
CS256/Winter 2009 Lecture #6

Zohar Manna

Chapter 1

Invariance: Proof Methods

For assertion q
and SPL program P

show P q 0 q
(i.e., q is P -invariant)

6-1

Proving Invariances

Definitions

Recall:

• the variables of assertion:

– free (flexible) system variables

V = Y ∪ {π}

where Y are the program variables and π is the

control variable

– quantified (rigid) specification variables

• q′ is the primed version of q, obtained by replacing

each free occurrence of a system variable y ∈ V by

its primed version y′.

• ρτ is the transition relation of τ , expressing the re-

lation holding between a state s and any of its τ -

successors s′ ∈ τ(s).

6-2

Verification Conditions

(proof obligations)

standard verification condition

For assertions ϕ,ψ and transition τ ,

{ϕ} τ {ψ} (“Hoare triple”) stands for the state formula

ρτ ∧ ϕ → ψ′

“Verification condition (VC) of ϕ and ψ

relative to transition τ”

ϕ τ ψ
p p

j j + 1

6-3

Verification Conditions (Con’t)

Example:

ρτ : x ≥ 0 ∧ y′ = x+ y ∧ x′ = x

ϕ: y = 3 ψ: y = x+ 3

Then {ϕ} τ {ψ}:

x ≥ 0 ∧ y′ = x+ y ∧ x′ = x
︸ ︷︷ ︸

ρτ

∧ y = 3
︸ ︷︷ ︸

ϕ

→ y′ = x′ + 3
︸ ︷︷ ︸

ψ′

6-4

Verification Conditions (Con’t)

• for τ ∈ T in P

{ϕ}τ{ψ}: ρτ ∧ ϕ→ ψ′

“τ leads from ϕ to ψ in P ”

• for T in P

{ϕ}T {ψ}: {ϕ}τ{ψ} for every τ ∈ T

“T leads from ϕ to ψ in P ”

Claim (Verification Condition)

If {ϕ}τ{ψ} is P -state valid,

then every τ -successor of a ϕ-state is a ψ-state.

6-5

Verification Conditions (Con’t)

Special Cases

• while, conditional ρτ : ρ
t
τ
∨ ρf

τ

{ϕ}τt{ψ}: ρt
τ

∧ ϕ → ψ′

{ϕ}τf{ψ}: ρf
τ

∧ ϕ → ψ′

{ϕ}τ{ψ} : {ϕ}τt{ψ} ∧ {ϕ}τf{ψ}

• idle

{ϕ}τI{ϕ}: ρτI ∧ ϕ → ϕ′

always valid, since

ρτI → v′ = v for all v ∈ V ,

so ϕ′ = ϕ.

6-6

Verification Conditions (Con’t)

Substituted Form of Verification Condition

Transition relation can be written as
ρτ : Cτ ∧ (V ′ = E)

where
Cτ : enabling condition
V ′: primed variable list
E: expression list

• The substituted form of
verification condition {ϕ}τ{ψ}:

Cτ ∧ ϕ → ψ[E/V]

where
ψ[E/V]: replace each variable v ∈ V

in ψ by the corresponding e ∈ E
Note: No primed variables!

The substituted form of a verification condition is P -state

valid iff the standard form is

6-7

Verification Conditions (Con’t)

Example:

ρτ : x ≥ 0 ∧ y′ = x+ y ∧ x′ = x

ϕ : y = 3 ψ : y = x+ 3

Standard

x ≥ 0 ∧ y′ = x+ y ∧ x′ = x
︸ ︷︷ ︸

ρτ

∧ y = 3
︸ ︷︷ ︸
ϕ

→ y′ = x′ + 3
︸ ︷︷ ︸

ψ′

Substituted

x ≥ 0
︸ ︷︷ ︸

Cτ

∧ y = 3
︸ ︷︷ ︸
ϕ

→ x+ y = x+ 3
︸ ︷︷ ︸

ψ[E/V]

6-8

Verification Conditions (Con’t)

Example:

