CS256/winter2009—Lecture#09 Zohar Manna

Chapter 2

Invariance: Applications

Parameterized Programs

$$
S::\begin{bmatrix} \ell_0: \text{ loop forever do} \\ \begin{bmatrix} \ell_1: \text{ noncritical} \\ \ell_2: \text{ request } y \\ \ell_3: \text{ critical} \\ \ell_4: \text{ release } y \end{bmatrix} \end{bmatrix}
$$

 P^3 : [local y : integer where $y = 1$; $[S||S||S]$] (with some renaming of labels of the S 's.)

$$
P^4
$$
: [local *y* : integer where $y = 1$; $[S||S||S||S]$]

 P^n ::?

. . .

Mutual exclusion:

$$
P^{3}: \Box(\neg(at \perp \ell_{3} \wedge at_{-} m_{3}) \wedge \neg(at \perp \ell_{3} \wedge at_{k_{3}}) \wedge
$$

Compound statements of variable size

$$
\neg(at \perp m_{3} \wedge at_{k_{3}}))
$$

conparation:
$$
\frac{M}{A} S[i] \cdot [S[1]]
$$

$$
P^4\colon \Box(\neg(\ldots) \ \wedge \ \ldots \ \wedge \ \neg(\ldots))
$$

 P^n : ?

We want to deal with these programs, i.e., programs with an arbitrary number of identical components, in a more uniform way.

Solution: parametrization

Syntax

$$
\neg (at_{-}m_{3} \land at_{-}k_{3}))
$$
\n
$$
\text{cooperation: } \bigcup_{j=1}^{M} S[j] : [S[1]] \dots ||S[M]]
$$
\n
$$
\text{4: } \Box(\neg (\dots) \land \dots \land \neg (\dots))
$$
\n
$$
\text{Selection: } \bigcup_{j=1}^{M} S[j] : [S[1] \text{ or } \dots \text{ or } S[M]]
$$
\n
$$
\text{5: } \bigcup_{j=1}^{M} S[j] : [S[1] \text{ or } \dots \text{ or } S[M]]
$$
\n
$$
\text{6: } \bigcup_{j=1}^{M} S[j] \text{ is a parameterized statement.}
$$
\n
$$
\text{6: } \bigcup_{j=1}^{M} S[j] \text{ is a parameterized statement.}
$$
\n
$$
\text{7: } \bigcup_{j=1}^{M} S[j] \text{ is a parameterized statement.}
$$
\n
$$
\text{8: } \bigcup_{j=1}^{M} S[j] \text{ is a parameterized statement.}
$$

- explicit variable in expression $\ldots := j + \ldots$
- explicit subscript in array x $\ldots := x[j] + \ldots$ or $x[j] := \ldots$
- implicit subscript of all local variables in $S[j]$ z stands for $z[j]$
- implicit subscript of all labels in $S[j]$ ℓ_3 stands for $\ell_3[j]$

Example: Program PAR-SUM (Fig. 2.1) (parallel sum of squares) $M > 1$

> in M: integer where $M \ge 1$ $x : array [1..M]$ of integer out z : integer where $z = 0$

$$
\begin{array}{c}\nM \\
\parallel \\
j=1\n\end{array}\n P[j]:\n\begin{bmatrix}\n\text{local } y: \text{ integer} \\
\ell_0: \ y := x[j] \\
\ell_1: \ z := z + y \cdot y \\
\ell_2:\n\end{bmatrix}
$$

$$
z = x[1]^2 + x[2]^2 + \ldots + x[M]^2
$$

Program PAR-SUM-E (Fig. 2.2) (Explicit subscripted parameterized statements of par-sum)

> in *M*: integer where $M \ge 1$ $x : \text{array} [1..M]$ of integer out z : integer where $z = 0$

$$
\prod_{j=1}^M\; P[j]:\; \begin{bmatrix} \text{local } y[j] \colon \text{integer} \\ \ell_0[j] \colon y[j] := x[j] \\ \ell_1[j] \colon z := z + y[j] \cdot y[j] \\ \ell_2[j] \colon \end{bmatrix}
$$

We write the short version, but we reason about this one.

Parameterized transition systems

The number M of processes is not fixed, so there is an unbounded number of transitions. To finitely represent these, we use parameterization of transition relations.

