CS256/Winter 2009 Lecture #8

Zohar Manna

Finding Inductive Assertions Top-Down Approach

Assertion propagation

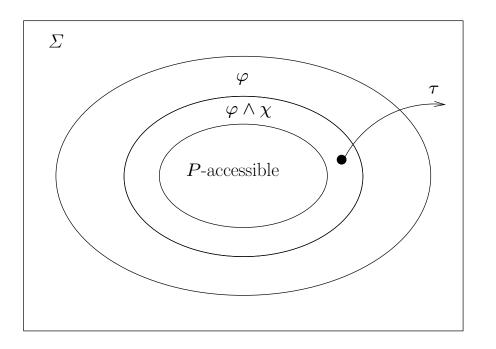
we have previously proven $\Box \chi$ and we want to prove $\Box \varphi$ but

 $\{\chi\wedge\varphi\}\tau\{\varphi\}$

is not state-valid for some $\tau \in \mathcal{T}$.

What is the problem? (assuming that φ is indeed an invariant)

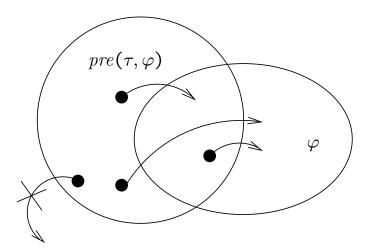
Top-Down Approach (Con'd)



Solution: Take the largest set of states that will result in a φ -state when τ is taken. How?

Precondition of φ w.r.t. τ

$$pre(\tau,\varphi)$$
: $\forall V' . \rho_{\tau} \to \varphi'$



a state s satisfies $pre(\tau, \varphi)$ iff all τ -successors of s satisfy φ .

Note:

s trivially satisfies $pre(\tau, \varphi)$ if it does not have any τ -successors (i.e., τ is not enabled in s).

Properties of $pre(\tau, \varphi)$

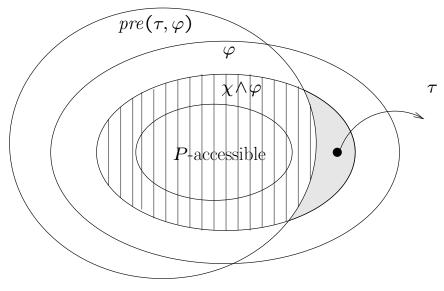
Precondition of φ w.r.t. τ (Con'd)

Example:
$V:\{x\}$ integer
$ ho_{ au}$: $x > 0 \land x' = x - 1$
$arphi$: $x \ge 2$
pre(au,arphi) :
$\forall x' \underbrace{x > 0 \land x' = x - 1}_{\rho_{\tau}} \rightarrow \underbrace{x' \ge 2}_{\varphi'}$
$x > 0 \rightarrow x - 1 \ge 2$
$x \leq 0 ~\lor~ x \geq 3$
j $ au$ $j+1$
$x \le 0 \lor x \ge 3$ $x \ge 2$

By the definition of $pre(\tau, \varphi)$,

 $\{\chi \land \varphi \land pre(\tau, \varphi)\} \ \tau \ \{\varphi\}$

is guaranteed to be state-valid.



But we have to justify adding the conjunct $pre(\tau, \varphi)$ to the antecedent.

This can be done in two ways:

- 1. Incremental: prove $\Box pre(\tau, \varphi)$
- 2. Strengthening: prove $\Box(\varphi \land pre(\tau, \varphi))$

Properties of $pre(\tau, \varphi)$ (Con'd)

<u>Claim</u>: If φ is *P*-invariant then so is $pre(\tau, \varphi)$ for every $\tau \in \mathcal{T}$.

Proof:

Suppose φ is *P*-invariant, but $pre(\tau, \varphi)$ is not *P*-invariant.

Then there exists a *P*-accessible state s such that $s \not\models pre(\tau, \varphi)$.

But then, by the definition of $pre(\tau, \varphi)$, there exists a τ -successor s' of s such that $s' \not\models \varphi$.

Since s is P-accessible, s' is also P-accessible, contradicting that φ is a P-invariant.

Properties of $pre(\tau, \varphi)$ (Con'd)

<u>Definition</u>: A transition τ is said to be <u>self-disabling</u> if for every state s, τ is disabled in all τ -successors of s.

