
CS256/winter2009—Lecture#09

Zohar Manna

Chapter 2

Invariance: Applications

9-1

Parameterized Programs

S: :

ℓ0: loop forever do

ℓ1: noncritical

ℓ2: request y

ℓ3: critical

ℓ4: release y

P3: : [local y : integer where y = 1; [S||S||S]]

(with some renaming of labels of the S’s.)

P4: : [local y : integer where y = 1; [S||S||S||S]]

...

Pn: : ?

9-2

Mutual exclusion:

P3: 0 (¬(at−ℓ3 ∧ at−m3) ∧ ¬(at−ℓ3 ∧ at k3) ∧

¬(at−m3 ∧ at k3))

P4: 0 (¬(. . .) ∧ . . . ∧ ¬(. . .))

Pn: ?

We want to deal with these programs,

i.e., programs with an arbitrary number of

identical components, in a more uniform way.

Solution: parametrization

9-3

Syntax

Compound statements of variable size

cooperation:
M

j=1
S[j] : [S[1]|| . . . ||S[M]]

Selection:
M

OR
j=1

S[j] : [S[1] or . . . or S[M]]

S[j] is a parameterized statement.

In what ways can j appear in S?

• explicit variable in expression

. . . := j + . . .

• explicit subscript in array x

. . . := x[j] + . . . or x[j] := . . .

• implicit subscript of all local variables in S[j]

z stands for z[j]

• implicit subscript of all labels in S[j]

ℓ3 stands for ℓ3[j]
9-4

Example: Program par-sum (Fig. 2.1)

(parallel sum of squares) M ≥ 1

z = x[1]2 + x[2]2 + . . .+ x[M]2

9-5

Program par-sum-e (Fig. 2.2)

(Explicit subscripted parameterized statements

of par-sum)

We write the short version,

but we reason about this one.

9-6

Parameterized transition systems

The number M of processes is not fixed,

so there is an unbounded number of transitions.

To finitely represent these, we use

parameterization of transition relations.

Example: par-sum

The unbounded number of transitions associated

with ℓ0 are represented by a single transition

relation using parameter j:

ρℓ0[j]: move(ℓ0[j], ℓ1[j]) ∧

y′[j] = x[j] ∧

pres({x, z})

where j = 1 . . .M.

9-7

Array Operations

Arrays (explicit or implicit) are treated as

variables that range over functions:

[1 . . .M] 7→ integers

Representation of array operations in transition relations:

• Retrieval: y[k]

to retrieve the value of the kth element of

array y

• Modification: update(y, k, e)

the resulting array agrees with y on all i,

i 6= k, and y[k] = e

9-8

Properties of update

update(y, k, e)[k] = e

update(y, k, e)[j] = y[j] for j 6= k

Example: par-sum

The proper representation of the transition

relation for ℓ0[j] is

ρ0[j]: move(ℓ0[j], ℓ1[j]) ∧

y′ = update(y, j, x[j]) ∧

pres({x, z})

9-9

Parameterized Programs: Specification

Notation:

• Li = {j | ℓi[j] ∈ π} ⊆ {1, . . . ,M}

The set of indices of processes that currently
reside at ℓi

• Ni = |Li|

The number of processes currently residing
at ℓi

Example: Li = {3,5} means ℓi[3], ℓi[5] ∈ π

and we have Ni = 2

Invariant:0 (Ni ≥ 0)

Abbreviations:

Li1,i2,...,ik = Li1 ∪ Li2 ∪ . . . ∪ Lik

Li..j = Li ∪ Li+1 ∪ . . . ∪ Lj

Ni1,i2,...,ik = |Li1,i2,...,ik|

Ni..j = |Li..j|

9-10

Parameterized Programs: Specification
(Con’d)

Example: Program mpx-sem (Fig 2.3) M ≥ 2

(multiple mutual exclusion by semaphores)

where

j ⊕M 1 = (j mod M) + 1 =

{

j + 1 if j < M

1 if j = M

Elaboration for M = 2:
Program mpx-sem-2 (Fig 2.4)

mutual exclusion:0 ∀i, j ∈ [1..M] . i 6= j .¬(at−ℓ3[i] ∧ at−ℓ3[j])
︸ ︷︷ ︸

ψ

abbreviated as 0 (N3 ≤ 1)

i.e., the number of processes simultaneously residing at
ℓ3 is always less than or equal to 1.

