CS256 /winter2009—Lecture#09
Zohar Manna

Chapter 2

Invariance: Applications

9-1

Parameterized Programs

¢y: loop forever do
/1: noncritical |
g- - /5. request y

¢3: critical

l4:. release y

P3:: [local y : integer where y = 1; [S||S||S]]
(with some renaming of labels of the S’s.)

P%:: [local y : integer where y = 1; [S]|S]||S||S]]

9-2

Mutual exclusion:

P3: (J(—=(at—b3 AN at_m3) N —(at_€l3 N at_k3) A
—(at_m3 A at_k3))

P OGGC.) A ... A=)

P 7

We want to deal with these programs,
i.e., programs with an arbitrary number of

identical components, in a more uniform way.

Solution: parametrization

9-3

Syntax

Compound statements of variable size

cooperation:]}|4 SlF1 - [S[Ll] ... ||S[M]]

=1
M

Selection: OI} S[F] : [S[1] or ... or S[M]]
]:

S[j] is a parameterized statement.

In what ways can 7 appear in S7

e cxplicit variable in expression

=74

e cxplicit subscript in array x
=zlj]+ ... or z[j] i=...

e implicit subscript of all local variables in S[j]
z stands for z[4]

e implicit subscript of all labels in S[j]

¢3 stands for £3[j] 4

Example: Program PAR-sUM (Fig. 2.1)

(parallel sum of squares) M>1

in M: integer where M > 1
z : array [1..M] of integer
out 2 : integer where z =0

local y: integer”

, lo: y:=2x|)
Plj] ::]
j=1 bi: z:=z+y-y
lo:

z = z[1]2 4+ z[2]? + ... + z[M]?

9-5

Program PAR-SUM-E (Fig. 2.2)

(Explicit subscripted parameterized statements
of PAR-SUM)

in M: integer where A > 1
z :array [1..M] of integer
out z : integer where z =0

local y[j]: integer
W o |Lolil: yli) = =[j]
| Pll= | .
j=1 Gl 2z ==z +yljl- ylJ]
Lal]:

We write the short version,
but we reason about this one.

Parameterized transition systems

The number M of processes is not fixed,

so there is an unbounded number of transitions.
To finitely represent these, we use
parameterization of transition relations.

Example: PAR-SUM

The unbounded number of transitions associated
with £g are represented by a single transition
relation using parameter j:

peylil: move(Loli], €1[5]) A
y'[5] = z[5] A
pres({z, z})
where j = 1... M.

9-7

Array Operations

Arrays (explicit or implicit) are treated as
variables that range over functions:
[1...M] — integers

Representation of array operations in transition relations:

e Retrieval: y[k]
to retrieve the value of the kth element of

array y

e Modification: update(y, k, e)
the resulting array agrees with y on all 1,
i =k, and y[k] = e

9-8

Properties of update
update(y, k,e)[k] = e
update(y, k, e)[7] = ylj] for j 7= k

Example: PAR-SUM

The proper representation of the transition
relation for £g[7] is

poljl: move(Loljl, £1[5]) A
y' = update(y, j, x[j]) A
pres({z, z})

9-9

Parameterized Programs: Specification

Notation:

el = {jl4lilent C{i,...,M}

The set of indices of processes that currently
reside at ¢;

e N; = |Lj

The number of processes currently residing
at 4;

Example: L; = {3,5} means ¢;[3],¢;[5] €«
and we have N; = 2

Invariant:
O(N; > 0)

Abbreviations:
Lil,’ig,...,ik = L’il U Li2 U ... U Lik
Lz] = L; U Li—l—l u ... U Lj
Nijvio,ip, = Liqin,... il
N;. = |L;. 4|

9-10

Parameterized Programs: Specification

(Con’d)

Example: Program MPX-SEM (Fig 2.3) M > 2
(multiple mutual exclusion by semaphores)

where
. Iy (41 ifj<M
]@Ml—(]modM)—l—l—{l 7= M

Elaboration for M = 2:
Program MPX-SEM-2 (Fig 2.4)

mutual exclusion:

D‘\v’z,y cl[l.M].i#£7. 1(at_£3[z'] A at_£3[j])1
(5

abbreviated as

O(N3<1)

i.e., the number of processes simultaneously residing at
¢3 is always less than or equal to 1.

