CS256 /winter2009—Lecture#09 Parameterized Programs
Zohar Manna

_éo: loop forever do |

Chapter 2 /1: noncritical]
Invariance: Applications g: {5 request y
¢3: critical

l4: release y

P3:: [local y : integer where y = 1; [S]|5]|S5]]
(with some renaming of labels of the S’s.)

P%:: [local y : integer where y = 1; [S||S||S]||S]]

P™: 7

9-1 9-2

Mutual exclusion:

P3: O(=(at—l3 A at_m3) A —(at_l3 A at k3) A

—(at_m3 A at_k3))

P OGC.) A o A (L))

P™: 7

We want to deal with these programs,
i.e., programs with an arbitrary number of

identical components, in a more uniform way.

Solution: parametrization

9-3

Syntax

Compound statements of variable size

Mosty sl IsiM]

cooperation:
=1

M
Selection: Of% S[7j] : [S[1] or ... or S[M]]
‘7:

S[7] is a parameterized statement.

In what ways can j appear in S7

e cxplicit variable in expression

=74

e explicit subscript in array x
=zl + ... or z[j] i=...

e implicit subscript of all local variables in S[j]
z stands for z[4]

e implicit subscript of all labels in S[j]

¢3 stands for £3[j] 4

Example: Program PAR-sUM (Fig. 2.1)

(parallel sum of squares) M>1

in M: integer where M >1
z : array [1..M] of integer
out z : integer where 2z =0

[local y: integer
, bo: y = x[j]
P[j] =
1 bi: z:=2z4+y-y
lo:

z = z[1]12+z[2]2 + ... + z[M]?

9-5

Program PAR-SUM-E (Fig. 2.2)

(Explicit subscripted parameterized statements
of PAR-SUM)

in M: integer where M > 1
x :array [1..M] of integer
out z : integer where 2z = 0

local y[j]: integer
. (bolil: yli] == 2lj]
j=1 tljl: z ==z +ylj]- yly]

_Eg [7]:

We write the short version,
but we reason about this one.

9-6

Parameterized transition systems

The number M of processes is not fixed,

so there is an unbounded number of transitions.
To finitely represent these, we use
parameterization of transition relations.

Example: PAR-SUM

The unbounded number of transitions associated
with £g are represented by a single transition
relation using parameter j:

peolil: move(€olil, £1[5]) A
y'l5] = z[5] A
pres({zx, z})
where j = 1... M.

9-7

Array Operations

Arrays (explicit or implicit) are treated as
variables that range over functions:
[1...M] — integers

Representation of array operations in transition relations:

e Retrieval: y[k]
to retrieve the value of the kth element of
array y

e Modification: update(y, k, e)
the resulting array agrees with y on all 7,

1 7= k,and y[k] = e

9-8

Properties of update
update(y, k,e)[k] = e
update(y, k, e)[j] = ylj] for j # k

Example: PAR-SUM

The proper representation of the transition
relation for £g[7] is

polil: move(£oljl, £1[5]) A
y' = update(y, j, x[5]) A

pres({z, z})

9-9

Parameterized Programs: Specification

Notation:

The set of indices of processes that currently
reside at ¢;

e N; = |Lj

The number of processes currently residing
at Ei

Example: L; = {3,5} means ¢;[3],¢;[5] €
and we have N; = 2

Invariant:
O@N; > 0)

Abbreviations:
Lij iy, = Lig U Ly, U ... U Ly,
l;i..j = L; U l;i-+-1 u ... u l;j
Nijvioyiy, = Liyin,...it]
Ni..j = |L;.]

9-10

Parameterized Programs: Specification Program MpX-SEM (Fig. 2.3)
(Con’d)

Example: Program MPX-SEM (Fig 2.3) M > 2

(multiple mutual exclusion by semaphores)

where in M: integer where M > 2
local y : array [1..M]| of integer

i+l ifj<M i y [L.-M] s

j@Mlz(jmodM)—l—lz{ where y[1] =1, y[j]=0for 2<j < M

1 if j =M
Elaboration for M = 2: lo: 10_01) forever do
Program MPX-SEM-2 (Fig 2.4) M ¢1: noncritical
| P £5: request yj
mutual exclusion: j=1 (s: critical
Vi, 5 € [1..M].i # j.~(at_£3[i] A at_t3[4]) | {4 release y[j Oy 1]] |
()
abbreviated as
(N3 < 1)

i.e., the number of processes simultaneously residing at
{3 is always less than or equal to 1.

