$\mathbf{CS256/Winter~2009~Lecture~\#6}$

Zohar Manna

Chapter 1

Invariance: Proof Methods

For assertion q and SPL program Pshow $P \models \Box q$ (i.e., q is P-invariant)

Proving Invariances

Definitions

Recall:

- the variables of assertion:
 - free (flexible) system variables

$$V = Y \cup \{\pi\}$$

where Y are the program variables and π is the control variable

- quantified (rigid) specification variables
- q' is the <u>primed version</u> of q, obtained by replacing each free occurrence of a system variable $y \in V$ by its primed version y'.
- ρ_{τ} is the <u>transition relation</u> of τ , expressing the relation holding between a state s and any of its τ -successors $s' \in \tau(s)$.

Verification Conditions

(proof obligations)

standard verification condition

For assertions φ , ψ and transition τ ,

 $\{\varphi\}$ τ $\{\psi\}$ ("Hoare triple") stands for the state formula

$$\boxed{\rho_{\tau} \wedge \varphi \rightarrow \psi'}$$

"Verification condition (VC) of φ and ψ relative to transition τ "

Example:

$$\rho_{\tau}$$
: $x \ge 0 \land y' = x + y \land x' = x$

$$\varphi$$
: $y = 3$ ψ : $y = x + 3$

Then $\{\varphi\}$ τ $\{\psi\}$:

$$\underbrace{x \geq 0 \land y' = x + y \land x' = x}_{\rho_{\tau}} \land \underbrace{y = 3}_{\varphi}$$

$$\rightarrow \underbrace{y' = x' + 3}_{\psi'}$$

- for $\tau \in \mathcal{T}$ in P $\{\varphi\}\tau\{\psi\}: \quad \rho_{\tau} \wedge \varphi \to \psi'$ " $\tau \text{ leads from } \varphi \text{ to } \psi \text{ in } P$ "
- for \mathcal{T} in P $\{\varphi\}\mathcal{T}\{\psi\}\colon \ \{\varphi\}\tau\{\psi\} \ \text{for every } \tau\in\mathcal{T}$ " \mathcal{T} leads from φ to ψ in P"

Claim (Verification Condition)

If $\{\varphi\}\tau\{\psi\}$ is P-state valid, then every τ -successor of a φ -state is a ψ -state.

Special Cases

• while, conditional ρ_{τ} : $\rho_{\tau}^{\mathrm{T}} \vee \rho_{\tau}^{\mathrm{F}}$

$$\{\varphi\}\tau^{\mathrm{T}}\{\psi\}: \quad \rho_{\tau}^{\mathrm{T}} \wedge \varphi \rightarrow \psi'$$

$$\{\varphi\}\tau^{\mathrm{F}}\{\psi\}: \quad \rho_{\tau}^{\mathrm{F}} \wedge \varphi \rightarrow \psi'$$

$$\{\varphi\}\tau\{\psi\}$$
 : $\{\varphi\}\tau^{\mathrm{T}}\{\psi\}$ \wedge $\{\varphi\}\tau^{\mathrm{F}}\{\psi\}$

• idle

$$\{\varphi\}\tau_I\{\varphi\}: \quad \rho_{\tau_I} \wedge \varphi \rightarrow \varphi'$$

always valid, since

$$\rho_{\tau_I} \to v' = v \quad \text{for all } v \in V,$$
so $\varphi' = \varphi$.

Substituted Form of Verification Condition

Transition relation can be written as

$$\rho_{\tau}$$
: $C_{\tau} \wedge (\overline{V}' = \overline{E})$

where

 C_{τ} : enabling condition

 \overline{V}' : primed variable list

 \overline{E} : expression list

• The substituted form of verification condition $\{\varphi\}\tau\{\psi\}$:

$$C_{ au} \wedge arphi \rightarrow \psi[\overline{E}/\overline{V}]$$

where

 $\psi[\overline{E}/\overline{V}]$: replace each variable $v \in \overline{V}$

in ψ by the corresponding $e \in \overline{E}$

Note: No primed variables!