<u>Claim:</u> For every assertion φ and self-disabling transition τ

$$\{\varphi \land pre(\tau, \varphi)\} \ \tau \ \{\varphi \land pre(\tau, \varphi)\}$$

is state-valid.

 $\frac{\text{Proof:}}{\text{Assume } s \models \varphi \land pre(\tau, \varphi).}$

Then by definition of $pre(\tau, \varphi)$, for every s', τ -successor of s, $s' \models \varphi$.

Since τ is self-disabling, τ is disabled in all τ -successors s' of s, and so trivially $s' \models pre(\tau, \varphi)$

Thus for all τ -successors s' of s, $s' \models \varphi \land pre(\tau, \varphi).$

Heuristic

If the verification condition

 $\{\chi\wedge\varphi\}\tau\{\varphi\}$

is not state-valid:

Find $pre(\tau, \varphi)$ and then

• Strengthening approach: strengthen φ by adding the conjunct $pre(\tau, \varphi)$

prove $\Box(\varphi \land pre(\tau, \varphi))$

or,

• Incremental approach: prove $\Box pre(\tau, \varphi)$ and add $pre(\tau, \varphi)$ to χ .

Note:

 $pre(\tau, \varphi)$ is not guaranteed to be an inductive invariant, so the premises of INV have to be checked again.

Example:

local
$$x$$
: integer where $x = 1$

$$\left[\begin{array}{c} \ell_0 : \text{ request } x\\ \ell_1 : \text{ critical}\\ \ell_2 : \text{ release } x\end{array}\right]$$

We want to prove

$$\Box \underbrace{(at_{-}\ell_{1} \to x = 0)}_{\varphi}$$

Problem:

$$\{at_{-}\ell_{1} \rightarrow x = 0\} \tau_{\ell_{0}} \{at_{-}\ell_{1} \rightarrow x = 0\}$$
is not state-valid.

If we use the above heuristic we get

$$pre(\tau_{\ell_0}, \varphi) = \\ \forall x', \pi' . \underbrace{(move(\ell_0, \ell_1) \land x > 0 \land x' = x - 1)}_{\rho_{\ell_0}} \\ \rightarrow \underbrace{(at'_{-\ell_1} \rightarrow x' = 0)}_{\varphi'}$$

Example (Con'd):

$$pre(\tau_{\ell_0}, \varphi) = \\ \forall x', \pi' . \underbrace{(move(\ell_0, \ell_1) \land x > 0 \land x' = x - 1)}_{\rho_{\ell_0}} \\ \rightarrow \underbrace{(at'_{-\ell_1} \rightarrow x' = 0)}_{\varphi'}$$

Since

$$move(\ell_0, \ell_1) \rightarrow at_-\ell_0 = T, at'_-\ell_1 = T$$

 $x' = x - 1 \land x' = 0 \rightarrow x = 1$

it simplifies to

$$pre(\tau_{\ell_0}, \varphi)$$
: $at_{-\ell_0} \land x > 0 \rightarrow x = 1$

Strengthened assertion $\varphi \wedge pre(\tau_{\ell_0}, \varphi)$: $(at_{-\ell_1} \rightarrow x = 0) \wedge (at_{-\ell_0} \rightarrow x = 1)$ what we "guessed" before

Show that $\varphi \wedge pre(\tau_{\ell_0}, \varphi)$ is inductive ("strengthening approach")

Substituted form of $pre(\tau, \varphi)$

Many transition relations have the form

$$\label{eq:rho_tilde} \begin{split} \rho_\tau &\colon \ C_\tau \ \land \ \overline{V}' = \overline{E} \\ \text{where } C_\tau \text{ is the enabled condition of } \tau. \end{split}$$

And so

$$pre(\tau,\varphi): \ \forall \overline{V}' \,.\, C_{\tau} \ \land \ \overline{V}' = \overline{E} \ \rightarrow \ \varphi'$$

can be simplified to

 $\forall \overline{V}' \, . \, C_{\tau} \ \rightarrow \ \varphi[\overline{E}/\overline{V}]$

replacing all primed variables by its corresponding expression, thus the quantifier can be eliminated to obtain

$$pre(\tau,\varphi): C_{\tau} \to \varphi[\overline{E}/\overline{V}]$$

Example: Program mux-pet1(Fig. 2.25)