Example: PAR-SUM

The unbounded number of transitions associated with ℓ_0 are represented by a single transition relation using parameter j:

 $\rho_{\ell_0}[j]$: $move(\ell_0[j], \ell_1[j]) \wedge$ $y'[j] = x[j] \wedge$ $pres({x, z})$ where $j = 1 \dots M$.

Array Operations

Arrays (explicit or implicit) are treated as variables that range over functions: $[1 \dots M] \mapsto$ integers

Representation of array operations in transition relations:

- Retrieval: $y[k]$ to retrieve the value of the kth element of array y
- Modification: $update(y, k, e)$ the resulting array agrees with y on all i , $i \neq k$, and $y[k] = e$

Properties of update

 $update(y, k, e)[k] = e$

 $update(y, k, e)[j] = y[j]$ for $j \neq k$

Example: PAR-SUM

The proper representation of the transition relation for $\ell_0[i]$ is

> $\rho_0[i]$: $move(\ell_0[i], \ell_1[i]) \wedge$ $y' = update(y, j, x[j]) \wedge$ $pres({x, z})$

Parameterized Programs: Specification

Notation:

• $L_i = \{j \mid \ell_i[j] \in \pi\} \subseteq \{1, ..., M\}$

The set of indices of processes that currently reside at ℓ_i

 \bullet $N_i = |L_i|$

The number of processes currently residing at ℓ_i

Example: $L_i = \{3, 5\}$ means $\ell_i[3], \ell_i[5] \in \pi$ and we have $N_i = 2$

Invariant:

$$
\Box(N_i\ \geq\ 0)
$$

Abbreviations:

$$
L_{i_1, i_2, ..., i_k} = L_{i_1} \cup L_{i_2} \cup ... \cup L_{i_k}
$$

\n
$$
L_{i..j} = L_i \cup L_{i+1} \cup ... \cup L_j
$$

\n
$$
N_{i_1, i_2, ..., i_k} = |L_{i_1, i_2, ..., i_k}|
$$

\n
$$
N_{i..j} = |L_{i..j}|
$$

Parameterized Programs: Specification (Con'd)

Example: Program MPX-SEM (Fig 2.3) $M > 2$ (multiple mutual exclusion by semaphores) where

$$
j \oplus_M 1 = (j \bmod M) + 1 = \begin{cases} j+1 & \text{if } j < M \\ 1 & \text{if } j = M \end{cases}
$$

Elaboration for $M = 2$: Program MPX-SEM-2 (Fig 2.4)

abbreviated as

$$
\Box(N_3\leq 1)
$$

i.e., the number of processes simultaneously residing at ℓ_3 is always less than or equal to 1.

Note: $\neg(at \ell_3[i] \land at \ell_3[j])$ can be expressed as $at_{-}\ell_3[i] + at_{-}\ell_3[j] \leq 1.$ 9-11 Program mpx-sem (Fig. 2.3)

in M: integer where $M \geq 2$ local y : array [1..*M*] of integer where $y[1] = 1$, $y[j] = 0$ for $2 \le j \le M$

$$
\begin{bmatrix} \ell_0 \colon \textbf{loop forever do} \\ \begin{bmatrix} \ell_1 \colon \textbf{noncritical} \\ \ell_2 \colon \textbf{request } y[j] \\ \ell_3 \colon \textbf{critical} \\ \ell_4 \colon \textbf{release } y[j \oplus_M 1] \end{bmatrix} \end{bmatrix}
$$

Program mpx-sem-2 (Fig. 2.4)

local y: array [1..2] of integer where $y[1] = 1$, $y[2] = 0$

$$
P[1]: \begin{bmatrix} \ell_0[1] \colon \textbf{loop forever do} \\ \begin{bmatrix} \ell_1[1] \colon \textbf{noncritical} \\ \ell_2[1] \colon \textbf{request } y[1] \\ \ell_3[1] \colon \textbf{critical} \\ \ell_4[1] \colon \textbf{release } y[2] \end{bmatrix} \end{bmatrix}
$$

$$
\parallel
$$

$$
P[2]: \begin{bmatrix} \ell_0[2] \colon \textbf{loop forever do} \\ \begin{bmatrix} \ell_1[2] \colon \textbf{noncritical} \\ \ell_2[2] \colon \textbf{request } y[2] \\ \ell_3[2] \colon \textbf{critical} \\ \ell_4[2] \colon \textbf{release } y[1] \end{bmatrix} \end{bmatrix}
$$