The substituted form of a verification condition is P-state valid iff the standard form is

Example:

$$\rho_{\tau}$$
: $x \ge 0 \land y' = x + y \land x' = x$

$$\varphi: y = 3 \qquad \psi: y = x + 3$$

Standard

$$\underbrace{x \ge 0 \ \land \ y' = x + y \ \land \ x' = x}_{\rho_{\tau}} \ \land \ \underbrace{y = 3}_{\varphi}$$

$$\rightarrow \underbrace{y' = x' + 3}_{\psi'}$$

Substituted

$$\underbrace{x \geq 0}_{C_{\tau}} \land \underbrace{y = 3}_{\varphi} \rightarrow \underbrace{x + y = x + 3}_{\psi[\overline{E}/\overline{V}]}$$

Example:

$$\varphi$$
: $x = y$ ψ : $x = y + 1$

$$\rho_{\tau} \colon \underbrace{x \geq 0}_{C_{\tau}} \land \underbrace{(x', y')}_{\overline{V}'} = \underbrace{(x + 1, y)}_{\overline{E}}$$

The substituted form of $\{\varphi\}\tau\{\psi\}$ is

$$\underbrace{x \geq 0}_{C_{\tau}} \land \underbrace{x = y}_{\varphi} \rightarrow \underbrace{(x = y + 1)[(x + 1, y)/(x, y)]}_{\psi[\overline{E}/\overline{V}]}$$

or equivalently

$$x \ge 0 \land x = y \rightarrow x + 1 = y + 1$$

Simplifying Control Expressions

$$move(L_1, L_2): L_1 \subseteq \pi \land \pi' = (\pi - L_1) \cup L_2$$

e.g., for
$$L_1 = \{\ell_1\}, L_2 = \{\ell_2\}$$

 $move(\ell_1, \ell_2): \quad \ell_1 \in \pi \land \pi' = (\pi - \{\ell_1\}) \cup \{\ell_2\}$

Consequences implied by $move(L_1, L_2)$:

- for every $[\ell] \in L_1$ at = T (i.e., $[\ell] \in \pi$)
- for every $[\ell] \in L_2$ $at'_{\ell} = T$ (i.e., $[\ell] \in \pi'$)
- for every $[\ell] \in L_1 L_2$ at = T (i.e., $[\ell] \in \pi$) and at' = F (i.e., $[\ell] \not\in \pi'$)
- for every $\ell \notin L_1 \cup L_2$ $at'_{\ell} = at_{\ell} \text{ (i.e., } [\ell] \in \pi, \pi' \text{ or } [\ell] \not\in \pi, \pi')$

Proving invariance properties: $P \models \square q$

We want to show that for every computation of P

 $\sigma: s_0, s_1, s_2, \dots$ assertion q holds in every state $s_j, j \geq 0$, i.e., $s_j \models q$.

Recall:

A sequence $\sigma : s_0, s_1, s_2, \dots$ is a <u>computation</u> if the following hold (from Chapter 0):

- 1. Initiality: $s_0 \models \Theta$
- 2. Consecution: For each $j \geq 0$, s_{j+1} is a τ -successor of s_j for some $\tau \in \mathcal{T}$ $(s_{j+1} \in \tau(s_j))$
- 3, 4. Fairness conditions are respected.

Note: Truth of *safety* properties over programs *does not* depend on fairness conditions.

Proving invariance properties (Con't)

This definition suggests a way to prove invariance properties $\square q$:

1. Base case:

Prove that q holds initially

$$\Theta \to q$$

i.e., q holds at s_0 .

2. Inductive step:

prove that q is preserved by all transitions

$$\underbrace{q \wedge \rho_{\tau} \to q'}_{\{q\}\tau\{q\}}$$
 for all $\tau \in \mathcal{T}$

i.e., if q holds at s_j , then it holds at every τ -successor s_{j+1} .