Note: —(at_#¢3[t¢] A at_£3[j]) can be expressed as
at_03[i] + at_¢3[5] < 1. O-11 9-12

Program MPx-SEM-2 (Fig. 2.4)

local y: array [1..2] of integer where y[1] =1, y[2] =0

[(o[1]: loop forever do
f1[1]):

|

L

¢
¢
4

3

2(1

[
[
[

41

1

]:
]:
]:

noncritical
request y[1]

critical

release y[2] J

[(0[2]: loop forever do
?1[2):

|

l

¢
¢
4

2
3
4

[
[
[

2
2
2

|:
|:
|:

noncritical
request y|2]

critical

release y[1] J

9-13

Parameterized Programs: Verification

Objective: prove {p}7[i]{¢} in a uniform way
for all 4 € [1..M]

Example: Program MPX-SEM (Fig 2.3) M > 2

Prove mutual exclusion:

mﬁgy

The assertion ¢ is not inductive, therefore we prove the
invariance of

p1: Vji.ylj] > 0O

M
2t (Naa+ Y ylil)=1

J=1

where N3 4 = Number of processes currently residing
at €3 or at £y

9-14

Example: Program MPX-SEM (Con't)

B2:

Example: Program MPX-SEM (Con't) The only transitions that interfere
with 7 are 7y, [4] and 7y, [4].
Then ¢ can be deducted by monotonicity:

01 N g2 — N3 <1 pe,li]: move(€o[i], £3[i]) A yli] > 0 A
v y' = update(y, i, y[i]—1)
since
M pe il move(£4li], £oli]) A
N3 < Nzg = 1- Zl ylj] < 1 vy = update(y,i Dy 1, yli Dy 1]+1)
]:

P2 ¥1
pe,[i] implies

e Proof of CJ(¥j .ylj] > 0) ylil >0 Ayl =ylil =1 A V5§ #i.y/[j] = ylj]

~~

Y1
pe, 2] implies
B1: . '
o Aylll=1 A (V5.2<5 <M .ylj] =0) yioyll =ylion 1l +1 A
o ° Vi(j # i@y 1) ¥l = yli)
— Vj -y[gl >0

©1
We therefore have

Vj.yljl >0 /\{ %H } — Vji.y'[j1>0
2l Pla 7
Y1

Note: V7 .y[j] > O stands for Vj.2e < j < M .y[j] > O
9-15

9-16

M
e Proof of|:|(N3,4+ (Z y[]]) = 1)
=1

J/

©o
Bl1:
(W:{EO[]-],-'WEO[M]}/\)
\yli=1 1 w2<j<myli=0))
6

M
— Nza+ (Z y[j]) =1
=1

2

B2: Verification conditions:

pe,[i] implies:
N34 =N3a+1

(ﬁj:l y’[i]) = (ﬁé?ﬂﬂ) —1

9-17

pe,[i] implies:
N34 =Nz4—1

(_%_4:1 y’[@']) = (gjly[i]) +1

Therefore
Nag+ % [=1 A Peoli]
#rlatt T pug]
. ~)
M
— N34+ (Z y’[z‘]) =1
j=1

[J/

v

9-18

Parameterized Programs: Examples

Example: READERS-WRITERS (Fig 2.11)
(readers-writers with generalized semaphores)

where Program READ-WRITE(Fig. 2.11)
request (y,c) = (awaity >c¢; y: =y —¢)

release (y,¢c) = (y:=y+c¢)
in M: integer where M > 1

local y : int h =M
CIVi,j € [L..M].i # j.at_Lgli] — —(at_Lglj] V at_L3[4]) ocal v - imteger where y