Note: —=(at_£3[i] A at_£3[j]) can be expressed as
at_L3[i] + at_¢3[7] < 1. —

Program MpPx-SEM (Fig. 2.3)

in M: integer where M > 2
local y : array [1..M] of integer
where y[1] =1, y[j]=0for2<j< M

[{y: loop forever do
¢1: noncritical

|| P[j] :: l9: request y[j]
g=1 (3: critical

l4: release y[j D 1]

9-12

Program MPX-SEM-2 (Fig. 2.4)

local y: array [1..2] of integer where y[1] =1, y[2] =0

/o[1]: loop forever do

/1[1]: noncritical |
P[1]: l2[1]: request y[1]

3[1]: critical

£4(1]: release y[2]

(o[2]: loop forever do

¢1[2]: noncritical |

2]: request y[2]

2
l3[2]: critical
2

2]: release y[1]

9-13

Parameterized Programs: Verification

Objective: prove {¢}7[i]{¢} in a uniform way
for all i € [1..M]

Example: Program MPX-SEM (Fig 2.3) M > 2

Prove mutual exclusion:

D(N%D;D

The assertion ¢ is not inductive, therefore we prove the
invariance of

10 Vi.ylil 2 0

M
©2: (N3,4+ > y[j]): 1
=1

where N3 4 = Number of processes currently residing
at €3 or at £4

9-14

Example: Program MPX-SEM (Con't)

Then ¢ can be deducted by monotonicity:
p1 N p2 — N3 <1

———
©
since
M
N3 < Nzg = 1-> y[jl < 1
j=1
¥©2 ¥1

e Proof of (J(Vj.ylj] > 0)

©1
Bl1:
o Aylll=1 A (%.2<5 < M.y[j] =0)
)
— Vj.ylj] >0
©1

Note: Vj.y[j] > O stands for V5.1 < 5 < M .y[j] > O
9-15

Example: Program MPX-SEM (Con't)

B2:
The only transitions that interfere
with ¢ are 7y, [i] and 7y, [4].

pe,[t]: move(£a[i], £3[i]) A yli] >0 A
y' = update(y, i, y[i]—1)

pe, 1] move(€4li], £oli]) A
y' = update(y,i ®pr 1, y[t Spr 1]4+1)

pe,[i] implies

yli] >0 Ayl =yli] =1 A V5.5 % 0.9 [§] = ylj]

pe,[7] implies
Y0ioyll =yl 1] +1 A
Vi(j #i@nm 1) y'li] = yly]

We therefore have

Vi.ylj] >0 /\{ %{.] } — Vj.y'[j1 >0
Dy Ply Z] ~
L1 o}

9-16

M
e Proof of [(N34 + (Z y[j]) = 1)
j=1

\ . o

oo
B1:
(WZ{Eo[l],...,Eo[M]}/\)
\yli=1 1 (v.2<5 <M.yl =0)

aV

&

M
— N34+ (Z y[j]) =1
j=1

\ 7

4

©2
B2: Verification conditions:

pe, (7] implies:
N34 =N3za+1

(ﬁl y’[ﬂ) = (ﬁﬂ[ﬂ) —1

9-17

pe,[7] implies:
NL,=Nzas—1

M M
(Z y’[i]) = (Z y[i]> +1
j=1 j=1
Therefore

< [i]
N34 + (Z ym) =1 A { Pl }
j=1)

9-18

Parameterized Programs: Examples

Example: READERS-WRITERS (Fig 2.11)
(readers-writers with generalized semaphores)

where
request (y,c) = (awaity >c¢; y: =y — ¢)
release (y,c) = (y:=y -+ c)

[1Vi,5 € [1.M].i# 7. at_€6[il — =(at_Lglj] V at_€3[j])J
Y

e o1 and o are inductive

p1: y =20
p2: N3a+ M-Ne7+y =M

e Therefore
Ne7>0 — (Ng7=1 A N34=0)
1, P2
Thus,
(19

9-19

Program READ-WRITE(Fig. 2.11)

in M: integer where M > 1
local y : integer where y = M

{y: loop forever do

/1: noncritical

/5: request (y,1)
M R: |¥{3: read
|| P[i] = {y: release (y,1)
=1 or)