(Peterson's Algorithm for mutual exclusion)

local
$$y_1, y_2$$
: boolean where $y_1 = F, y_2 = F$
s : integer where $s = 1$

 $\ell_{0}: \text{ loop forever do}$ $P_{1}:: \qquad \begin{bmatrix} \ell_{1}: & \text{noncritical} \\ \ell_{2}: & (y_{1}, s) := (T, 1) \\ \ell_{3}: & \text{await} (\neg y_{2}) \lor (s \neq 1) \\ \ell_{4}: & \text{critical} \\ \ell_{5}: & y_{1} := F \end{bmatrix}$

 P_2 ::

 $m_{0}: \text{ loop forever do}$ $\begin{bmatrix} m_{1}: \text{ noncritical} \\ m_{2}: (y_{2}, s) := (T, 2) \\ m_{3}: \text{ await } (\neg y_{1}) \lor (s \neq 2) \\ m_{4}: \text{ critical} \\ m_{5}: y_{2} := F \end{bmatrix}$ 8-13

Example: Program mux-pet1 (Fig. 2.25) (Con'd)

We want to prove mutual exclusion:

$\Box \neg (at_{-}\ell_{4})$	\wedge	$at_m_4)$
	$\overleftrightarrow{\psi}$	

Bottom-up invariants:

 $\varphi_{0}: \quad s = 1 \lor s = 2$ $\varphi_{1}: \quad y_{1} \leftrightarrow at_{-}\ell_{3..5}$ $\varphi_{2}: \quad y_{2} \leftrightarrow at_{-}m_{3..5}$

Problem: the verification conditions

 $\{ \varphi_0 \land \varphi_1 \land \varphi_2 \land \psi \} \ell_3 \{ \psi \} \\ \{ \varphi_0 \land \varphi_1 \land \varphi_2 \land \psi \} m_3 \{ \psi \}$

are not state-valid

Example: Program mux-pet1 (Fig. 2.25) (Con'd)

$$pre(\tau_{\ell_3}, \psi): \forall \pi': \underbrace{move(\ell_3, \ell_4) \land (\neg y_2 \lor s \neq 1)}_{\rho_{\ell_3}} \rightarrow \underbrace{\neg(at'_{-}\ell_4 \land at'_{-}m_4)}_{\psi'}$$

since

 $move(\ell_3, \ell_4)$ implies $at'_{-}\ell_4 = T$, $at'_{-}m_4 = at_{-}m_4$

 $pre(\tau_{\ell_3}, \psi) \text{ simplifies to:}$ $at_{-\ell_3} \land (\neg y_2 \lor s \neq 1) \rightarrow \neg at_{-}m_4$ $\boxed{\varphi_3: at_{-\ell_3} \land at_{-}m_4 \rightarrow y_2 \land s = 1}$

 $pre(\tau_{m_3},\psi)$: $\forall \pi' \dots$

simplifies to:

 φ_4 : $at_-\ell_4 \land at_-m_3 \rightarrow y_1 \land s = 2$

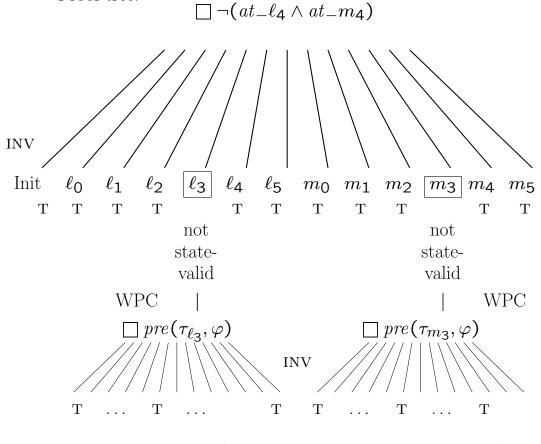
Show that φ_3 : $pre(\tau_{\ell_3}, \psi)$ and φ_4 : $pre(\tau_{m_3}, \psi)$ are inductive relative to $\varphi_0 \wedge \varphi_1 \wedge \varphi_2$ ("incremental approach")

8-15

Then show that ψ is inductive relative to $\varphi_0 \wedge \ldots \wedge \varphi_4$.