ϕ: x = y ψ: x = y+ 1

ρτ : x ≥ 0
︸ ︷︷ ︸

Cτ

∧ (x′, y′)
︸ ︷︷ ︸

V ′

= (x+ 1, y)
︸ ︷︷ ︸

E

The substituted form of {ϕ}τ{ψ} is

x ≥ 0
︸ ︷︷ ︸

Cτ

∧ x = y
︸ ︷︷ ︸
ϕ

→

(x = y+ 1)[(x+ 1, y)/(x, y)]
︸ ︷︷ ︸

ψ[E/V]

or equivalently

x ≥ 0 ∧ x = y → x+ 1 = y+ 1

6-9

Simplifying Control Expressions

move(L1, L2): L1 ⊆ π ∧ π′ = (π − L1) ∪ L2

e.g., for L1 = {ℓ1}, L2 = {ℓ2}
move(ℓ1, ℓ2): ℓ1 ∈ π ∧ π′ = (π − {ℓ1}) ∪ {ℓ2}

Consequences implied by move(L1, L2):

• for every [ℓ] ∈ L1

at−ℓ = t (i.e., [ℓ] ∈ π)

• for every [ℓ] ∈ L2

at ′−ℓ = t (i.e., [ℓ] ∈ π′)

• for every [ℓ] ∈ L1−L2

at−ℓ = t (i.e., [ℓ] ∈ π) and
at ′−ℓ = f (i.e., [ℓ] 6∈ π′)

• for every ℓ /∈ L1 ∪ L2

at ′−ℓ = at−ℓ (i.e., [ℓ] ∈ π, π′ or [ℓ] 6∈ π, π′)

6-10

Proving invariance properties: P q 0 q

We want to show that for every
computation of P

σ : s0, s1, s2, . . .
assertion q holds in every state sj, j ≥ 0,
i.e., sj q q.

Recall:
A sequence σ : s0, s1, s2, . . . is a computation

if the following hold (from Chapter 0):

1. Initiality: s0 q Θ

2. Consecution: For each j ≥ 0,

sj+1 is a τ -successor of sj for some τ ∈ T

(sj+1 ∈ τ(sj))

3, 4. Fairness conditions are respected.

Note: Truth of safety properties over programs
does not depend on fairness conditions.

6-11

Proving invariance properties (Con’t)

This definition suggests a way to prove

invariance properties 0 q:

1. Base case:

Prove that q holds initially

Θ → q

i.e., q holds at s0.

2. Inductive step:

prove that q is preserved by all transitions

q ∧ ρτ → q′
︸ ︷︷ ︸

{q}τ{q}

for all τ ∈ T

i.e., if q holds at sj, then it holds at every τ -successor

sj+1.

6-12

Rule B-INV (basic invariance)

Show P q 0 q (i.e. q is P -invariant)

For assertion q,

B1. P q Θ → q

B2. P q {q} T {q}

P q 0 q

where B2 stands for

P q {q} τ {q} for every τ ∈ T

• The rule states that if we can prove the

P -state validity of Θ → q and {q}T {q}

then we can conclude that 0 q is P -valid.

• Thus the proof of a temporal property

is reduced to the proof of 1 + |T |

first-order verification conditions.
6-13

Example 1: request-release

local x: integer where x = 1

ℓ0 : request x

ℓ1 : critical

ℓ2 : release x

ℓ3 :

Θ: x = 1 ∧ π = {ℓ0}

T : {τI , τℓ0, τℓ1, τℓ2}

Prove

P q 0 x ≥ 0
︸ ︷︷ ︸
q

using b-inv.

6-14

Example 1: request-release (Con’t)

B1: x = 1 ∧ π = {ℓ0}
︸ ︷︷ ︸

Θ

→ x ≥ 0
︸ ︷︷ ︸
q

holds since x = 1 → x ≥ 0

B2:

τℓ0: x ≥ 0
︸ ︷︷ ︸
q

∧ move(ℓ0, ℓ1) ∧ x > 0 ∧ x′ = x− 1
︸ ︷︷ ︸

ρτℓ0

→ x′ ≥ 0
︸ ︷︷ ︸

q′

holds since x > 0 → x− 1 ≥ 0

τℓ1: x ≥ 0
︸ ︷︷ ︸
q

∧ move(ℓ1, ℓ2) ∧ x
′ = x

︸ ︷︷ ︸
ρτℓ1

→ x′ ≥ 0
︸ ︷︷ ︸

q′

holds since x ≥ 0 → x ≥ 0

τℓ2: x ≥ 0
︸ ︷︷ ︸
q

∧ move(ℓ2, ℓ3) ∧ x
′ = x+ 1

︸ ︷︷ ︸
ρτℓ2

→ x′ ≥ 0
︸ ︷︷ ︸

q′

holds since x ≥ 0 → x+ 1 ≥ 0

6-15

Example 1: request-release (Con’t)

local x: integer where x = 1

ℓ0 : request x

ℓ1 : critical

ℓ2 : release x

ℓ3 :

We proved

P q 0 x ≥ 0

using b-inv.