[(5: request (y, M)
Wt | {g: write
l7: release (y,M)

9-20

Example: The Dining Philosophers Problem

(multiple resource allocation)
Fig 2.14

e M philosophers are seated at a round table

e FEach philosopher alternates between a

“thinking” phase and “eating” phase

e M chopsticks, one between every two
philosophers

e A philosopher needs 2 chopsticks
(left & right) to eat

9-21

Dining philosophers setup (Fig. 2.14)

C3

9-22

Program DINE (Fig. 2.15)
(A simple solution to the dining
philosophers problem)

Philosopher P; - process P|[i]
“thinking” phase - mnoncritical
“eating” phase - critical

For philosopher 7,

e c[j] represents availability of left chopstick
(c[4j] = 1 iff chopstick is available)

o c[1Dp 1] right chopstick

O || O

Pj_4 cs] clj ®pr 1]

O

P;
9-23

Syl

Program DINE (Fig. 2.15)

in M: integer where M > 2
local ¢ : array [1..M] of integer where c = 1

{p: loop forever do

¢1: noncritical
M l2: request c[j]
|| Plj] = ¢3: request c[j & 1]
7=l ¢4: critical
l5: release c[j]

lg: release c[j @ 1]

9-24

Specification: Chopstick Exclusion

D:V/] € [1.M].—(at_la[j] N at_La]j Dy 1])/
(&

Mutual exclusion between every two adjacent philoso-
phers

Proof:
e g and 1 are inductive

oo Ve [1..M].c[j] > 0

p1. Vj€[1.M].at_ls glj] +
at €3 5[j ®pr 1] +
clj®pl] =1
e Then,

at_La[j] 4+ at_L4[j S 1]
< at_Llg.6lj] + at_L3..5[5 Dps 1]

=1-cljoyl] <1
P1 ¥0

Chopstick Exclusion OK 9-25

Problem: possible deadlock (“starvation”)

P[1] 4>: request c[1]; /¢3: request c[2]
- T

P[M] ¥¢5: request c[M]; ¥¢3: request c[1]
T

O I O I ©O

c[M] Py c[1] Py c[2] P>
- J - J - J

9-26

Solution: One Philosopher Excluded
(keeping the symmetry)

e Two-room philosophers’ world (Fig 2.18)

Philosophers are “thinking” at the library
“eating” at the dining hall

When a philosopher finishes “eating”
he returns to the library to “think”
e Program DINE-EXCL (Fig 2.17)

Additional semaphore variable r
“door keeper” (initally r = M —1)

No more than M —1 philosophers are
admitted to the dining hall at the same time.

9-27

Two-room philosopher’s world (Fig. 2.18)

H Library

9-28

Program DINE-EXCL (Fig. 2.17)

in M: integer where M > 2
local ¢ : array [1..M] integer where c =1
r :integer where r = M — 1

/p: loop forever do

/1: noncritical
¢9: request r
M /3: request c[j]
|| Plj] = ¢4: request c[j Oy 1]
=1 ¢5: critical
lg: release c[j]
¢7: release c[j ® s 1]

l3: release r

9-29

Properties of DINE-EXCL:

e chopstick exclusion

A safety property (in text)

e starvation-free

progress (next book)

o accessibility £o[j] = <> s[4l
progress (next book)

9-30

Chapter 3

Precedence

9-31

Proving Precedence Properties

nested waiting-for formulas

are of the form

P = gnW (@m-1 - (@1 Wqp)...)

also written

P = gnWaqm-1 - q1Wqo

for assertions p, g0, q1, - - -, gm.