Parameterized Programs: Verification

Objective: prove $\{\varphi\}\tau[i]\{\varphi\}$ in a uniform way for all $i \in [1..M]$

Example: Program MPX-SEM (Fig 2.3) $M \ge 2$

Prove mutual exclusion:

 $\square(\underbrace{N_3}\leq 1)$ $\frac{1}{\varphi}$ $\check{\varphi}$)

The assertion φ is not inductive, therefore we prove the invariance of

$$
\varphi_1: \quad \forall j \,.\, y[j] \ge 0
$$

$$
\varphi_2: \quad \left(N_{3,4} + \sum_{j=1}^M y[j]\right) = 1
$$

where $N_{3,4}$ = Number of processes currently residing at ℓ_3 or at ℓ_4

Example: Program mpx-sem (Con't)

Then φ can be deducted by monotonicity:

$$
\varphi_1 \; \wedge \; \varphi_2 \; \rightarrow \; \underbrace{N_3 \leq 1}_{\varphi}
$$

since

$$
N_3 \leq N_{3,4} = 1 - \sum_{j=1}^{M} y[j] \leq 1
$$

$$
\varphi_2 \qquad \varphi_1
$$

• Proof of
$$
\Box(\underbrace{\forall j \cdot y[j] \geq 0}_{\varphi_1})
$$

B1:
\n
$$
\begin{array}{c}\n\cdots \wedge y[1] = 1 \wedge (\forall j. 2 \leq j \leq M. y[j] = 0) \\
\rightarrow \underbrace{\forall j. y[j] \geq 0}_{\varphi_1}\n\end{array}
$$

Note: $\forall j \cdot y[j] \geq 0$ stands for $\forall j \cdot i \leq j \leq M \cdot y[j] \geq 0$ 9-15

Example: Program mpx-sem (Con't) B2: The only transitions that interfere with φ_1 are $\tau_{\ell_2}[i]$ and $\tau_{\ell_4}[i]$.

$$
\rho_{\ell_2}[i]: \text{ move}(\ell_2[i], \ell_3[i]) \land y[i] > 0 \land
$$

$$
y' = \text{update}(y, i, y[i] - 1)
$$

$$
\rho_{\ell_4}[i]: \text{ move}(\ell_4[i], \ell_0[i]) \land
$$

$$
y' = \text{update}(y, i \oplus_M 1, y[i \oplus_M 1] + 1)
$$

• Proof of $\Box(\forall j \cdot y[j] \geq 0)$ $\rho_{\ell_2}[i]$ implies $y[i] > 0 \land y'[i] = y[i] - 1 \land \forall j \cdot j \neq i \cdot y'[j] = y[j]$

$$
\rho_{\ell_4}[i] \text{ implies}
$$

$$
y'[i \oplus_M 1] = y[i \oplus_M 1] + 1 \quad \land
$$

$$
\forall j (j \neq i \oplus_M 1) \ y'[j] = y[j]
$$

We therefore have

$$
\underbrace{\forall j.\ y[j] \geq 0}_{\varphi_1} \wedge \left\{ \begin{array}{c} \rho_{\ell_2}[i] \\ \rho_{\ell_4}[i] \end{array} \right\} \rightarrow \underbrace{\forall j.\ y'[j] \geq 0}_{\varphi_1'} \qquad \qquad_{9\text{-}16}
$$

• Proof of
$$
\Box
$$
 $(N_{3,4} + \left(\sum_{j=1}^{M} y[j]\right) = 1)$

$$
N'_{3,4} = N_{3,4} - 1
$$

$$
\left(\frac{M}{M}\right) \cdot \left(\frac{M}{M}\right) \cdot \left(\frac{M}{M}\right)
$$

B1:
\n
$$
\left(\pi = \{\ell_0[1], \dots, \ell_0[M]\} \land \underbrace{\left(y[1] = 1 \land (\forall j \cdot 2 \leq j \leq M \cdot y[j] = 0)\right)}_{\Theta}\right)
$$
\n
$$
\rightarrow N_{3,4} + \left(\sum_{j=1}^M y[j]\right) = 1
$$