Rule B-INV (basic invariance)

Show $P \models \square q$ (i.e. q is \underline{P} -invariant)

For assertion
$$q$$
,
$$B1. \qquad P \Vdash \Theta \rightarrow q$$

$$B2. \qquad P \Vdash \{q\} \ \mathcal{T} \ \{q\}$$

$$P \models \Box q$$

where B2 stands for

$$P \Vdash \{q\} \ \tau \ \{q\} \ \text{ for every } \tau \in \mathcal{T}$$

- The rule states that if we can prove the P-state validity of $\Theta \to q$ and $\{q\}\mathcal{T}\{q\}$ then we can conclude that $\square q$ is P-valid.
- Thus the proof of a temporal property is reduced to the proof of $\mathbf{1} + |\mathcal{T}|$ first-order verification conditions.

Example 1: REQUEST-RELEASE

local x: integer where x = 1

 $\begin{bmatrix} \ell_0 : & \text{request } x \\ \ell_1 : & \text{critical} \\ \ell_2 : & \text{release } x \\ \ell_3 : & \end{bmatrix}$

$$\Theta$$
: $x = 1 \land \pi = \{\ell_0\}$

$$\mathcal{T}$$
: $\{ au_I, au_{\ell_0}, au_{\ell_1}, au_{\ell_2}\}$

Prove

$$P \models \square \underbrace{x \geq 0}_{q}$$

using B-INV.

Example 1: request-release (Con't)

B1:
$$\underbrace{x = 1 \land \pi = \{\ell_0\}}_{\Theta} \rightarrow \underbrace{x \ge 0}_{q}$$

holds since $x = 1 \rightarrow x \ge 0$

B2:

$$\tau_{\ell_0}: \underbrace{x \geq 0}_{q} \land \underbrace{move(\ell_0, \ell_1) \land x > 0 \land x' = x - 1}_{\rho_{\tau_{\ell_0}}} \rightarrow \underbrace{x' \geq 0}_{q'}$$
holds since $x > 0 \rightarrow x - 1 \geq 0$

$$\tau_{\ell_1}: \underbrace{x \geq 0}_{q} \land \underbrace{move(\ell_1, \ell_2) \land x' = x}_{\rho_{\tau_{\ell_1}}} \rightarrow \underbrace{x' \geq 0}_{q'}$$
holds since $x \geq 0 \rightarrow x \geq 0$

$$\tau_{\ell_2}: \underbrace{x \geq 0}_{q} \land \underbrace{move(\ell_2, \ell_3) \land x' = x + 1}_{\rho_{\tau_{\ell_2}}} \rightarrow \underbrace{x' \geq 0}_{q'}$$
holds since $x \geq 0 \rightarrow x + 1 \geq 0$

Example 1: request-release (Con't)

local
$$x$$
: integer where $x = 1$

 $\begin{bmatrix} \ell_0 : & \text{request } x \\ \ell_1 : & \text{critical} \\ \ell_2 : & \text{release } x \\ \ell_3 : & \end{bmatrix}$

We proved

$$P \models \Box x \geq 0$$

using B-INV.

Now we want to prove

$$P \models \Box \underbrace{(at - \ell_1 \to x = 0)}_q$$

Example 1: request-release (Con't)

Attempted proof:

B1:
$$\underline{x = 1 \land \pi = \{\ell_0\}} \rightarrow (\underline{at - \ell_1 \rightarrow x = 0})$$

holds since $\pi = \{\ell_0\} \rightarrow at - \ell_1 = F$

B2:
$$\{q\}\tau_{\ell_0}\{q\}$$

$$\underbrace{at_{-\ell_{1}} \xrightarrow{\ell_{0}} (4)}_{q} \wedge \underbrace{move(\ell_{0}, \ell_{1}) \wedge x > 0 \wedge x' = x - 1}_{\rho_{\tau_{\ell_{0}}}}$$

$$\rightarrow \underbrace{at'_{-\ell_{1}} \xrightarrow{\alpha'}}_{q'} \times \underbrace{move(\ell_{0}, \ell_{1}) \wedge x > 0 \wedge x' = x - 1}_{\rho_{\tau_{\ell_{0}}}}$$

We have $move(\ell_0, \ell_1) \rightarrow at_-\ell_1 = F$, $at'_-\ell_1 = T$ BUT

$$(F \to x = 0) \land x > 0 \land x' = x - 1 \to (T \to x' = 0)$$

Cannot prove: not state-valid

What is the problem?