Now we want to prove

P q 0 (at−ℓ1 → x = 0)
︸ ︷︷ ︸

q

6-16

Example 1: request-release (Con’t)

Attempted proof:

B1: x = 1 ∧ π = {ℓ0}
︸ ︷︷ ︸

Θ

→ (at−ℓ1 → x = 0
︸ ︷︷ ︸

q

)

holds since π = {ℓ0} → at−ℓ1 = f

B2: {q}τℓ0{q}

at−ℓ1 → x = 0
︸ ︷︷ ︸

q

∧ move(ℓ0, ℓ1) ∧ x > 0 ∧ x′ = x− 1
︸ ︷︷ ︸

ρτℓ0

→ at ′−ℓ1 → x′ = 0
︸ ︷︷ ︸

q′

We have move(ℓ0, ℓ1) → at−ℓ1 = f, at ′−ℓ1 = t

BUT

(f → x = 0)∧x > 0∧x′ = x−1 → (t → x′ = 0)

Cannot prove: not state-valid

What is the problem?

We need a stronger rule.

6-17

Strategies for invariance proofs

Rule b-inv (basic invariance)

For assertion q,

B1. P q Θ → q

B2. P q {q} T {q}

P q 0 q

• q is inductive if B1 and B2 are (state) valid

• By rule b-inv,

every inductive assertion q is P -invariant

• The converse is not true

Example: In request-release

at−ℓ1 → x = 0

is P -invariant, but not inductive

6-18

Rule b-inv(Con’t)

The problem is:

“The invariant is not inductive”

i.e., it is not strong enough to be preserved by all transi-

tions.

Another way to look at it is to observe that

{q} τℓ0 {q}

is not state valid, but it is P -state valid,

i.e., it is true in all P -accessible states,

since in all P -accessible states

x = 1 when at location ℓ0.

This suggests two strategies to overcome this problem:

• strengthening

• incremental proof

6-19

Strategy 1: Strengthening

Find a stronger assertion ϕ that is inductive and implies

the assertion q we want to prove.

����
����
����
����

����
����
����
����

Σ

q

ϕ τ

P -accessible

In Chapter 2 it will be shown that there always exists

such an assertion ϕ.

6-20

Strategy 1: Strengthening (Con’t)

Example:

To show 0 (at−ℓ1 → x = 0
︸ ︷︷ ︸

q

)

strengthen q to

ϕ : (at−ℓ1 → x = 0) ∧ (at−ℓ0 → x = 1)

and show0 (at−ℓ1 → x = 0) ∧ (at−ℓ0 → x = 1)
︸ ︷︷ ︸

ϕ

by rule b-inv.

6-21

Strategy 1: Strengthening (Con’t)

The strengthening strategy relies on the

following rule, mon-i, which, combined with

b-inv leads to the general invariance rule inv.

Rule mon-i (Monotonicity)

For assertions q1, q2,

P q 0 q1 P q q1 → q2

P q 0 q2

6-22

Strategy 1: Strengthening (Con’t)

Rule inv (general invariance)

For assertions q, ϕ

I1. P q ϕ → q

I2. P q Θ → ϕ

I3. P q {ϕ} T {ϕ}

P q 0 q

6-23

Soundness: If we manage to prove 0 q using the inv

rule for some program P , is q really an invariant for

the program?

We can prove that this is indeed the case. So inv

rule is sound.

Completeness: What if q is an invariant for a program

P but there is no way of proving it under the inv

rule?

We can prove that this never happens. There always

exists an appropriate ϕ. In other words inv rule is

complete.

6-24

Strategy 1: Strengthening (Con’t)

Motivation:

P q 0 ϕ (by I2 and I3)

P q ϕ→ q (by I1)

Therefore,

P q 0 q (by mon-i)

i.e., this rule requires that 0 ϕ holds and ϕ implies q,

then 0 q can be concluded to hold by monotonicity.

6-25

Control Invariants

Some control invariants that can always be used (without

mentioning them)

• conflict:

for labels ℓi, ℓj that are in conflict

(i.e., not ∼L, not parallel):0 ¬(at−ℓi ∧ at−ℓj)

• somewhere:

for the set of labels Li in a

top-level process:0 ∨

ℓ∈Li

at−ℓ

• equal:

for labels l,m, s.t. l ∼L m:0 (at−ℓ ↔ at−m)

6-26

Control Invariants (Con’t)

• parallel:

for substatement [S1||S2]:0 (in S1 ↔ in S2)

i.e, if control is in S1 it must also be in S2 and vice

versa.