¥ [¢y: loop forever do]
) . /1: noncritical 1
e 1 and o are inductive _ -
_ [fg: request (y, 1)]
p1: Yy =20 M R:: |/f3: read
w2: Nza+ M-Ne7+y =M || P[] = {1?4: release (y, I)J
=1 or
[35: request (y,M)]
e Therefore W | lg: write
Ne7>0 — (Ng7=1 A N34=0) I L?T: release (y, M) J_
©1, P2))
Thus,
Oy

9-19 9-20

Example: The Dining Philosophers Problem Dining philosophers setup (Fig. 2.14)
(multiple resource allocation)
Fig 2.14

M philosophers are seated at a round table

Each philosopher alternates between a

“thinking” phase and “eating” phase

M chopsticks, one between every two
philosophers

A philosopher needs 2 chopsticks
(left & right) to eat

9-21 9-22

Program DINE (Fig. 2.15)
(A simple solution to the dining
philosophers problem)

Program DINE (Fig. 2.15)

Philosopher P; - process PJi]
“thinking” phase - mnoncritical
“eating” phase - critical

For philosopher j, in M: integer where M > 2

local ¢ : array [1..M] of integer where ¢ =1

e c[j] represents availability of left chopstick
(c[j] = 1 iff chopstick is available) {o: loop forever do

[¢1: noncritical

M l2: request c[j]

|| P[j] = /3: request c[j ® s 1]
=1 ¢4: critical

e c[j Dy 1] right chopstick

l5: release c[j]

{g: release c[j Dpr 1] |

o I O I 0O

Pj_1 cls] clij®m] Pigyt

9-23 9-24

Specification: Chopstick Exclusion

1V € [1..M] .ﬂ(at_ﬁaij] A at_Lalj Dpg 1]2
(0

Mutual exclusion between every two adjacent philoso-

phers

Proof:
e o and (1 are inductive

wo: Vj€[Ll.M].c[j] >0

p1: Vj€[1.M].at_L4 glj] +
at—£3. 5[&y 1] +
cjopul]l =1
e Then,

at_Lalj] + at_Lalj ®pr 1]
< at_Ly.6lj] + at—L3.5[5 s 1]

=1l-cljonl] <1
¥1 ¥0

Chopstick Exclusion OK 9-25

Problem: possible deadlock (“starvation”)

P[1] ¢5: request c[1]; /¢3: request c[2]
: T

P[M] {¢5: request c[M]; /3: request c[1]
/I\

O I O I ©O

c[M] Py c[1] P c[2] P>
_J - S /

9-26

Solution: One Philosopher Excluded Two-room philosopher’s world (Fig. 2.18)
(keeping the symmetry)

e Two-room philosophers’” world (Fig 2.18)

Philosophers are “thinking” at the library
“eating” at the dining hall

When a philosopher finishes “eating”

}{ Library

he returns to the library to “think”

e Program DINE-EXCL (Fig 2.17)

Additional semaphore variable r

“door keeper” (initally r = M—1)

No more than M —1 philosophers are
admitted to the dining hall at the same time.

9-27 9-28

Program DINE-EXCL (Fig. 2.17)

in M: integer where M > 2
local ¢ : array [1..M] integer where ¢ =1
r :integer where r = M — 1

[{y: loop forever do

/1: noncritical
{y: request r
M {3: request c[j]
|| P[j] = {4: request c[j Dy 1]
7=1 l5: critical
lg: release c[j]
{7: release c[j @)y 1]

| /g: release r

9-29

Properties of DINE-EXCL:

e chopstick exclusion

A safety property (in text)

e starvation-free

progress (next book)

e accessibility ¢5[5] = & £5]5]
progress (next book)

9-30

Chapter 3

Precedence

9-31

Proving Precedence Properties

nested waiting-for formulas

are of the form

P = gnW (@n-1 - (@Waqo)-..)

also written

P = gnWanm-1 - g1 W qo

for assertions p, qo0,q1, - - -, gm.