Note: ¬(at−ℓ3[i] ∧ at−ℓ3[j]) can be expressed as
at−ℓ3[i] + at−ℓ3[j] ≤ 1. 9-11

Program mpx-sem (Fig. 2.3)

9-12

Program mpx-sem-2 (Fig. 2.4)

9-13

Parameterized Programs: Verification

Objective: prove {ϕ}τ [i]{ϕ} in a uniform way

for all i ∈ [1..M]

Example: Program mpx-sem (Fig 2.3) M ≥ 2

Prove mutual exclusion:0 (N3 ≤ 1
︸ ︷︷ ︸

ϕ

)

The assertion ϕ is not inductive, therefore we prove the
invariance of

ϕ1: ∀j . y[j] ≥ 0

ϕ2:
(

N3,4 +
M∑

j=1

y[j]
)

= 1

where N3,4 = Number of processes currently residing
at ℓ3 or at ℓ4

9-14

Example: Program mpx-sem (Con’t)

Then ϕ can be deducted by monotonicity:

ϕ1 ∧ ϕ2 → N3 ≤ 1
︸ ︷︷ ︸

ϕ

since

N3 ≤ N3,4 = 1 −
M∑

j=1

y[j] ≤ 1

ϕ2 ϕ1

• Proof of 0 (∀j . y[j] ≥ 0
︸ ︷︷ ︸

ϕ1

)

B1:

. . . ∧ y[1] = 1 ∧ (∀j .2 ≤ j ≤M .y[j] = 0)
︸ ︷︷ ︸

Θ

→ ∀j . y[j] ≥ 0
︸ ︷︷ ︸

ϕ1

Note: ∀j . y[j] ≥ 0 stands for ∀j.i ≤ j ≤M .y[j] ≥ 0

9-15

Example: Program mpx-sem (Con’t)

B2:

The only transitions that interfere

with ϕ1 are τℓ2[i] and τℓ4[i].

ρℓ2[i]: move(ℓ2[i], ℓ3[i]) ∧ y[i] > 0 ∧

y′ = update(y, i, y[i]−1)

ρℓ4[i]: move(ℓ4[i], ℓ0[i]) ∧

y′ = update(y, i⊕M 1, y[i⊕M 1]+1)

ρℓ2[i] implies

y[i] > 0 ∧ y′[i] = y[i] − 1 ∧ ∀j . j 6= i . y′[j] = y[j]

ρℓ4[i] implies

y′[i⊕M 1] = y[i⊕M 1] + 1 ∧

∀j(j 6= i⊕M 1) y′[j] = y[j]

We therefore have

∀j . y[j] ≥ 0
︸ ︷︷ ︸

ϕ1

∧

{

ρℓ2[i]

ρℓ4[i]

}

→ ∀j . y′[j] ≥ 0
︸ ︷︷ ︸

ϕ′1
9-16

• Proof of 0 (N3,4 +

M∑

j=1

y[j]

 = 1)

︸ ︷︷ ︸
ϕ2

B1:

π = {ℓ0[1], . . . , ℓ0[M]} ∧

y[1] = 1 ∧ (∀j .2 ≤ j ≤M .y[j] = 0)

︸ ︷︷ ︸

Θ

→ N3,4 +

M∑

j=1

y[j]

 = 1

︸ ︷︷ ︸
ϕ2

B2: Verification conditions:

ρℓ2[i] implies:

N ′
3,4 = N3,4 + 1

M∑

j=1

y′[i]

 =

M∑

j=1

y[i]

 − 1

9-17

ρℓ4[i] implies:

N ′
3,4 = N3,4 − 1

M∑

j=1

y′[i]

 =

M∑

j=1

y[i]

 + 1

Therefore

N3,4 +

M∑

j=1

y[i]

 = 1

︸ ︷︷ ︸
ϕ2

∧

{

ρℓ2[i]

ρℓ4[i]

}

→ N ′
3,4 +

M∑

j=1

y′[i]

 = 1

︸ ︷︷ ︸

ϕ′2

9-18

Parameterized Programs: Examples

Example: readers-writers (Fig 2.11)

(readers-writers with generalized semaphores)

where

request (y, c) = 〈await y ≥ c; y := y − c〉

release (y, c) = 〈y := y+ c〉0 ∀i, j ∈ [1..M] . i 6= j . at−ℓ6[i] → ¬(at−ℓ6[j] ∨ at−ℓ3[j])
︸ ︷︷ ︸

ψ

• ϕ1 and ϕ2 are inductive

ϕ1: y ≥ 0

ϕ2: N3,4 +M ·N6,7 + y = M

• Therefore

N6,7 > 0 → (N6,7 = 1 ∧ N3,4 = 0)

ϕ1, ϕ2

Thus, 0 ψ

9-19

Program read-write(Fig. 2.11)

9-20

Example: The Dining Philosophers Problem

(multiple resource allocation)

Fig 2.14

• M philosophers are seated at a round table

• Each philosopher alternates between a

“thinking” phase and “eating” phase

• M chopsticks, one between every two

philosophers

• A philosopher needs 2 chopsticks

(left & right) to eat

9-21

Dining philosophers setup (Fig. 2.14)

c2 P2
c3

P3c4P4c5P5c6
P6 c1 P1

9-22

Program dine (Fig. 2.15)
(A simple solution to the dining

philosophers problem)

