken.

## **Control Configurations**

$$L = \left\{ [\ell_1], \dots, [\ell_k] \right\} \text{ of } P \text{ is called } \underline{\text{conflict-free}} \\ \text{if no } [\ell_i] \text{ conflicts with } [\ell_j], \text{ for } i \neq j.$$

L is called a (<u>control</u>) <u>configuration</u> of Pif it is a maximal conflict-free set.

Example:  
local x: integer where 
$$x = 0$$
  
 $P_1 :: \begin{bmatrix} \ell_0: x := 1 \\ \ell_1: \end{bmatrix} \parallel P_2 :: \begin{bmatrix} m_0: \text{ await } x = 1 \\ m_1: \end{bmatrix}$   
Configurations  
 $\{ [\ell_0], [m_0] \}, \{ [\ell_0], [m_1] \}, \{ [\ell_1], [m_1] \}$ 

accessible configuration – appears as value of  $\pi$  in some accessible state

Example:

 $\big\{ [\ell_0], [m_1] \big\}$  does not appear in any accessible state

Is a given configuration accessible?

Undecidable

# The Mutual-Exclusion Problem



Requirements:

• <u>Exclusion</u>

While one of the processes is in its critical section, the other is not

# • Accessibility

Whenever a process is at the noncritical section exit, it must eventually reach its critical section

**Example:** mutual exclusion by semaphores Fig. 0.7

local y: integer where y = 1



Fig. 0.7 Program MUX-SEM

#### **Message-Passing Programs**

Example: Producer-Consumer

Fig. 0.9

assumption:

channel <u>send</u>  $\leq N$  values

local send, ack: channel [1..] of integer where send =  $\Lambda$ , ack =  $\underbrace{[1, \dots, 1]}_{N}$ 

|        | $\begin{bmatrix} local x, t: integer \end{bmatrix}$   |         | $\begin{bmatrix} local y: integer \end{bmatrix}$ |
|--------|-------------------------------------------------------|---------|--------------------------------------------------|
|        | $\ell_0$ : loop forever do                            |         | $m_0$ : loop forever do                          |
| Prod:: | $\left\lceil \ell_1: \text{ produce } x \right\rceil$ | Cons :: | $\left[ m_1: send \Rightarrow y \right]$         |
|        | $\ell_2: ack \Rightarrow t$                           |         | $m_2: ack \notin 1$                              |
|        | $\lfloor \ell_3: send \notin x \rfloor$               |         | $m_3$ : consume $y$                              |

Fig. 0.9 Program PROD-CONS