We need a stronger rule.

Strategies for invariance proofs

Rule B-INV (basic invariance)

For assertion q, $B1. \qquad P \Vdash \Theta \rightarrow q$ $B2. \qquad P \not\models \{q\} \mathcal{T} \{q\}$ $P \not\models \square q$

- \bullet q is inductive if B1 and B2 are (state) valid
- ullet By rule B-INV, every inductive assertion q is P-invariant
- The converse is not true

Example: In REQUEST-RELEASE

$$at_{-}\ell_{1} \rightarrow x = 0$$

is P-invariant, but not inductive

Rule B-INV(Con't)

The problem is:

"The invariant is not inductive"

i.e., it is not strong enough to be preserved by all transitions.

Another way to look at it is to observe that

$$\{q\}\ \tau_{\ell_0}\ \{q\}$$

is not state valid, but it is P-state valid, i.e., it is true in all P-accessible states, since in all P-accessible states

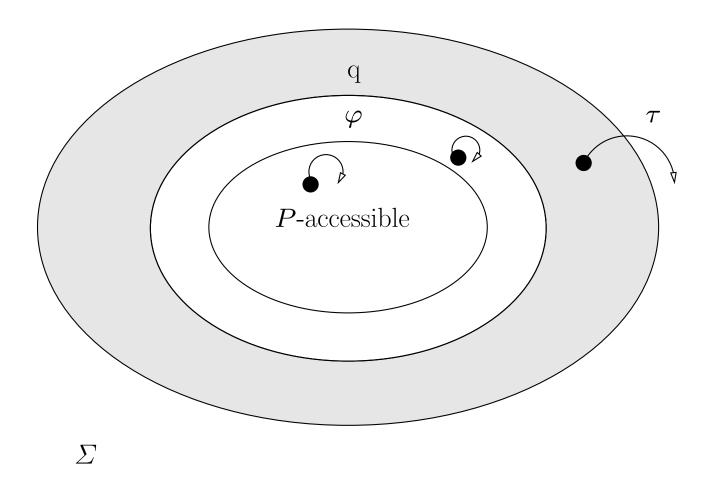
x = 1 when at location ℓ_0 .

This suggests two strategies to overcome this problem:

- strengthening
- incremental proof

Strategy 1: Strengthening

Find a stronger assertion φ that is inductive and implies the assertion q we want to prove.



In Chapter 2 it will be shown that there always exists such an assertion φ .

Example:

To show

$$\Box(\underbrace{at_{-}\ell_{1} \rightarrow x = 0})$$

strengthen q to

$$\varphi$$
: $(at_{-}\ell_{1} \rightarrow x = 0) \land (at_{-}\ell_{0} \rightarrow x = 1)$

and show

$$\square \underbrace{(at-\ell_1 \rightarrow x=0) \land (at-\ell_0 \rightarrow x=1)}_{\varphi}$$

by rule B-INV.

The strengthening strategy relies on the following rule, MON-I, which, combined with B-INV leads to the general invariance rule INV.

Rule MON-I (Monotonicity)

For assertions
$$q_1, q_2,$$

$$P \models \Box q_1 \qquad P \models q_1 \rightarrow q_2$$

$$P \models \Box q_2$$

Rule INV (general invariance)

For assertions q, φ	
I1.	$P \Vdash \varphi \rightarrow q$
I2.	$P \Vdash \Theta \rightarrow \varphi$
I3.	$P \Vdash \{\varphi\} \mathrel{\mathcal{T}} \{\varphi\}$
	$P \models \Box q$

Soundness: If we manage to prove $\square q$ using the INV rule for some program P, is q really an invariant for the program?