Example: Program mux-pet1 (Fig. 2.25) (Con'd)

Proof tree:



T =state-valid (relative to the bottom-up invariants)

Example: pre may never terminate

The transition is

$$\rho_{\tau}: x' = x + y \land y' = y$$

The property is

$$\varphi$$
: $x \ge 0$

The VC is

$$\underbrace{x' = x + y \land y' = y}_{\rho_{\tau}} \land \underbrace{x \ge 0}_{\varphi} \to \underbrace{x' \ge 0}_{\varphi'}$$

which is not state valid.

Step 1: The precondition is

 $pre(\tau, x \ge 0) : \forall x', y': x' = x + y \land y' = y \rightarrow x' \ge 0$ that is $y \ge -x$.

Attempting to prove $\Box pre(\tau, \varphi)$ state valid, the VC

$$\underbrace{x' = x + y \land y' = y}_{\rho_{\tau}} \land \underbrace{y \ge -x}_{pre} \rightarrow \underbrace{y' \ge -x'}_{pre'}$$

is not state-valid.

Step 2: Compute
$$pre(\tau, y \ge -x)$$

 $\forall x', y': \underbrace{x' = x + y \land y' = y}_{\rho_{\tau}} \rightarrow \underbrace{y' \ge -x'}_{pre'}$
that is $y \ge -\frac{x}{2}$.

In general the precondition

$$pre\left(\tau, y \ge -\frac{x}{n}\right): y \ge -\frac{x}{n+1}$$

Taking the limit as n approaches infinity, we obtain

$$y \ge 0$$

which is what we want.

Finite-State Algorithmic Verification

finite-state program ${\cal P}$

each $x \in V$ assumes only finitely many values in all *P*-computations

Therefore,

there are only finitely many distinct P-accessible states.

Example:

MUX-PET1 (Fig 2.25) is finite-state program:

s = 1, 2

 $y_1 = T, F \quad y_2 = T, F$

 π can assume at most 36 different values

Example: Program mux-pet1 (Fig. 2.25) (Peterson's Algorithm for mutual exclusion)

local y_1, y_2 : boolean where $y_1 = F, y_2 = F$ s : integer where s = 1

$\ell_{0}: \text{ loop forever do}$ $P_{1}:: \qquad \begin{bmatrix} \ell_{1}: & \text{noncritical} \\ \ell_{2}: & (y_{1}, s) := (T, 1) \\ \ell_{3}: & \text{await} (\neg y_{2}) \lor (s \neq 1) \\ \ell_{4}: & \text{critical} \\ \ell_{5}: & y_{1} := F \end{bmatrix}$

 $m_{0}: \text{ loop forever do}$ $P_{2}:: \qquad \begin{bmatrix} m_{1}: \text{ noncritical} \\ m_{2}: (y_{2}, s):=(T, 2) \\ m_{3}: \text{ await } (\neg y_{1}) \lor (s \neq 2) \\ m_{4}: \text{ critical} \\ m_{5}: y_{2}:= F \end{bmatrix}$

Algorithm (transition-graph)

For a given finite-state program PIncrementally construct the state-transition graph G_P , where each node represents a state.

- <u>Initially</u> Place as nodes in G_P all initial states (satisfy Θ)
- <u>Repeat</u> until no new nodes or new edges can be added to G_P

For some $s \in G_P$, let s_1, \ldots, s_k be its successors Add to G_P all new nodes in $\{s_1, \ldots, s_k\}$ and draw edges connecting s to s_i , $i = 1, \ldots, k$

Algorithmic Verification of Invariance

For assertion q, To check validity of $\Box q$ over finite-state program P:

- 1. Construct the state-transition graph $G_{\rm P}$.
- 2. Check if q holds in each state of the graph.