B2: Verification conditions:

 $\rho_{\ell_2}[i]$ implies:

$$
N'_{3,4} = N_{3,4} + 1
$$

$$
\left(\sum_{j=1}^{M} y'[i]\right) = \left(\sum_{j=1}^{M} y[i]\right) - 1
$$

 $\rho_{\ell_4}[i]$ implies:

$$
N'_{3,4} = N_{3,4} - 1
$$

$$
\left(\sum_{j=1}^{M} y'[i]\right) = \left(\sum_{j=1}^{M} y[i]\right) + 1
$$

Therefore

$$
N_{3,4} + \left(\sum_{j=1}^{M} y[i]\right) = 1 \wedge \left\{\begin{array}{l} \rho_{\ell_2}[i] \\ \rho_{\ell_4}[i] \end{array}\right\}
$$

$$
\rightarrow N'_{3,4} + \left(\sum_{j=1}^{M} y'[i]\right) = 1
$$

$$
\downarrow \qquad \downarrow \
$$

Parameterized Programs: Examples

Example: READERS-WRITERS (Fig 2.11) (readers-writers with generalized semaphores) where

request $(y, c) = \langle \text{await } y \geq c; y := y - c \rangle$ release $(y, c) = \langle y := y + c \rangle$

$$
\Box \underbrace{\forall i, j \in [1..M] \cdot i \neq j \cdot at_{\ell 6}[i] \rightarrow \neg (at_{\ell 6}[j] \lor at_{\ell 3}[j])}_{\psi} \qquad \text{focal } y \text{ } \text{. integer } w
$$

- φ_1 and φ_2 are inductive
	- $\varphi_1: y \geq 0$
	- φ_2 : $N_{3,4} + M \cdot N_{6,7} + y = M$
- Therefore

$$
N_{6,7} > 0 \rightarrow (N_{6,7} = 1 \land N_{3,4} = 0)
$$

$$
\varphi_1, \varphi_2
$$

Thus,

 $\Box \psi$

Program READ-WRITE $(Fig. 2.11)$

in M: integer where $M \ge 1$

$$
\begin{bmatrix}\n\ell_0: \text{ loop forever do} \\
\ell_1: \text{ noncritical} \\
\ell_2: \text{ request } (y,1) \\
\ell_3: \text{ read } \\
\ell_4: \text{ release } (y,1)\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n\ell_1: \text{ noncritical} \\
\ell_2: \text{ request } (y,1) \\
\ell_3: \text{ reales } (y,1)\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n\ell_5: \text{ request } (y,M) \\
\ell_6: \text{ write} \\
\ell_7: \text{ release } (y,M)\n\end{bmatrix}
$$

Example: The Dining Philosophers Problem (multiple resource allocation) Fig 2.14

- M philosophers are seated at a round table
- Each philosopher alternates between a "thinking" phase and "eating" phase
- M chopsticks, one between every two philosophers
- $\bullet\,$ A philosopher needs 2 chopsticks (left & right) to eat

Dining philosophers setup (Fig. 2.14)

Program DINE (Fig. 2.15) (A simple solution to the dining philosophers problem)

Philosopher P_i - process $P[i]$ "thinking" phase - noncritical "eating" phase - critical

For philosopher i ,

- $c[j]$ represents availability of left chopstick $(c[i] = 1$ iff chopstick is available)
- c[j ⊕^M 1].............right chopstick

✫✪ ✣✢ ✫✪ ✣✢ ✫✪ ✣✢ ✬✩ ✤✜ ✬✩ ✤✜ \sim ✤✜ P_{j-1} c[j] P_j c[j ⊕_M 1] $P_{j \oplus_M 1}$ 9-23

Program DINE (Fig. 2.15)

M: integer where $M \geq 2$ in local c: array [1..*M*] of integer where $c = 1$

Specification: Chopstick Exclusion

 $\Box \forall j \in [1..M] \cdot \neg (at_4[j] \wedge at_4[j] \oplus_M 1])$ $\check{\psi}$ $\check{\psi}$

Mutual exclusion between every two adjacent philosophers

Proof:

• φ_0 and φ_1 are inductive

$$
\varphi_0\colon\ \forall j\in [1..M]\,.\,c[j]\,\geq\, 0
$$

$$
\varphi_1: \ \forall j \in [1..M]. \ at_4 _6[j] +at_4 _3 _5[j \oplus_M 1] +c[j \oplus_M 1] = 1
$$

