
CS256/Winter 2009 Lecture #8

Zohar Manna

Finding Inductive Assertions

Top-Down Approach

Assertion propagation

we have previously proven 0 χ

and we want to prove 0 ϕ

but

{χ ∧ ϕ}τ{ϕ}
is not state-valid for some τ ∈ T .

What is the problem?

(assuming that ϕ is indeed an invariant)

8-2

Top-Down Approach (Con’d)

Σ

ϕ
τ

ϕ ∧ χ

P -accessible

Solution: Take the largest set of states that will result

in a ϕ-state when τ is taken. How?

8-3

Precondition of ϕ w.r.t. τ

pre(τ, ϕ) : ∀V ′ . ρτ → ϕ′

pre(τ, ϕ)

ϕ

a state s satisfies pre(τ, ϕ)
iff

all τ -successors of s satisfy ϕ.

Note:
s trivially satisfies pre(τ, ϕ) if it does not have any τ -
successors (i.e., τ is not enabled in s).

8-4

Precondition of ϕ w.r.t. τ (Con’d)

Example:

V : {x} integer

ρτ : x > 0 ∧ x′ = x− 1

ϕ : x ≥ 2

pre(τ, ϕ) :

∀x′ . x > 0 ∧ x′ = x− 1︸ ︷︷ ︸
ρτ

→ x′ ≥ 2︸ ︷︷ ︸
ϕ′

x > 0 → x− 1 ≥ 2

x ≤ 0 ∨ x ≥ 3

j τ j+1
p p

x ≤ 0 ∨ x ≥ 3 x ≥ 2

8-5

Properties of pre(τ, ϕ)

By the definition of pre(τ, ϕ),

{χ ∧ ϕ ∧ pre(τ, ϕ)} τ {ϕ}
is guaranteed to be state-valid.

pre(τ, ϕ)

ϕ

χ∧ϕ τ

P -accessible

But we have to justify adding the conjunct pre(τ, ϕ) to
the antecedent.
This can be done in two ways:

1. Incremental: prove 0 pre(τ, ϕ)

2. Strengthening: prove 0 (ϕ ∧ pre(τ, ϕ))

8-6

Properties of pre(τ, ϕ) (Con’d)

Claim: If ϕ is P -invariant then so is pre(τ, ϕ) for every

τ ∈ T .

Proof:

Supposeϕ is P -invariant, but pre(τ, ϕ) is not P -invariant.

Then there exists a P -accessible state s such that

s q/ pre(τ, ϕ).

But then, by the definition of pre(τ, ϕ), there exists a

τ -successor s′ of s such that s′ q/ ϕ.

Since s is P -accessible, s′ is also P -accessible,

contradicting that ϕ is a P -invariant.

8-7

Properties of pre(τ, ϕ) (Con’d)

Definition: A transition τ is said to be self-disabling if for
every state s, τ is disabled in all τ -successors of s.

Claim: For every assertion ϕ and self-disabling transition
τ

{ϕ ∧ pre(τ, ϕ)} τ {ϕ ∧ pre(τ, ϕ)}
is state-valid.

Proof:
Assume s q ϕ ∧ pre(τ, ϕ).

Then by definition of pre(τ, ϕ), for every s′,
τ -successor of s,

s′ q ϕ.

Since τ is self-disabling, τ is disabled in all
τ -successors s′ of s, and so trivially

s′ q pre(τ, ϕ)

Thus for all τ -successors s′ of s,
s′ q ϕ ∧ pre(τ, ϕ).

8-8

Heuristic

If the verification condition

{χ ∧ ϕ}τ{ϕ}
is not state-valid:

Find pre(τ, ϕ) and then

• Strengthening approach:

strengthen ϕ by adding the conjunct pre(τ, ϕ)

prove 0 (ϕ ∧ pre(τ, ϕ))

or,

• Incremental approach:

prove 0 pre(τ, ϕ)

and add pre(τ, ϕ) to χ.

Note:

pre(τ, ϕ) is not guaranteed to be an inductive invariant,

so the premises of inv have to be checked again.