Example: Program MUX-SEM (Fig 2.26)

Generates finite state-transition graph (Fig 2.27)

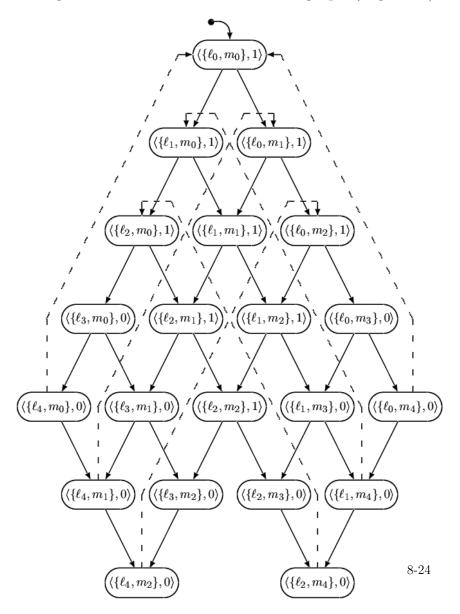
Check assertion

 $\varphi: \neg(at_{-}\ell_{3} \land at_{-}m_{3})$

in the graph.

 φ holds over <u>all</u> accessible states. Thus, $\Box \varphi$ for MUX-SEM.

Program MUX-SEM state-transition graph (Fig. 2.27)



Program MUX-SEM (Fig. 2.26) (mutual exclusion by semaphores)

 $\begin{aligned} &\text{local } y\text{: integer where } y = 1 \\ P_1 :: \begin{bmatrix} \ell_0 \text{: loop forever do} \\ & \ell_1 \text{: noncritical} \\ & \ell_2 \text{: request } y \\ & \ell_3 \text{: critical} \\ & \ell_4 \text{: release } y \end{bmatrix} \end{bmatrix} || P_2 :: \begin{bmatrix} m_0 \text{: loop forever do} \\ & m_1 \text{: noncritical} \\ & m_2 \text{: request } y \\ & m_3 \text{: critical} \\ & m_4 \text{: release } y \end{bmatrix} \end{bmatrix} \end{aligned}$

Example: Program MUX-PET1 (Fig 2.25)

State-transition graph G_P (Fig 2.28)

$$(i, j, v)$$
 means $\pi: \{\ell_i, m_j\}, s: v$

No y_1, y_2 since

 $y_1 = T \quad \text{iff} \quad 3 \le i \le 5$ $y_2 = T \quad \text{iff} \quad 3 \le j \le 5$

Property checked

$$\Box \underbrace{\neg (at_{-}\ell_{4} \land at_{-}m_{4})}_{\psi}$$

Example: Program mux-pet1(Fig. 2.25) (Peterson's Algorithm for mutual exclusion)

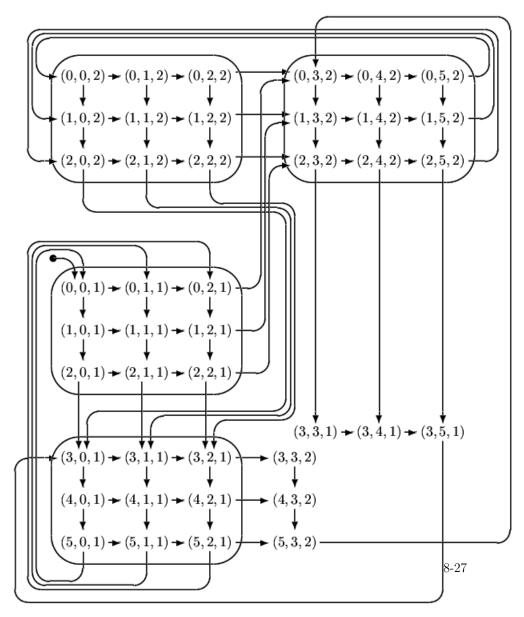
local y_1, y_2 : boolean where $y_1 = F, y_2 = F$ s : integer where s = 1

$\ell_{0}: \text{ loop forever do}$ $P_{1}:: \qquad \begin{bmatrix} \ell_{1}: & \text{noncritical} \\ \ell_{2}: & (y_{1}, s) := (T, 1) \\ \ell_{3}: & \text{await} (\neg y_{2}) \lor (s \neq 1) \\ \ell_{4}: & \text{critical} \\ \ell_{5}: & y_{1} := F \end{bmatrix}$

 P_2 ::