• Then,

```
at_4[j] + at_4[j] \oplus_M 1]
```

$$
\leq at_{-}\ell_{4\cdot 6}[j] + at_{-}\ell_{3\cdot 5}[j \oplus_{M} 1]
$$

$$
=1-c[j\oplus_M1]\quad\leq\,1\\ \varphi_1\qquad\qquad\varphi_0
$$

Chopstick Exclusion OK 9-25

Problem: possible deadlock ("starvation")

$$
P[1] \quad \ell_2: \text{ request } c[1]; \quad \ell_3: \text{ request } c[2]
$$
\n
$$
\uparrow
$$
\n
$$
P[M] \quad \ell_2: \text{ request } c[M]; \quad \ell_3: \text{ request } c[1]
$$
\n
$$
\uparrow
$$

Solution: One Philosopher Excluded (keeping the symmetry)

• Two-room philosophers' world (Fig 2.18)

Philosophers are "thinking" at the library "eating" at the dining hall

When a philosopher finishes "eating" he returns to the library to "think"

• Program DINE-EXCL (Fig 2.17)

Additional semaphore variable r "door keeper" (initally $r = M-1$)

No more than $M-1$ philosophers are admitted to the dining hall at the same time. Two-room philosopher's world (Fig. 2.18)

Program DINE-EXCL (Fig. 2.17)

in
$$
M
$$
: integer where $M \ge 2$
local c : array [1.. M] integer where $c = 1$
 r : integer where $r = M - 1$

$$
\begin{bmatrix}\n\ell_0: \text{ loop forever do} \\
\ell_1: \text{ noncritical} \\
\ell_2: \text{ request } r \\
\ell_3: \text{ request } c[j] \\
\ell_4: \text{ request } c[j \oplus_M 1] \\
\ell_5: \text{ critical} \\
\ell_6: \text{ release } c[j] \\
\ell_7: \text{ release } c[j \oplus_M 1]\n\end{bmatrix}
$$

Properties of DINE-EXCL:

- $\bullet~$ chopstick exclusion A safety property (in text)
- $\bullet\$ starvation-free progress (next book)
- accessibility $\ell_2[j] \Rightarrow \diamondsuit \ell_5[j]$ progress (next book)

Proving Precedence Properties

nested waiting-for formulas

are of the form

$$
p \Rightarrow q_m \mathcal{W}(q_{m-1} \cdots (q_1 \mathcal{W} q_0) \ldots)
$$

also written

$$
p \Rightarrow q_m \mathcal{W} q_{m-1} \cdots q_1 \mathcal{W} q_0
$$

for assertions p, q_0, q_1, \ldots, q_m .

Chapter 3

Precedence

Recall: To show $P \models \{\varphi\} \mathcal{T} \{\varphi \lor r\},\$ we have to show that for every $\tau \in \mathcal{T}$

 ρ_{τ} \wedge φ $\;\rightarrow$ $\; \varphi'$ \vee r'

is P -state valid.

W1. $p \to \varphi \vee r$ " φ weakens $p \wedge \neg r$ " i.e., $p \wedge \neg r \rightarrow \varphi$ W2. $\varphi \to q$ " φ strengthens q"

Example: Program mux-pet1 (Fig. 3.4)

We proved mutual exclusion

 ψ_1 : $\Box \neg (at_4 \land at_2m_4)$

Using invariants

 $\chi_0: s = 1 \lor s = 2$ $x_1: y_1 \leftrightarrow at_{-\ell_{3.5}}$ $\chi_2: y_2 \leftrightarrow \mathit{at} _m_{3..5}$ χ_3 : $at_-\ell_3 \wedge at_m$ ₄ → $y_2 \wedge s = 1$ χ_4 : $at_4 \wedge at_m$ ₃ → $y_1 \wedge s = 2$

Example: Program mux-pet1 (Fig. 3.4)