Example:

Using the invariant conflict,

move(ℓ2, ℓ3) implies l0 6∈ π, l1 6∈ π, l3 6∈ π
l0 6∈ π′, l1 6∈ π′, l2 6∈ π′

6-27

Strategy 1: Strengthening (Con’t)

Example:

We proposed the strengthened invariant

ϕ : (at−ℓ0 → x = 1) ∧ (at−ℓ1 → x = 0)

Consider {ϕ} τℓ0 {ϕ}:

(at−ℓ0 → x = 1) ∧ (at−ℓ1 → x = 0)
︸ ︷︷ ︸

ϕ

∧

move(ℓ0, ℓ1) ∧ x > 0 ∧ x′ = x− 1
︸ ︷︷ ︸

ρτℓ0

→ (at ′−ℓ0 → x′ = 1) ∧ (at ′−ℓ1 → x′ = 0)
︸ ︷︷ ︸

ϕ′

move(ℓ0, ℓ1) implies ℓ0 ∈ π, ℓ1 6∈ π, ℓ1 ∈ π′, ℓ0 6∈ π′

Therefore

(t → x = 1) ∧ (f → . . .) ∧ . . . ∧ x′ = x− 1 ∧ . . .

→ (f → . . .) ∧ (t → x′ = 0)

holds.

6-28

Strategy 1: Strengthening (Con’t)

Example (Con’t):

Consider {ϕ} τℓ2 {ϕ}:

(at−ℓ0 → x = 1) ∧ (at−ℓ1 → x = 0)
︸ ︷︷ ︸

ϕ

∧

move(ℓ2, ℓ3) ∧ x
′ = x+ 1

︸ ︷︷ ︸
ρτℓ2

→ (at ′−ℓ0 → x′ = 1) ∧ (at ′−ℓ1 → x′ = 0)
︸ ︷︷ ︸

ϕ′

move(ℓ2, ℓ3) implies ℓ3 ∈ π′

and by conflict invariants ℓ0, ℓ1 6∈ π′.

Therefore

. . . ∧ . . . → (f → x′ = 1) ∧ (f → x′ = 0)

holds.

{ϕ} τℓ2 {ϕ} is not state-valid,

but it is P -state valid. Why?

6-29

Strategy 2: Incremental proof

Use previously proven invariances χ to exclude parts of

the state space from consideration.

Σ χ

q τ

P -accessible

6-30

Strategy 2: Incremental proof (Con’t)

Example:

To show 0 (at−ℓ1 → x = 0
︸ ︷︷ ︸

q

)

prove first (separately) by rule b-inv0 (at−ℓ0 → x = 1)
︸ ︷︷ ︸

χ

,

then show 0 (at−ℓ1 → x = 0
︸ ︷︷ ︸

q

)

by rule b-inv, but add the conjunct

at−ℓ0 → x = 1

to the antecedent of all verification conditions.

(Example continues...)

6-31

Strategy 2: Incremental proof (Con’t)

Example: (cont’d)

e.g., to show {χ ∧ q}τℓ0{q}, prove

at−ℓ0 → x = 1
︸ ︷︷ ︸

χ

∧ at−ℓ1 → x = 0
︸ ︷︷ ︸

q

∧

move(ℓ0, ℓ1) ∧ x > 0 ∧ x′ = x− 1
︸ ︷︷ ︸

ρτℓ0

→ at ′−ℓ1 → x′ = 0
︸ ︷︷ ︸

q′

6-32

Strategy 2: Incremental proof (Con’t)

In an incremental proof we use previously proven proper-

ties to eliminate parts of the state space (non P -accessible

states) from consideration, relying on the following rules:

Rule sv-psv: from state validities to

P -state validities

For assertions q1, q2 and χ,
P q 0 χ

P q χ ∧ q1 → q2

P q 0 (q1 → q2)

Rule i-con: Conjunction

For assertions q1 and q2,
P q 0 q1
P q 0 q2

P q 0 (q1 ∧ q2)

6-33

Strategy 2: Incremental proof (Con’t)

Example: Program mux-sem

(mutual exclusion by semaphores)

local y: integer where y = 1

P1 ::