We can prove that this is indeed the case. So INV rule is *sound*.

Completeness: What if q is an invariant for a program P but there is **no** way of proving it under the INV rule?

We can prove that this never happens. There always exists an appropriate φ . In other words INV rule is complete.

Motivation:

$$P \models \Box \varphi$$
 (by I2 and I3)

$$P \models \varphi \rightarrow q \pmod{1}$$

Therefore,

$$P \models \Box q$$
 (by Mon-I)

i.e., this rule requires that $\square \varphi$ holds and φ implies q, then $\square q$ can be concluded to hold by monotonicity.

Control Invariants

Some control invariants that can always be used (without mentioning them)

• CONFLICT:

for labels ℓ_i, ℓ_j that are in conflict

(i.e., not \sim_L , not parallel):

$$\Box \neg (at \ell_i \land at \ell_i)$$

• SOMEWHERE:

for the set of labels \mathcal{L}_i in a

top-level process:

• EQUAL:

for labels $l, m, \text{ s.t. } l \sim_L m$:

$$\Box$$
 ($at _\ell \leftrightarrow at _m$)

Control Invariants (Con't)

• PARALLEL:

for substatement $[S_1||S_2]$:

$$\Box$$
($in_-S_1 \leftrightarrow in_-S_2$)

i.e, if control is in S_1 it must also be in S_2 and vice versa.

Example:

Using the invariant CONFLICT,

$$move(\ell_2, \ell_3)$$
 implies $l_0 \not\in \pi, \ l_1 \not\in \pi, \ l_3 \not\in \pi$
 $l_0 \not\in \pi', \ l_1 \not\in \pi', \ l_2 \not\in \pi'$

Example:

We proposed the strengthened invariant

$$\varphi: (at_{-}\ell_0 \rightarrow x = 1) \land (at_{-}\ell_1 \rightarrow x = 0)$$

Consider $\{\varphi\}$ τ_{ℓ_0} $\{\varphi\}$:

$$\underbrace{(at-\ell_0 \to x=1) \land (at-\ell_1 \to x=0)}_{\varphi} \land$$

$$\underbrace{move(\ell_0, \ell_1) \land x > 0 \land x' = x - 1}_{\rho_{\tau_{\ell_0}}}$$

$$\rightarrow \underbrace{(at'_{-}\ell_{0} \rightarrow x' = 1) \land (at'_{-}\ell_{1} \rightarrow x' = 0)}_{\varphi'}$$

 $move(\ell_0, \ell_1)$ implies $\ell_0 \in \pi, \ell_1 \not\in \pi, \ell_1 \in \pi', \ell_0 \not\in \pi'$

Therefore

$$(T \rightarrow x = 1) \land (F \rightarrow ...) \land ... \land x' = x - 1 \land ...$$

 $\rightarrow (F \rightarrow ...) \land (T \rightarrow x' = 0)$

holds.

Example (Con't):

Consider $\{\varphi\}$ τ_{ℓ_2} $\{\varphi\}$:

$$\underbrace{(at-\ell_0 \to x = 1) \land (at-\ell_1 \to x = 0)}_{\varphi} \land$$

$$\underbrace{move(\ell_2,\ell_3) \land x' = x + 1}_{\rho_{\tau_{\ell_2}}}$$

$$\rightarrow \underbrace{(at'_{-}\ell_{0} \rightarrow x' = 1) \land (at'_{-}\ell_{1} \rightarrow x' = 0)}_{\varphi'}$$

 $move(\ell_2, \ell_3)$ implies $\ell_3 \in \pi'$ and by CONFLICT invariants $\ell_0, \ell_1 \not\in \pi'$.