Models that satisty these formulas

dm dm—1 qd1

interval interval e o o interval
i))))e
p q0
T T
p-position go-position

9-32

q;-interval

d; d; T q;

e May be empty

eg. p = g3WaqxWaq1 Waqo

q3 43 q3 q1 q1

p

e May extend to infinity

q3 43 q3 q2 q2

40

q2

p

Note: The following is OK

40

p

9-33

Simple Precedence: p = g W r
¥

7\

q q q q

\
J

p r
can be reduced to first-order VCs by
verification rule WAIT:

Rule wait (general waiting-for)

For assertions p, q, 7, ©

WIL. p — @oVr
W2, ¢ — ¢
W3. {e}T{p V]

p = qWr

Recall: To show P I {p} 7 {p V 7},
we have to show that for every 7 € 7T

or N o — o Vv 7

1s P-state valid.
9-34

Intermediate Assertion ¢

WL p—pVr “io weakens p A —r”
e, pA—r — @

W2, o —q “p strengthens q”

9-35

Example: Program mux-petl (Fig. 3.4)

We proved mutual exclusion

Py

[(1—(at_lqg N at_my)

Using invariants

XO0-

X1-

X2-

X3-

X4-

s=1V s=2

y1 < at_{3 5

Yo <> at_ms3 5

at_l3z N at_mg — yp N s=1

at_lg N at_m3z — y; N s =2

9-36

Example: Program mux-petl (Fig. 3.4)
(Peterson’s Algorithm for mutual exclusion)

local yi,y>: boolean where y; = F,yp =F
S . integer wheres =1

¢o . loop forever do

¢1 . mnoncritical
P, b (y1,s) = (T, 1)
¢3: await (—ys) V(s # 1)
¢4 . critical
| l5. Y1 = F |
|
mgo - loop forever do
'mq : noncritical |
P, mo 1 (Y2,) = (T, 2)

m3 . await (—y1) V (s = 2)

my . critical

ms . Yp . =— F
9-37

We want to prove simple precedence

P!

at_f3 N at_mqg o = —at_mg W alt_¥y4
N o 2 — . >

p q r

We try to find an assertion ¢ such that
W1 — W3 of rule WAIT hold

Let

© :

at_€3 N\ (at—_mg >V (at_m3z N s = 2))

9-38

WI:
gt_€3 N at_mg .o —

Ve

p
\at_€3 N\ (at_mo_Q V), V N,
% T
W2:
A (at_mg o> V (at_m3z A)), — at—_myg
® q
W3:
por N\ flt_€3 A (at_mg o V (at_m3z A s = 2)2 —
@

at’ 43 N (at"_mg o V (at_mz A s =2)) Vv at’ 4

/

/

o T

Check:

l3, mp: OK
ma3: disabled (with the help of the invariant
at_f3 5 < y1, we have y; = T).

9-39

Proving precedence properties:

Systematic derivation of intermediate assertions

Recall:

Rule WAIT (general waiting-for)

For assertions p, q, r, ©

Wl p — poVr
W2, o — ¢
W3. {e}T{eVr}

p = qWr

How to find ¢?

9-40

Eiscape Transition

Transition that leads to r-state.

9-41

Forward propagation

Weaken p A —r until it becomes an assertion preserved

under all nonescape transitions.

Based on postcondition:

7 (V) = post(r,¢): V0. 0(VO) A p-(VO, V)

post(T,) characterizes all states that are
T-successors of a p-state.

9-42

Example: Postcondition

V ={z,y},

or ' =xz+yny =z,
Q. x=y

Then post(7, D) is given by

0

)

39, 30 :g:o zyoj/\\x:azo—l—yo/\y:x
@(“;O) PT(VO,V)

which can be simplified to

Vi.irx=y+uy.

9-43

Forward Propagation: Algorithm

@, - characterizes all states that can be
reached from a (p A —r)-state without taking an escape

transition.

l. &g = pA—r
2. Repeat
Ppt1 = P V post(T, Py)

for any non-escape transition 7

Until
post(T, D) — P |may use invariants]
for all non-escape transitions 7

[f this terminates (it may not), @ is a good assertion to
be used in rule WAIT.
Satisifies W1, W3, but check W2.

9-44

Backward propagation

Strengthen ¢ until it becomes an assertion

preserved under all nonescape transitions.