ℓ0: loop forever do

ℓ1 : noncritical
ℓ2 : request y
ℓ3 : critical
ℓ4 : release y

|| P2 ::

m0: loop forever do

m1: noncritical
m2: request y
m3: critical
m4: release y

Prove mutual exclusion0 ¬(at−ℓ3 ∧ at−m3)
︸ ︷︷ ︸

q

6-34

Program mux-sem (Con’t)

3 steps: 0 (y ≥ 0
︸ ︷︷ ︸
ϕ1

)0 (at−ℓ3,4 + at−m3,4 + y = 1
︸ ︷︷ ︸

ϕ2

)0 ¬(at−ℓ3 ∧ at−m3)
︸ ︷︷ ︸

p

where f = 0,t = 1.

Let πℓ: π ∩ {ℓ0, . . . , ℓ4}

πm: π ∩ {m0, . . . ,m4}

By control invariants (conflict, somewhere and

parallel)

|πℓ| = |πm| = 1

6-35

Program mux-sem (Con’t)

Step 1: 0 (y ≥ 0
︸ ︷︷ ︸
ϕ1

)

by rule b-inv

B1. π = {ℓ0,m0} ∧ y = 1
︸ ︷︷ ︸

Θ

→ y ≥ 0
︸ ︷︷ ︸
ϕ1

B2. ρτ ∧ y ≥ 0 → y′ ≥ 0

check only ℓ2, ℓ4,m2,m4

(“y-modifiable transitions”)

6-36

Program mux-sem (Con’t)

ℓ2: move(ℓ2, ℓ3) ∧ y > 0 ∧ y′ = y−1
︸ ︷︷ ︸

ρτ

∧ y ≥ 0
︸ ︷︷ ︸
ϕ

→ y′ ≥ 0
︸ ︷︷ ︸

ϕ′

holds since y > 0 → y−1 ≥ 0

ℓ4: move(ℓ4, ℓ0) ∧ y′ = y+1
︸ ︷︷ ︸

ρτ

∧ y ≥ 0
︸ ︷︷ ︸
ϕ

→ y′ ≥ 0
︸ ︷︷ ︸

ϕ′

holds since y ≥ 0 → y+1 ≥ 0.

Similarly for m2, m4.

6-37

Program mux-sem (Con’t)

Step 2:0 (at−ℓ3,4 + at−m3,4 + y = 1
︸ ︷︷ ︸

ϕ2

)

by rule b-inv

B1. π = {ℓ0,m0} ∧ y = 1
︸ ︷︷ ︸

Θ

→

at−ℓ3,4
︸ ︷︷ ︸

0

+ at−m3,4
︸ ︷︷ ︸

0

+ y
︸︷︷︸

1

= 1

︸ ︷︷ ︸
ϕ2

6-38

Program mux-sem (Con’t)

B2. ρτ ∧ ϕ2 → ϕ′2

ρℓ0 ∧ 0 + at−m3,4 + y = 1 →

0 + at−m3,4 + y = 1

ρℓ1 ∧ 0 + at−m3,4 + y = 1 →

0 + at−m3,4 + y = 1

ρℓ2 ∧ 0 + at−m3,4 + y = 1 →

1 + at−m3,4 + (y−1) = 1

ρℓ3 ∧ 1 + at−m3,4 + y = 1 →

1 + at−m3,4 + y = 1

ρℓ4 ∧ 1 + at−m3,4 + y = 1 →

0︸︷︷︸

at ′−ℓ3,4

+ at−m3,4
︸ ︷︷ ︸

at ′−m3,4

+(y+1)
︸ ︷︷ ︸

y′

= 1

6-39

Program mux-sem (Con’t)

Step 3: Show P q 0 ¬(at−ℓ3 ∧ at−m3)
︸ ︷︷ ︸

q

• By i-con

P q 0 ϕ1, P q 0 ϕ2

P q 0 (ϕ1 ∧ ϕ2)

• By mon-i

P q 0 (ϕ1 ∧ ϕ2)

P q y ≥ 0
︸ ︷︷ ︸
ϕ1

∧ at−ℓ3,4 + at−m3,4 + y = 1
︸ ︷︷ ︸

ϕ2

→ ¬(at−ℓ3 ∧ at−m3)
︸ ︷︷ ︸

q

P q 0 ¬(at−ℓ3 ∧ at−m3)
︸ ︷︷ ︸

q

6-40