Models that satisfy these formulas

dm dm—1 q1
interval interval e o o interval
[))))e
p q0
T T
p-position qo-position
9-32

Simple Precedence: p = g W r

q;-interval

4q; q; T q; | ,

e May be empty
can be reduced to first-order VCs by
eg. p = @3WqeWq1Waqo verification rule WAIT:

q3 q3 q3 q1 q1 Rule wait (general waiting-for)

For assertions p, q, r,
. “© P, q ®

WIl. p - ¢oVr
e May extend to infinity

W2, ¢ — ¢
q3 q3 q3 q2 q2 Q2 W3. {e}7{pVvr}
p p = qWr

Note: The following is OK
Recall: To show P I {¢} 7 {¢ V r},
q0 we have to show that for every © € T

pr N o — ¢ Vv 1!
is P-state valid.
9-33 9-34

p

Intermediate Assertion ¢

WlL.p—oeVr
lLe, pA—r — @

W2. ¢ — ¢q

“ip weakens p A —r”

“p strengthens ¢”

9-35

Example: Program mux-petl (Fig. 3.4)

We proved mutual exclusion

Py

0 —(at_ls N at_mgy)

Using invariants

XO0-

X1-

X2-

X3-

X4-

s=1V s=2

y1 < at_l3 5

Y2 < at—_m3 5

at_fl3z N at_mg — yo N s=1

at_€ly N at_m3z — y1 N s=2

9-36

Example: Program mux-petl (Fig. 3.4)

(Peterson’s Algorithm for mutual exclusion) We want to prove simple precedence

local y1,yp>: boolean where y1 = F,yp = F b

at_f3 N at_m = —at_mg W at_¥
S . integer where s=1 3 0.2 _—4 Nt

p q r

¢o : loop forever do

/1 : mnoncritical ,
We try to find an assertion ¢ such that

P b (y1, 8) = (T, 1) W1 - W3 of rule wAIT hold
¢3: await (-ys) V (s # 1)
£y . critical

Let

ls: Yy =F
’ ‘ p: at—€3 A (at_mg oV (at_m3z As=2))

mq . loop forever do

mq . noncritical
mp . (y27 S) = (T7 2)
mz . await (-y1) V (s # 2)

my . critical

mg . Yo = F
9-37 9-38

WI:
gt_£3 AN at_moug —

v~

p
gt_£3 AN (at_mo_Q V), \ N,
P2 T
W2:
A (at_ _ —at_
: (at_mo.p V (al_m3 A ---)) — Zal_mq
() q
W3
pr A\ at_L3 N (at—mg o V (al-mz N s =2)) —
%

at’_£3 AN (at/_mo__g \% (at’_m3 A s = 2)) Vv at/_€4
~- o S——

/ /

%) r

Check:

{3, mp: OK
ms3: disabled (with the help of the invariant
at_f3. 5 < y1, we have y; = T).

9-39

Proving precedence properties:

Systematic derivation of intermediate assertions

—
N

Recall:

Rule wAIT (general waiting-for)

For assertions p, q, r, ¢
Wl. p - oVr
W2, ¢ — ¢
W3. {e}T{pVr}

p = qWr

How to find ¢?

9-40

Forward propagation

Escape Transition

Weaken p A —=r until it becomes an assertion preserved

o under all nonescape transitions.
Transition that leads to r-state.

Based on postcondition:

T(V) = post(r,¢): IV . o(VO) A p-(VO, V)

post(T,) characterizes all states that are
T-successors of a -state.

9-41 9-42

Example: Postcondition

V= {=z,y},

pr ' =x+yny ==z,
Pix=y

Then post(7, ®) is given by

El:co,yo ZEL’O = yci/\a: = 70 —I—yo ANy = ij
B(V0) pr(VO,V)

which can be simplified to

V.z=y—+y.

9-43

Forward Propagation: Algorithm

@, - characterizes all states that can be
reached from a (p A —r)-state without taking an escape
transition.

1. &g = pA—r
2. Repeat
D41 = P V post(r,Dy)
for any non-escape transition 7
Until

post(T,P¢) — P [may use invariants|

for all non-escape transitions 7

If this terminates (it may not), @ is a good assertion to
be used in rule WAIT.
Satisifies W1, W3, but check W2.