8-9

Example:

local x: integer where x = 1 ℓ0 : request x
ℓ1 : critical
ℓ2 : release x

We want to prove0 (at−ℓ1 → x = 0)︸ ︷︷ ︸
ϕ

Problem:

{at−ℓ1 → x = 0} τℓ0 {at−ℓ1 → x = 0}
is not state-valid.

If we use the above heuristic we get

pre(τℓ0, ϕ) =

∀x′, π′ . (move(ℓ0, ℓ1) ∧ x > 0 ∧ x′ = x− 1)︸ ︷︷ ︸
ρℓ0

→ (at ′−ℓ1 → x′ = 0)︸ ︷︷ ︸
ϕ′

8-10

Example (Con’d):

pre(τℓ0, ϕ) =

∀x′, π′ . (move(ℓ0, ℓ1) ∧ x > 0 ∧ x′ = x− 1)︸ ︷︷ ︸
ρℓ0

→ (at ′−ℓ1 → x′ = 0)︸ ︷︷ ︸
ϕ′

Since

move(ℓ0, ℓ1) → at−ℓ0 = t, at ′−ℓ1 = t

x′ = x− 1 ∧ x′ = 0 → x = 1

it simplifies to

pre(τℓ0, ϕ): at−ℓ0 ∧ x > 0 → x = 1

Strengthened assertion

ϕ ∧ pre(τℓ0, ϕ): (at−ℓ1 → x = 0) ∧ (at−ℓ0 → x = 1)

what we “guessed” before

Show that ϕ ∧ pre(τℓ0, ϕ) is inductive
(“strengthening approach”)

8-11

Substituted form of pre(τ, ϕ)

Many transition relations have the form

ρτ : Cτ ∧ V ′ = E

where Cτ is the enabled condition of τ .

And so

pre(τ, ϕ): ∀V ′ . Cτ ∧ V ′ = E → ϕ′

can be simplified to

∀V ′ . Cτ → ϕ[E/V]

replacing all primed variables by its

corresponding expression,

thus the quantifier can be eliminated to obtain

pre(τ, ϕ): Cτ → ϕ[E/V]

8-12

Example: Program mux-pet1(Fig. 2.25)

(Peterson’s Algorithm for mutual exclusion)

local y1, y2: boolean where y1 = f, y2 = f
s : integer where s = 1

P1 ::

ℓ0 : loop forever do

ℓ1 : noncritical

ℓ2 : (y1, s) := (t, 1)

ℓ3 : await (¬y2) ∨ (s 6= 1)

ℓ4 : critical

ℓ5 : y1 := f

∣∣∣ ∣∣∣

P2 ::

m0 : loop forever do

m1 : noncritical

m2 : (y2, s) := (t, 2)

m3 : await (¬y1) ∨ (s 6= 2)

m4 : critical

m5 : y2 := f

8-13

Example: Program mux-pet1 (Fig. 2.25) (Con’d)

We want to prove mutual exclusion:0 ¬(at−ℓ4 ∧ at−m4)︸ ︷︷ ︸
ψ

Bottom-up invariants:

ϕ0: s = 1 ∨ s = 2

ϕ1: y1 ↔ at−ℓ3..5
ϕ2: y2 ↔ at−m3..5

Problem: the verification conditions

{ϕ0 ∧ ϕ1 ∧ ϕ2 ∧ ψ} ℓ3 {ψ}
{ϕ0 ∧ ϕ1 ∧ ϕ2 ∧ ψ} m3 {ψ}

are not state-valid

8-14

Example: Program mux-pet1 (Fig. 2.25) (Con’d)

pre(τℓ3, ψ): ∀π′: move(ℓ3, ℓ4) ∧ (¬y2 ∨ s 6= 1)︸ ︷︷ ︸
ρℓ3

→

¬(at ′−ℓ4 ∧ at ′−m4)︸ ︷︷ ︸
ψ′

since

move(ℓ3, ℓ4) implies at ′−ℓ4 = t, at ′−m4 = at−m4

pre(τℓ3, ψ) simplifies to:

at−ℓ3 ∧ (¬y2 ∨ s 6= 1) → ¬at−m4

ϕ3: at−ℓ3 ∧ at−m4 → y2 ∧ s = 1

pre(τm3, ψ): ∀π′
simplifies to:

ϕ4: at−ℓ4 ∧ at−m3 → y1 ∧ s = 2

Show that ϕ3: pre(τℓ3, ψ) and ϕ4: pre(τm3, ψ)

are inductive relative to ϕ0 ∧ ϕ1 ∧ ϕ2

(“incremental approach”)

Then show that ψ is inductive relative to

ϕ0 ∧ . . . ∧ ϕ4.
8-15

Example: Program mux-pet1 (Fig. 2.25) (Con’d)

Proof tree: 0 ¬(at−ℓ4 ∧ at−m4)

Init ℓ0 ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 m0 m1 m2 m3 m4 m5

t t t t t t t t t t t
not

state-
valid

not
state-
valid

WPC | | WPC0 pre(τℓ3, ϕ) 0 pre(τm3, ϕ)

t . . . t . . . t t . . . t . . . t

t = state-valid (relative to the bottom-up invariants)

inv

inv

8-16

Example: pre may never terminate

The transition is

ρτ : x′ = x+ y ∧ y′ = y

The property is

ϕ : x ≥ 0

The VC is

x′ = x+ y ∧ y′ = y︸ ︷︷ ︸ ∧ x ≥ 0︸ ︷︷ ︸ → x′ ≥ 0︸ ︷︷ ︸
ρτ ϕ ϕ′

which is not state valid.

Step 1: The precondition is

pre(τ, x ≥ 0) : ∀x′, y′: x′ = x+y ∧ y′ = y → x′ ≥ 0

that is y ≥ −x.

Attempting to prove 0 pre(τ, ϕ) state valid, the VC

x′ = x+ y ∧ y′ = y︸ ︷︷ ︸ ∧ y ≥ −x︸ ︷︷ ︸ → y′ ≥ −x′︸ ︷︷ ︸
ρτ pre pre ′

is not state-valid.
8-17

Step 2: Compute pre(τ, y ≥ −x)
∀x′, y′: x′ = x+ y ∧ y′ = y︸ ︷︷ ︸ → y′ ≥ −x′︸ ︷︷ ︸

ρτ pre ′

that is y ≥ −x
2.

In general the precondition

pre
(
τ, y ≥ −x

n

)
: y ≥ − x

n+ 1

Taking the limit as n approaches infinity, we obtain

y ≥ 0

which is what we want.

8-18

Finite-State Algorithmic Verification

finite-state program P

each x ∈ V assumes only finitely many

values in all P -computations

Therefore,

there are only finitely many distinct

P -accessible states.

Example:

mux-pet1 (Fig 2.25) is finite-state program:

s = 1,2

y1 = t, f y2 = t, f

π can assume at most 36 different values

8-19

Example: Program mux-pet1 (Fig. 2.25)

(Peterson’s Algorithm for mutual exclusion)

local y1, y2: boolean where y1 = f, y2 = f
s : integer where s = 1

P1 ::

ℓ0 : loop forever do

ℓ1 : noncritical

ℓ2 : (y1, s) := (t, 1)

ℓ3 : await (¬y2) ∨ (s 6= 1)

ℓ4 : critical

ℓ5 : y1 := f

∣∣∣ ∣∣∣

P2 ::

m0 : loop forever do

m1 : noncritical

m2 : (y2, s) := (t, 2)

m3 : await (¬y1) ∨ (s 6= 2)

m4 : critical

m5 : y2 := f

8-20

Algorithm (transition-graph)

For a given finite-state program P

Incrementally construct the

state-transition graph GP , where each node

represents a state.