Based on precondition:

pre(T,). YV . pr(V, V') — (V')

pre(T,) characterizes all states all of whose
T-successors satisty .

pre(T,)

Example: Precondition

For Peterson’s Algorithm, consider
Iy : —at
0: Jalmgy
and calculate pre(ms, I():
VA VAl atmz A (-y1 Vs 7= 2) A atma’ A - .= —at.-my’ .

~~ S———
pmz(V,V') I'o(V')

P-equivalent to

atmz — (y1 N s = 2).

9-46

Backward Propagation: Algorithm

I - characterizes all states that can reach

a g-state without taking an escape transition

l. Ih = ¢q
2. Repeat
[t1 = Ig A pre(r, [})
for any non-escape transition 7
Until
I’y — pre(r,'y) [may use invariants|
for all non-escape transitions 7

[f this terminates (it may not), I'f is a good assertion to
be used in rule WAIT.
Satisfies W2, W3, but check W1.

9-47

Backward vs. Forward

If p=q W ris P-valid
@t — Ff

1s P-state valid.
9-48

Example: Program mux-petl (Fig. 3.4)
(Peterson’s Algorithm for mutual exclusion)

local yi,y>: boolean where y; = F,yp =F
S . integer wheres =1

¢o . loop forever do

¢1 . mnoncritical
P, b (y1,s) = (T, 1)
¢3: await (—ys) V(s # 1)
¢4 . critical
| l5. Y1 = F |
|
mgo - loop forever do
'mq : noncritical |
P, mo 1 (Y2,) = (T, 2)

m3 . await (—y1) V (s = 2)

my . critical

ms . Yp . =— F
9-49

Example: Forward Propagation

at 2 N at._ = —at_ at_t
at t3 . mo..2 qm4W 7«4

Start with

Qg 1 atlz N\ at-mg. 2.
p

and calculate post(mo, ®g):

3 (7%, 4%,49,5°) : (at3)° A (at-mg 2)° A

Vo B (V0)
gatmz)o A at-msz A ((at£3)0 o atlz) N\s=2N- -
me(Vo7v)

P-equivalent to

Ui i atbz N atmz ANs = 2,
using the invariant 1 | y1 < atf3 s.
Thus,

Py . atlz Natmg o V atlz N atmz Ns = 2,
Po 2

9-50

Example: Forward Propagation (cont.)

1.€.

atl3 N (atemg > V (attmz A s =2))

@1 is preserved under all transitions except the escape

transition £3, so the process converges.

9-51

Example: Backward Propagation

Start with

Io: —atmg.
0: Ta qm4
We calculated pre(ms, 1) above, which is P-equivalent

to
A1 atmsz — (y1 A s = 2).
Thus,

I'1: —at _ — .
1 at-mg /N gt m3 — (gl AN 2)1
It Ay

Consider transition 7m,, and calculate pre(mo, I'7):

7

VA4 atmg/\atmg,//\y’l:yl/\g’:2/\...

pmo
— jatm4/ A (atmz’ — (yp N s = 2)) .
I
1

P-equivalent to
As . atmo — y1.

9-52

Example: Backward Propagation (Cont’d)

Thus,

I'5: —atmag A (atmz — s = 2) A (at,m2,3 — Y1).

Considering transitions Tmy, Tmg, and Tmeg leads to the
following sequence:

I3: —atmg A (atmz — s =2)A(atmi 3 — y1)
Iy —atmg A (atmz — s = 2) A (atmg 3 — Y1)

Iy : —atma N (atmz — s = 2) A (at,mon3’5 — Y1)

By the control invariant at-mgqg s, 5 can be simplified
to

I's i —atmag N (atmz — s =2) A yq.

9-53

Example: Backward Propagation (Cont’d)

Calculating pre(¢s, I's),

VW' atds Ay =FA--- —
Pic
ﬁa,t,m4/ A (at,m3/ — s = 2) A y/1,

!
I'g

gives
Ag . atls — F.
Propagating I's A Ag via 7y, gives
A7 . atly — F.

Hence,

I'7 . —atma N (atomsz — s = 2) A at t3,

using the invariant @1 @ yq < atf3 g for simplifica-
tions. The assertion is preserved under all but the escape
transitions, ending the process.

9-54