(Peterson's Algorithm for mutual exclusion)

local
$$
y_1, y_2
$$
: boolean where $y_1 = F, y_2 = F$

\n s : integer where $s = 1$

\n ℓ_0 : loop forever do

\n $\begin{bmatrix}\n\ell_1 : \text{ noncritical} \\
\ell_2 : (y_1, s) := (T, 1) \\
\ell_3 : \text{ await } (\neg y_2) \lor (s \neq 1) \\
\ell_4 : \text{ critical} \\
\ell_5 : y_1 := F$

 \mathbf{r} \mathbb{I} I \mathbf{r} \mathbb{I} I

 m_0 : $% \left\langle \phi _{0}\right\rangle$ loop forever do

$$
P_2 ::
$$
\n
$$
\begin{bmatrix}\nm_1: \text{ noncritical} \\
m_2: (y_2, s) := (T, 2) \\
m_3: \text{ await } (\neg y_1) \lor (s \neq 2) \\
m_4: \text{ critical} \\
m_5: y_2 := F\n\end{bmatrix}
$$

We want to prove simple precedence

$$
\boxed{\psi_2: \underbrace{at_{\ell}t_3 \wedge at_{\ell}mn_{0..2}}_{p} \Rightarrow \underbrace{\neg at_{\ell}m_4}_{q} \quad \text{W} \quad \underbrace{at_{\ell}t_4}_{r}}
$$

We try to find an assertion φ such that $\rm W1$ – $\rm W3$ of rule wait hold

Let

 $\varphi: at_{-\ell_3} \wedge (at_{-}m_{0..2} \vee (at_{-}m_3 \wedge s=2))$

 $\overline{}$

 \mathbb{L} \mathbb{L} \mathbb{L} \mathbb{L} \mathbb{L} \mathbb{L} \mathbb{R} \mathbb{R} \mathcal{L} \mathbf{L}

W1:
\n
$$
\underbrace{at_{-}\ell_{3} \wedge at_{-}m_{0..2}}_{p} \rightarrow
$$
\n
$$
\underbrace{at_{-}\ell_{3} \wedge (at_{-}m_{0..2} \vee \cdots)}_{\varphi} \vee \cdots
$$

W2:

$$
\cdots \wedge (at_{-}m_{0..2} \vee (at_{-}m_{3} \wedge \cdots)) \rightarrow \underbrace{\neg at_{-}m_{4}}_{q}
$$

W3:

$$
\rho_{\tau} \wedge \underbrace{at_{\ell 3} \wedge (at_{\ell m_{0..2}} \vee (at_{\ell m_{3}} \wedge s=2))}_{\varphi} \rightarrow
$$

$$
\underbrace{at'_{\ell 3} \wedge (at'_{\ell m_{0..2}} \vee (at'_{\ell m_{3}} \wedge s'=2))}_{\varphi'} \vee \underbrace{at'_{\ell 4}}_{r'}
$$

Check:

 ℓ_3, m_2 : OK m_3 : disabled (with the help of the invariant

 $at_4_3.5 \leftrightarrow y_1$, we have $y_1 = T$).

9-39

Proving precedence properties: Systematic derivation of intermediate assertions

$$
\begin{array}{ccc}\n & \varphi & \\
 & \searrow & \\
p & q & \n\end{array}
$$

Recall:

How to find φ ?

Escape Transition

Transition that leads to r-state.

Forward propagation

Weaken $p\land\neg r$ until it becomes an assertion preserved under all nonescape transitions.

Based on postcondition:

$$
\Psi(V) = \text{post}(\tau, \varphi) : \exists V^0 \, . \, \varphi(V^0) \wedge \rho_{\tau}(V^0, V)
$$

 $post(\tau, \varphi)$ characterizes all states that are $\tau\text{-successors}$ of a $\varphi\text{-state}.$

Example: Postcondition

 $V = \{x, y\},\$

 $\rho_{\tau}: x' = x + y \wedge y' = x,$

 Φ : $x = y$

Then $post(\tau, \Phi)$ is given by

$$
\exists x^{0}, y^{0} : \underbrace{x^{0} = y^{0}}_{\phi(V^{0})} \wedge \underbrace{x = x^{0} + y^{0} \wedge y = x^{0}}_{\rho_{\tau}(V^{0}, V)},
$$

which can be simplified to

 Ψ : $x = y + y$.

Forward Propagation: Algorithm

 Φ_t - characterizes all states that can be reached from a $(p \wedge \neg r)$ -state without taking an escape transition.