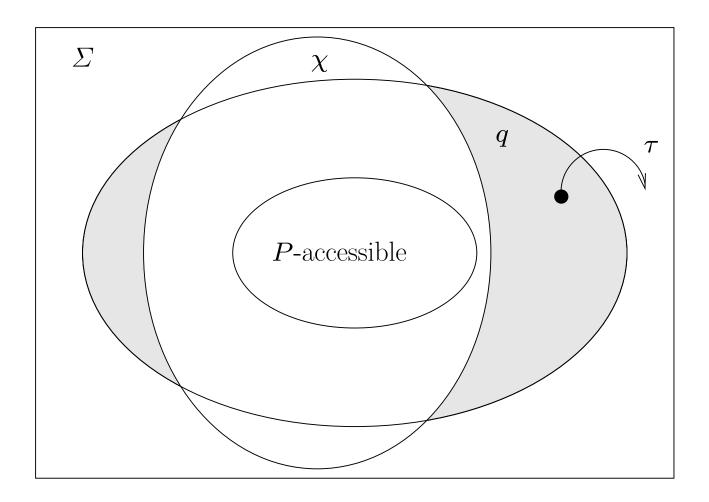
Therefore

...
$$\wedge$$
 ... \rightarrow (F \rightarrow $x' = 1) \wedge (F \rightarrow $x' = 0)$ holds.$

 $\{\varphi\}$ τ_{ℓ_2} $\{\varphi\}$ is not state-valid, but it is P-state valid. Why?

Strategy 2: Incremental proof

Use previously proven invariances χ to exclude parts of the state space from consideration.



Example:

To show

$$\Box(\underbrace{at_{-}\ell_{1} \rightarrow x = 0})$$

prove first (separately) by rule B-INV

$$\square \underbrace{(at-\ell_0 \to x=1)}_{\chi},$$

then show

$$\square(\underbrace{at_{-}\ell_{1} \rightarrow x = 0})$$

by rule B-INV, but add the conjunct

$$at_{-}\ell_{0} \rightarrow x = 1$$

to the antecedent of all verification conditions.

(Example continues...)

Example: (cont'd)

e.g., to show
$$\{\chi \land q\} \tau_{\ell_0} \{q\}$$
, prove

$$\underbrace{at - \ell_0 \to x = 1}_{\chi} \land \underbrace{at - \ell_1 \to x = 0}_{q} \land \underbrace{move(\ell_0, \ell_1) \land x > 0 \land x' = x - 1}_{\rho_{\tau_{\ell_0}}}$$

$$\to \underbrace{at' - \ell_1 \to x' = 0}_{q'}$$

In an incremental proof we use previously proven properties to eliminate parts of the state space (non P-accessible states) from consideration, relying on the following rules:

Rule SV-PSV: from state validities to

P-state validities

Rule I-CON: Conjunction

For assertions
$$q_1$$
 and q_2 ,
$$P \models \Box q_1$$

$$P \models \Box q_2$$

$$-----$$

$$P \models \Box (q_1 \land q_2)$$

Example: Program MUX-SEM (mutual exclusion by semaphores)

local y: integer where y = 1

 $P_1 :: \left[egin{array}{ll} \ell_0 \colon ext{loop forever do} \\ \ell_1 \colon ext{noncritical} \\ \ell_2 \colon ext{request } y \\ \ell_3 \colon ext{critical} \\ \ell_4 \colon ext{release } y \end{array}
ight] \mid P_2 :: \left[egin{array}{ll} m_0 \colon ext{loop forever do} \\ m_1 \colon ext{noncritical} \\ m_2 \colon ext{request } y \\ m_3 \colon ext{critical} \\ m_4 \colon ext{release } y \end{array}
ight]$

Prove mutual exclusion

3 steps:
$$\square(\underline{y \geq 0})$$

$$\square(\underbrace{at_{-}\ell_{3,4} + at_{-}m_{3,4} + y = 1}_{\varphi_2})$$

$$\square \underbrace{\neg (at - \ell_3 \land at - m_3)}_{p}$$

where F = 0, T = 1.