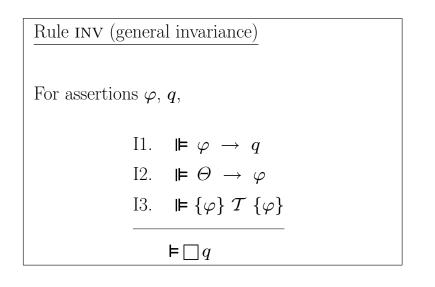
$$m_{0}: \text{ loop forever do}$$

$$\begin{bmatrix} m_{1}: \text{ noncritical} \\ m_{2}: (y_{2}, s) := (T, 2) \\ m_{3}: \text{ await } (\neg y_{1}) \lor (s \neq 2) \\ m_{4}: \text{ critical} \\ m_{5}: y_{2} := F$$



MUX-PET1 State-transition graph (Fig 2.28)

Completeness of rule INV



Theorem (Relative completeness of rule INV)

For every assertion q such that

 $\Box q$ is *P*-valid

there exists an assertion φ such that I1 – I3 are provable from state validities We actually show "completeness relative to first-order reasoning" taking all state-valid assertions as axioms

Outline of proof

Given FTS P with system variables (program + control variables)

- $\overline{y} = (y_1, \ldots, y_m)$
- Assume \$\square\$ q is P-valid, i.e.,
 (†) q holds over every P-accessible state
- Construct (to be shown) accessibility assertion $acc_P(\overline{y})$ such that for any state s, (*) s is P-accessible state iff $s \models acc_P$
- Take $\varphi = acc_P$

We have to show : 1. acc_P satisfies I1 – I3 2. acc_P can be "constructed"

8-29

1. acc_P satisfies I1 – I3

• Premise I1:
$$\underbrace{acc_P}{\varphi} \to q$$

 $s \models acc_P \stackrel{(*)}{\Rightarrow} s \text{ is } P \text{-accessible state}$

 $\stackrel{(\dagger)}{\Rightarrow} s \models q$

Thus

$$\underbrace{acc_P}_{\varphi} \rightarrow q$$
 is state-valid

• Premise I2: $\Theta \rightarrow \underbrace{acc_P}_{\varphi}$

$$s \models \Theta \Rightarrow s \text{ is } P \text{-accessible}$$

$$\stackrel{(*)}{\Rightarrow} \quad s \Vdash \underbrace{acc_P}_{\varphi}$$

Thus

$$\begin{array}{ll} \Theta \ \rightarrow \ \underbrace{acc_P} \\ \varphi \end{array}$$
 is state-valid

• Premise I3: for every $\tau \in \mathcal{T}$, $\rho_{\tau} \wedge acc_{P} \rightarrow acc'_{P}$ where $acc'_{P} = acc_{P}(\overline{y}')$.

Take s' to be a \overline{y} -variant of s (s agrees with s' on all variables other than \overline{y}) and for each y_i take

 $s'[y_i] = s[y'_i]$

Then

$$s \models \rho_{\tau} \Rightarrow s' \text{ is a } \tau \text{-successor of } s$$

 $s \models acc_{P} \stackrel{(*)}{\Rightarrow} s \text{ is } P \text{-accessible}$
 $\Rightarrow s' \text{ is } P \text{-accessible}$
 $\stackrel{(*)}{\Rightarrow} s' \models acc_{P}$
 $\Rightarrow s \models acc'_{P}$

Example:

 $\begin{array}{ll} V: \ \{y\} & \varTheta: \ y = 0 \\ \mathcal{T}: \ \{\tau_I, \tau\}, \ \text{where} \ \rho_\tau: y' = y + 2 \\ \text{For this program:} \ acc_P(y): \ y \geq 0 \land even(y) \end{array}$

2. Construction of acc_{P}

Assume assertion language includes dynamic array \underline{a} over D

Array \underline{a} is viewed as function, $a: [1..n] \mapsto D$ where n is the size of the array

The assumption is <u>not essential</u> We can use Gödel numbering $(k_1, \ldots, k_n) \mapsto n = p_1^{k_1} \cdots p_n^{k_n}$

where p_i is the *i*th prime number

Case: single-variable y

Define

 $acc_P(y)$: $(\exists n > 0) \ (\exists a \in [1..n] \mapsto D)$. $init \land last \land evolve$

where

init: $\Theta(a[1])$ *last*: a[n] = y*evolve*: $\forall i . 1 \le i < n . \bigvee_{\tau \in \mathcal{T}} \rho_{\tau}(a[i], a[i+1])$

i.e., there exists an array a, such that

- *a*[1] is an initial state
- a[n] has value y (last element)
- every two consecutive elements are related by some transition relation

array a represents a prefix

 s_1, \ldots, s_n

of a computation where a[i] stands for

the value of y at state s_i

 Claim:

 For any value $d \in D$,

 $acc_P(d) = T$

 iff

 d is a possible value of y in a P-accessible state

 $acc_P(d)$ asserts the existence of a computation prefix that leads to a state where y = d.