• Initially

Place as nodes in GP all initial states

(satisfy Θ)

• Repeat until no new nodes or

new edges can be added to GP

For some s ∈ GP , let s1, . . . , sk be its succes-

sors

Add to GP all new nodes in {s1, . . . , sk}
and draw edges connecting s to si,

i = 1, . . . , k

8-21

Algorithmic Verification of Invariance

For assertion q,

To check validity of 0 q over finite-state program P :

1. Construct the state-transition graph Gp.

2. Check if q holds in each state of the graph.

Example: Program mux-sem (Fig 2.26)

Generates finite state-transition graph (Fig 2.27)

Check assertion

ϕ: ¬(at−ℓ3 ∧ at−m3)

in the graph.

ϕ holds over all accessible states.

Thus, 0 ϕ for mux-sem.

8-22

Program mux-sem (Fig. 2.26)

(mutual exclusion by semaphores)

local y: integer where y = 1

P1 ::

ℓ0: loop forever do

ℓ1 : noncritical
ℓ2 : request y
ℓ3 : critical
ℓ4 : release y

 || P2 ::

m0: loop forever do

m1: noncritical
m2: request y
m3: critical
m4: release y

8-23

Program mux-sem state-transition graph (Fig. 2.27)

8-24

Example: Program mux-pet1 (Fig 2.25)

State-transition graph GP (Fig 2.28)

(i, j, v) means π: {ℓi,mj}, s: v
No y1, y2 since

y1 = t iff 3 ≤ i ≤ 5

y2 = t iff 3 ≤ j ≤ 5

Property checked0 ¬(at−ℓ4 ∧ at−m4)︸ ︷︷ ︸
ψ

8-25

Example: Program mux-pet1(Fig. 2.25)

(Peterson’s Algorithm for mutual exclusion)

local y1, y2: boolean where y1 = f, y2 = f
s : integer where s = 1

P1 ::

ℓ0 : loop forever do

ℓ1 : noncritical

ℓ2 : (y1, s) := (t, 1)

ℓ3 : await (¬y2) ∨ (s 6= 1)

ℓ4 : critical

ℓ5 : y1 := f

∣∣∣ ∣∣∣

P2 ::

m0 : loop forever do

m1 : noncritical

m2 : (y2, s) := (t, 2)

m3 : await (¬y1) ∨ (s 6= 2)

m4 : critical

m5 : y2 := f

8-26

mux-pet1 State-transition graph (Fig 2.28)

8-27

Completeness of rule inv

Rule inv (general invariance)

For assertions ϕ, q,

I1. q ϕ → q

I2. q Θ → ϕ

I3. q {ϕ} T {ϕ}q 0 q

Theorem (Relative completeness of rule inv)

For every assertion q such that0 q is P -valid

there exists an assertion ϕ such that I1 – I3

are provable from state validities

8-28

We actually show

“completeness relative to
first-order reasoning”

taking all state-valid assertions as axioms

Outline of proof

Given FTS P with system variables (program + control
variables)

y = (y1, . . . , ym)

• Assume 0 q is P -valid, i.e.,
(†) q holds over every P -accessible state

• Construct (to be shown) accessibility assertion

accP (y)

such that for any state s,
(*) s is P -accessible state iff s q accP

• Take ϕ = accP

We have to show :
1. accP satisfies I1 – I3
2. accP can be “constructed” 8-29

1. accP satisfies I1 – I3

• Premise I1: accP︸ ︷︷ ︸
ϕ

→ q

s q accP
(∗)⇒ s is P -accessible state

(†)⇒ s q q

Thus

accP︸ ︷︷ ︸
ϕ

→ q

is state-valid

• Premise I2: Θ → accP︸ ︷︷ ︸
ϕ

s q Θ ⇒ s is P -accessible

(∗)⇒ s q accP︸ ︷︷ ︸
ϕ

Thus

Θ → accP︸ ︷︷ ︸
ϕ

is state-valid
8-30

• Premise I3: for every τ ∈ T ,

ρτ ∧ accP → acc′
P

where acc′
P

= accP (y
′).