Let
$$\pi_{\ell}$$
: $\pi \cap \{\ell_0, \dots, \ell_4\}$
 π_m : $\pi \cap \{m_0, \dots, m_4\}$

By control invariants (CONFLICT, SOMEWHERE and PARALLEL)

$$|\pi_{\ell}| = |\pi_m| = 1$$

Step 1:
$$\square(\underbrace{y \geq 0}_{\varphi_1})$$

by rule B-INV

B1.
$$\underline{\pi = \{\ell_0, m_0\} \land y = 1} \rightarrow \underbrace{y \geq 0}_{\varphi_1}$$

B2.
$$\rho_{\tau} \wedge y \geq 0 \rightarrow y' \geq 0$$

check only ℓ_2, ℓ_4, m_2, m_4 ("y-modifiable transitions")

$$\ell_2: \underbrace{move(\ell_2, \ell_3) \ \land \ y > 0 \ \land \ y' = y - 1}_{\rho_\tau} \ \land \ \underbrace{y \ge 0}_{\varphi'}$$

$$\rightarrow \underbrace{y' \ge 0}_{\varphi'}$$

holds since $y > 0 \rightarrow y-1 \ge 0$

$$\ell_4$$
: $\underbrace{move(\ell_4,\ell_0)}_{\rho_\tau} \land y' = y+1$ $\land \underbrace{y \geq 0}_{\varphi} \rightarrow \underbrace{y' \geq 0}_{\varphi'}$

holds since $y \ge 0 \rightarrow y+1 \ge 0$.

Similarly for m_2 , m_4 .

Program Mux-sem (Con't)

Step 2:

$$\Box(\underbrace{at_{-}\ell_{3,4} + at_{-}m_{3,4} + y = 1}_{\varphi_2})$$

by rule B-INV

B1.
$$\underbrace{\pi = \{\ell_0, m_0\} \land y = 1}_{\Theta} \rightarrow \underbrace{at_{-}\ell_{3,4} + \underbrace{at_{-}m_{3,4} + y}_{\varphi_2} = 1}_{\varphi_2}$$

B2.
$$\rho_{\tau} \wedge \varphi_2 \rightarrow \varphi_2'$$

$$\rho_{\ell_0} \wedge 0 + at_{-}m_{3,4} + y = 1 \rightarrow 0 + at_{-}m_{3,4} + y = 1$$

$$\rho_{\ell_1} \wedge 0 + at_{-}m_{3,4} + y = 1 \rightarrow 0 + at_{-}m_{3,4} + y = 1$$

$$\rho_{\ell_2} \wedge 0 + at_{-}m_{3,4} + y = 1 \rightarrow 1 + at_{-}m_{3,4} + (y-1) = 1$$

$$\rho_{\ell_3} \wedge 1 + at_{-}m_{3,4} + y = 1 \rightarrow 1 + at_{-}m_{3,4} + y = 1$$

$$\rho_{\ell_4} \wedge 1 + at_{-}m_{3,4} + y = 1 \rightarrow \underbrace{0}_{at'_{-}\ell_{3,4}} + \underbrace{at_{-}m_{3,4}}_{at'_{-}m_{3,4}} + \underbrace{(y+1)}_{y'} = 1$$

Step 3: Show
$$P \models \Box \underbrace{\neg (at - \ell_3 \land at - m_3)}_q$$

• By I-CON

$$P \models \Box \varphi_1, P \models \Box \varphi_2$$

$$P \models \Box (\varphi_1 \land \varphi_2)$$

• By Mon-I

$$P \models \Box (\varphi_1 \land \varphi_2)$$

$$P \models \underbrace{y \geq 0}_{\varphi_1} \land \underbrace{at_{-}\ell_{3,4} + at_{-}m_{3,4} + y = 1}_{\varphi_2}$$

$$\rightarrow \underbrace{\neg(at_{-}\ell_3 \land at_{-}m_3)}_{q}$$

$$P \models \Box \underbrace{\neg (at - \ell_3 \land at - m_3)}_{q}$$