1.
$$
\Phi_0 = p \wedge \neg r
$$

2. Repeat

$$
\Phi_{k+1} = \Phi_k \vee post(\tau, \Phi_k)
$$

for any non-escape transition τ

Until

 $post(\tau, \Phi_t) \rightarrow \Phi_t$ [may use invariants]

for all non-escape transitions τ

If this terminates (it may not), Φ_t is a good assertion to be used in rule WAIT. Satisifies W1, W3, but check W2.

Backward propagation

Strengthen \boldsymbol{q} until it becomes an assertion preserved under all nonescape transitions.

Based on precondition:

$$
pre(\tau, \varphi) \colon \ \forall V'. \ \rho_{\tau}(V, V') \to \varphi(V')
$$

 $pre(\tau, \varphi)$ characterizes all states all of whose τ -successors satisfy φ .

Example: Precondition

For Peterson's Algorithm, consider

$$
\Gamma_0: \underbrace{\neg at_m_4}_{\text{and calculate pre}(m_3, \Gamma_0)}.
$$

$$
\forall V': \underbrace{at.m_3 \wedge (\neg y_1 \vee s \neq 2) \wedge at.m_4' \wedge \cdots}_{\rho_{m_3}(V,V')} \rightarrow \underbrace{\neg at.m_4'}_{\Gamma_0(V')}.
$$

 $\cal P$ -equivalent to

$$
at_{-}m_{3}\rightarrow (y_{1}\wedge s=2).
$$

Backward Propagation: Algorithm

 \varGamma_f - characterizes all states that can reach a q-state without taking an escape transition

1. $\Gamma_0 = q$

2. Repeat

 $\Gamma_{k+1} = \Gamma_k \wedge pre(\tau, \Gamma_k)$

for any non-escape transition τ

Until

 $\Gamma_f \to \text{pre}(\tau, \Gamma_f)$ [may use invariants]

for all non-escape transitions τ

If this terminates (it may not), Γ_f is a good assertion to be used in rule WAIT.

Satisfies W2, W3, but check W1.

Backward vs. Forward

If $p \Rightarrow q \mathcal{W} r$ is P-valid

$$
\Phi_t \rightarrow \varGamma_f
$$

Example: Program mux-pet1 (Fig. 3.4)

(Peterson's Algorithm for mutual exclusion)

local y_1, y_2 : boolean where $y_1 = F, y_2 = F$	
s	: integer where $s = 1$

ℓ0 : loop forever do

$$
P_1 ::
$$
\n
$$
P_1 ::
$$
\n
$$
\begin{cases}\n\ell_1 : \text{ noncritical} \\
\ell_2 : (y_1, s) := (\text{T}, 1) \\
\ell_3 : \text{ await } (\neg y_2) \lor (s \neq 1) \\
\ell_4 : \text{ critical} \\
\ell_5 : y_1 := \text{F}\n\end{cases}
$$

 \mathbf{r} \mathbb{I} I \mathbf{r} \mathbb{I} I

> P_2 :: m_0 : loop forever do \lceil $\begin{bmatrix} \boldsymbol{\eta} \\ \boldsymbol{\eta} \\ \boldsymbol{\eta} \end{bmatrix}$ $\begin{bmatrix} m_5 : y_2 := F \end{bmatrix}$ m_1 : noncritical $m_2: (y_2, s) := (\text{T}, 2)$ m_3 : await $(\neg y_1) \vee (s \neq 2)$ $m_{\mathbf{4}}: \quad \text{critical}$

> > 9-49

 $\overline{}$

 \mathbf{L}

 $\overline{}$

 \mathbb{L} \mathbb{L} \mathbb{L} \mathbb{L} \mathcal{L} \vert \mathbb{R} \mathbb{R} \vert \mathbb{R} Example: Forward Propagation

$$
\underbrace{at\ell_3 \wedge at.m_{0..2}}_{p} \Rightarrow \underbrace{\neg at.m_4}_{q} \mathcal{W} \underbrace{at\ell_4}_{r}
$$