9-44

Backward propagation Example: Precondition

Strengthen g until it becomes an assertion For Peterson’s Algorithm, consider

preserved under all nonescape transitions.
Io: —atmgy
—_———

Based on precondition: and calculate pre(ms, IQ):
pre(r, @) YV . pr(V,V') — (V') VAVAR atmaz A (—y1 Vs #2) A atma’ A - C— jat,m4f.
pmg(vavl) FO(V/)
pre(T, ¢) characterizes all states all of whose P-equivalent to

T-successors satisfy . atmz — (yp As=2)

pre(T, ¢)

9-46

Backward Propagation: Algorithm

I - characterizes all states that can reach
a g-state without taking an escape transition

1. Ip = ¢q
2. Repeat
Iy 1 = I A pre(r, I,)
for any non-escape transition 7
Until
I'y — pre(r,I'y) [may use invariants]
for all non-escape transitions 7

If this terminates (it may not), I'y is a good assertion to
be used in rule WAIT.

Satisfies W2, W3, but check W1.

9-47

Backward vs. Forward

If p=qW ris P-valid

is P-state valid.

@t—>[’f

9-48

Example: Program mux-petl (Fig. 3.4)
(Peterson’s Algorithm for mutual exclusion)

local y1,yp>: boolean where y1 = F,yp = F
S . integer where s=1

¢o : loop forever do

/1 : mnoncritical
b ba: (y1,s) == (T, 1)
o 03 : await (=yo) V (s £ 1)
£y . critical
| l5: Y1 = F |
mq . loop forever do
'm1 : noncritical |
mp . (y27 S) = (T7 2)
P

mz . await (-y1) V (s # 2)

my . critical

mg . Yo = F
9-49

Example: Forward Propagation

at 43 /\gt,mo“g = —atmg VW atly
p q r
Start with

Pq : gt,£3 A atmg, 2.
p

and calculate post(mo, @g):

3 (79,49, 49, SOZ : (at£3)° A (at-mg.2)° A
1% Po(VO)

(at m2)° A at ma A ((at £3)° e at b3) ANs =2 A---

pm2(§07v)
P-equivalent to
Uy iatlz ANatm3z N\s =2,
using the invariant @1 @ y1 < at 43 5.

Thus,

Py atlzNatmg o V atdz Natmz Ns =2,
o U

Example: Forward Propagation (cont.) Example: Backward Propagation

i.€., Start with

at €3 N (at,mong V (at,m3 ANSs = 2)) FO D at-myg, .
q

@4 is preserved under all transitions except the escape We calculated pre(mi,) above, which is P-equivalent

transition £3, so the process converges. to

Ay atmz — (y1 As = 2).
Thus,

I7: —at _ = .
1 at- mg N gt m3 — (‘y} N\ S 22
Io Ay

Consider transition 7p,,, and calculate pre(mo, I'7):

vV’ at,mg/\at,mg,’/\y/l =y As =2A---
Pmo
o jat,m4/ A (atmz3 — (Y NS = 2)).
r

P-equivalent to
Aot atmp — y1.

9-51 9-52

Example: Backward Propagation (Cont’d)

Thus,
Iy —atmg A (atomz — s = 2) A (atmo 3 — y1).

Considering transitions Tmq, Tmg, and Tmg leads to the
following sequence:

I's: —atmg A (atmz — s =2) A (atmy. 3 — y1)
I'p o —atmg A (atmz — s =2) A (atmg. 3 — y1)

I's © —atmg A (atmz — s = 2) A (atmg. 35 — Y1)

By the control invariant at mq g5, I's can be simplified
to

I's: —atmg N (atmz — s=2) A y1.

9-53

Example: Backward Propagation (Cont’d)

Calculating pre(4s, I's),

VW' atds Ayy =F A —
Pie
jat,m4' A (atms’ — s =2) A yi,
Iy

gives
Ag : atls — F.
Propagating I's A Ag via 7y, gives
A7 atly — F.

Hence,

I7 . —atmg N (atomz — s = 2) A at t3,

using the invariant ¢q1 : y1 < atf3_ g for simplifica-
tions. The assertion is preserved under all but the escape
transitions, ending the process.

9-54