Take s′ to be a y-variant of s (s agrees with s′ on all
variables other than y) and for each yi take

s′[yi] = s[y′i]

Then
s q ρτ ⇒ s′ is a τ -successor of s

s q accP
(∗)⇒ s is P -accessible

⇒

⇒ s′ is P -accessible

(∗)⇒ s′ q accP

⇒ s q acc′
P

Example:

V : {y} Θ: y = 0
T : {τI , τ}, where ρτ : y′ = y+ 2

For this program: accP (y): y ≥ 0 ∧ even(y)

8-31

2. Construction of accP

Assume assertion language includes

dynamic array a over D

Array a is viewed as function,

a: [1..n] 7→ D

where n is the size of the array

The assumption is not essential

We can use Gödel numbering

(k1, . . . , kn) 7→ n = p
k1
1 · · · pknn

where pi is the ith prime number

8-32

Case: single-variable y

Define

accP (y): (∃n > 0) (∃a ∈ [1..n] 7→ D) .
init ∧ last ∧ evolve

where

init: Θ(a[1])

last: a[n] = y

evolve: ∀i .1 ≤ i < n .
∨
τ∈T

ρτ(a[i], a[i+1])

i.e., there exists an array a, such that

• a[1] is an initial state

• a[n] has value y (last element)

• every two consecutive elements are

related by some transition relation

8-33

array a represents a prefix

s1, . . . , sn

of a computation where a[i] stands for

the value of y at state si

Claim:

For any value d ∈ D,

accP (d) = t

iff

d is a possible value of y in a P -accessible state

accP (d) asserts the existence of a computation prefix

that leads to a state where y = d.

8-34

Example: Transition system even

V : {y} ranges over Z (the integers)

Θ: y = 0

ρτ : y
′ = y+ 2

accP (y):

(∃n > 0)(∃a ∈ [1..n] 7→ Z) .(
a[1] = 0 ∧ a[n] = y ∧
∀i .1 ≤ i < n . a[i+ 1] = a[i] + 2

)

simplifies to

(∃n > 0)(∃a ∈ [1..n] 7→ Z) .(
a[n] = y ∧
∀i .1 ≤ i ≤ n . a[i] = 2 · (i− 1)

)

simplifies to

y ≥ 0 ∧ even(y)

Precisely characterizes the values that y may
assume in P -accessible states of even

8-35

Discussion

Although the assertion accP is inductive and strengthens
any P -invariant, it is not very useful in practice.

Σ ϕ1

ϕ

accP ϕ2

The shaded area is preserved by all transitions. Its
description is much simpler than that of accP .

8-36

Multivariable y = (y1, . . . , ym) case

Use 2-dimensional array a

y1 ym

a[1,1] a[1,m]

a[2,1] a[2,m]

. .

. .

. .

8-37

Example: Transition system fact

y,z ranging over N (the nonnegative integers)

Θ: y = 1 ∧ z = 1

ρτ : y
′ = y+ 1 ∧ z′ = (y+ 1) · z

Construction of accP :

(∃n > 0)(∃a ∈ [1..n]× [1,2] 7→ N) .

a[1,1] = 1 ∧ a[1,2] = 1 ∧
a[n,1] = y ∧ a[n,2] = z∧

∀i: 1 ≤ i < n: a[i+ 1,1] = a[i,1] + 1 ∧
a[i+ 1,2] = (a[i,1] + 1) · a[i,2]

8-38

(∃n > 0)(∃a ∈ [1..n]× [1,2] 7→ N) .

a[1,1] = 1 ∧ a[1,2] = 1 ∧
a[n,1] = y ∧ a[n,2] = z∧

∀i: 1 ≤ i < n: a[i+ 1,1] = a[i,1] + 1 ∧
a[i+ 1,2] = (a[i,1] + 1) · a[i,2]

simplifies to

(∃n > 0)(∃a ∈ [1..n]× [1,2] 7→ N) .

a[n,1] = y ∧ a[n,2] = z

∧
∀i: 1 ≤ i ≤ n: a[i,1] = i ∧ a[i,2] = i!

simplifies to

y ≥ 1 ∧ z = y!

Precisely characterizes the P -accessible states

for the transition system fact

8-39