Example: Transition system EVEN

V: $\{y\}$ ranges over \mathbb{Z} (the integers) Θ : y = 0 ρ_{τ} : y' = y + 2

 $acc_P(y)$:

$$(\exists n > 0)(\exists a \in [1..n] \mapsto \mathbb{Z}).$$

 $\begin{pmatrix} a[1] = 0 \land a[n] = y \land \\ orall i \cdot 1 \le i < n \cdot a[i+1] = a[i] + 2 \end{pmatrix}$

simplifies to

$$egin{aligned} (\exists n > 0)(\exists a \in [1..n] \mapsto \mathbb{Z})\,. \ & \left(egin{aligned} a[n] = y \land \ & orall i \cdot 1 \leq i \leq n\,.\,a[i] = 2 \cdot (i-1) \end{aligned}
ight) \end{aligned}$$

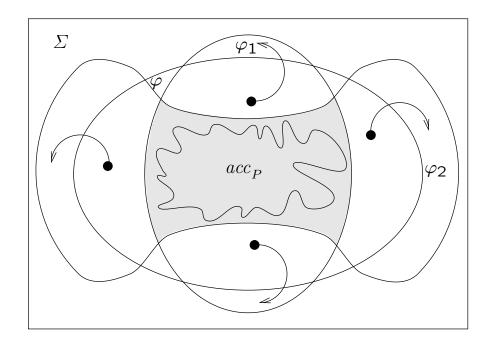
simplifies to

$$y \geq 0 \land even(y)$$

Precisely characterizes the values that y may assume in P-accessible states of EVEN

Discussion

Although the assertion acc_P is inductive and strengthens any P-invariant, it is not very useful in practice.



The shaded area is preserved by all transitions. Its description is much simpler than that of acc_P .

Multivariable
$$\overline{y} = (y_1, \ldots, y_m)$$
 case

Use **2**-dimensional array a

. .

· · ·

Example: Transition system FACT y,z ranging over \mathbb{N} (the nonnegative integers) $\Theta: y = 1 \land z = 1$ $\rho_{\tau}: y' = y + 1 \land z' = (y + 1) \cdot z$

Construction of acc_P :

$$(\exists n > 0)(\exists a \in [1..n] \times [1,2] \mapsto \mathbb{N}).$$

 $\begin{pmatrix} a[1,1] = 1 \land a[1,2] = 1 \land \\ a[n,1] = y \land a[n,2] = z \\ \land \\ \forall i: \ 1 \le i < n: \ a[i+1,1] = a[i,1] + 1 \land \\ a[i+1,2] = (a[i,1]+1) \cdot a[i,2] \end{pmatrix}$

$$(\exists n > 0)(\exists a \in [1..n] \times [1,2] \mapsto \mathbb{N}).$$

$$\begin{cases} a[1,1] = 1 \ \land \ a[1,2] = 1 \ \land \\ a[n,1] = y \ \land \ a[n,2] = z \\ \land \\ \forall i: \ 1 \le i < n: \ a[i+1,1] = a[i,1] + 1 \ \land \\ a[i+1,2] = (a[i,1]+1) \cdot a[i,2] \end{cases}$$

simplifies to

 $(\exists n>0)(\exists a\in [1..n] imes [1,2]\mapsto \mathbb{N})$.

$$egin{pmatrix} a[n,1]=y \ \land \ a[n,2]=z \ \land \ \land \ \forall i: \ 1\leq i\leq n: \ a[i,1]=i \ \land \ a[i,2]=i! \end{pmatrix}$$

simplifies to

 $y \ge 1 \land z = y!$

Precisely characterizes the P-accessible states for the transition system FACT