Start with

$$
\Phi_0: \underbrace{at\ell_3 \wedge at\,_0..2}_{p}.
$$

and calculate $post(m_2, \Phi_0)$: $\exists \left(\pi^0, y_1^0, y_2^0, s^0 \right)$ V^0 : $(at \ell_3)^0 \wedge (at _0..2)^0$ ${\overline{\varPhi}_0(V^0)}$ ∧ $(at_m_2)^0 \wedge at_m_3 \wedge ((at\ell_3)^0 \leftrightarrow at\ell_3) \wedge s = 2 \wedge \cdots$ $\rho_{m_2}(\widetilde{V}^0, V)$

P-equivalent to

$$
\Psi_1: \mathit{at}_3 \wedge \mathit{at}_m_3 \wedge s = 2,
$$

using the invariant $\varphi_1: y_1 \leftrightarrow \varphi_2 \mathcal{I}_{3,5}$

Thus,

$$
\Phi_1: \underbrace{at\ell_3 \wedge at_0...2}_{\Phi_0} \vee \underbrace{at\ell_3 \wedge at_3 \wedge s=2}_{\Psi_1},
$$

Example: Forward Propagation (cont.)

i.e.,

 $\boxed{at\ell_3 \wedge (at_{0..2} \vee (at_{m_3} \wedge s=2))}$

 Φ_1 is preserved under all transitions except the escape transition ℓ_3 , so the process converges.

Example: Backward Propagation

Start with

$$
\varGamma_0: \underbrace{\neg at_\mathit{mq}}_{q}.
$$

We calculated $pre(m_3, \Gamma_0)$ above, which is P-equivalent to

$$
\Delta_1: at_{-m_3} \to (y_1 \wedge s = 2).
$$

Thus,

$$
\Gamma_1: \underbrace{\neg at _m4}_{\Gamma_0} \land \underbrace{at _m3 \to (y_1 \land s = 2)}_{\Delta_1}.
$$

Consider transition τ_{m_2} , and calculate $pre(m_2, \Gamma_1)$:

∀V ′ : at m² ∧ at m³ ′ ∧ y ′ ¹ = y¹ ∧ s ′ = 2 ∧ · · · | {z } ρm² → ¬at m4 ′ ∧ (at m³ ′ → (y ′ ¹ ∧ s ′ = 2)) | {z } Γ ′ 1 .

P-equivalent to

$$
\Delta_2: atm_2 \to y_1.
$$

Example: Backward Propagation (Cont'd)

Thus,

$$
\Gamma_2: \neg at_m_4 \wedge (at_m_3 \rightarrow s = 2) \wedge (at_m_{2,3} \rightarrow y_1).
$$

Considering transitions τ_{m_1}, τ_{m_0} , and τ_{m_5} leads to the
following sequence:

$$
\Gamma_3: \neg at_m \land (at_m_3 \rightarrow s=2) \land (at_m_{1..3} \rightarrow y_1)
$$

$$
\Gamma_4: \neg at_m_4 \wedge (at_m_3 \rightarrow s=2) \wedge (at_m_{0..3} \rightarrow y_1)
$$

 $\Gamma_5: \neg at_{-}m_4 \wedge (at_{-}m_3 \rightarrow s = 2) \wedge (at_{-}m_{0..3,5} \rightarrow y_1)$ By the control invariant $at.m_{0.5}, T₅$ can be simplified to

$$
\Gamma_5: \neg at_m_4 \wedge (at_m_3 \rightarrow s=2) \wedge y_1.
$$

Example: Backward Propagation (Cont'd)

Calculating $pre(\ell_5, \Gamma_5)$,

$$
\forall V': \underbrace{at\ell_5 \wedge y'_1 = \mathbf{F} \wedge \cdots}_{\rho \ell_5} \rightarrow
$$

\n
$$
\underbrace{\neg at_{m_4} \wedge (at_{m_3} \wedge \cdots \wedge s'}_{\Gamma'_5} = 2) \wedge y'_1,
$$

gives

$$
\Delta_6: at \ell_5 \to F.
$$

Propagating $\Gamma_5 \wedge \Delta_6$ via τ_{ℓ_4} gives

$$
\Delta_7: at \ell_4 \to F.
$$

Hence,

$$
\Gamma_7: \neg at_m \wedge (at_m_3 \rightarrow s=2) \wedge at \ell_3,
$$

using the invariant $\varphi_1: y_1 \leftrightarrow \mathit{at}\mathcal{L}_{3,5}$ for simplifications. The assertion is preserved under all but the escape transitions, ending the process.