Philosopher Pi - process P [i]
“thinking” phase - noncritical
“eating” phase - critical

For philosopher j,

• c[j] represents availability of left chopstick

(c[j] = 1 iff chopstick is available)

• c[j ⊕M 1].............right chopstick

&%
'$
��
��

&%
'$
��
��

&%
'$
��
��

Pj−1 c[j] Pj c[j ⊕M 1] Pj⊕M1

9-23

Program dine (Fig. 2.15)

9-24

Specification: Chopstick Exclusion0 ∀j ∈ [1..M] .¬(at−ℓ4[j] ∧ at−ℓ4[j ⊕M 1])
︸ ︷︷ ︸

ψ

Mutual exclusion between every two adjacent philoso-
phers

Proof:
• ϕ0 and ϕ1 are inductive

ϕ0: ∀j ∈ [1..M] . c[j] ≥ 0

ϕ1: ∀j ∈ [1..M] . at−ℓ4..6[j] +

at−ℓ3..5[j ⊕M 1] +

c[j ⊕M 1] = 1

• Then,

at−ℓ4[j] + at−ℓ4[j ⊕M 1]

≤ at−ℓ4··6[j] + at−ℓ3··5[j ⊕M 1]

= 1 − c[j ⊕M 1] ≤ 1
ϕ1 ϕ0

Chopstick Exclusion OK 9-25

Problem: possible deadlock (“starvation”)

P [1] ℓ2: request c[1]; ℓ3: request c[2]
. ↑
.
.

P [M] ℓ2: request c[M]; ℓ3: request c[1]
↑

&%
'$
��
��

&%
'$
��
��

&%
'$
��
��

c[M] PM c[1] P1 c[2] P2� �6 � �6 � �6

9-26

Solution: One Philosopher Excluded

(keeping the symmetry)

• Two-room philosophers’ world (Fig 2.18)

Philosophers are “thinking” at the library

“eating” at the dining hall

When a philosopher finishes “eating”

he returns to the library to “think”

• Program dine-excl (Fig 2.17)

Additional semaphore variable r

“door keeper” (initally r = M−1)

No more than M−1 philosophers are

admitted to the dining hall at the same time.

9-27

Two-room philosopher’s world (Fig. 2.18)

Libraryc2 P2P6 c1 P1
P3c4P4c5P5c6 c3

9-28

Program dine-excl (Fig. 2.17)

9-29

Properties of dine-excl:

• chopstick exclusion

A safety property (in text)

• starvation-free

progress (next book)

• accessibility ℓ2[j] ⇒ 1 ℓ5[j]

progress (next book)

9-30

Chapter 3

Precedence

9-31

Proving Precedence Properties

nested waiting-for formulas

are of the form

p ⇒ qm W (qm−1 · · · (q1 W q0) . . .)

also written

p ⇒ qm W qm−1 · · · q1 W q0

for assertions p, q0, q1, . . . , qm.

Models that satisfy these formulas

qm qm−1 q1

interval interval • • • interval

[)[)[)[)•
p q0

↑ ↑

p-position q0-position

9-32

qi-interval

qi qi · · · qi

p p p p

• May be empty

e.g. p ⇒ q3W q2W q1W q0

q3 q3 q3 q1 q1

p p p p p p

p q0

• May extend to infinity

q3 q3 q3 q2 q2 q2 · · ·

p p p p p p

p

Note: The following is OK

q0

p p p p p p

p

9-33

Simple Precedence: p ⇒ q W r
ϕ

︷ ︸︸ ︷

q q q · · · q

p p p p p

p r

can be reduced to first-order VCs by
verification rule wait:

Rule wait (general waiting-for)

For assertions p, q, r, ϕ

W1. p → ϕ ∨ r

W2. ϕ → q

W3. {ϕ}T {ϕ ∨ r}

p ⇒ q W r

Recall: To show P q {ϕ} T {ϕ ∨ r},
we have to show that for every τ ∈ T

ρτ ∧ ϕ → ϕ′ ∨ r′

is P -state valid.
9-34

Intermediate Assertion ϕ

W1. p→ ϕ ∨ r “ϕ weakens p ∧ ¬r”
i.e., p ∧ ¬r → ϕ

W2. ϕ→ q “ϕ strengthens q”

q

ϕ

p∧¬r p r

9-35

Example: Program mux-pet1 (Fig. 3.4)

We proved mutual exclusion

ψ1: 0 ¬(at−ℓ4 ∧ at−m4)

Using invariants

χ0: s = 1 ∨ s = 2

χ1: y1 ↔ at−ℓ3..5

χ2: y2 ↔ at−m3..5

χ3: at−ℓ3 ∧ at−m4 → y2 ∧ s = 1

χ4: at−ℓ4 ∧ at−m3 → y1 ∧ s = 2

9-36

Example: Program mux-pet1 (Fig. 3.4)

(Peterson’s Algorithm for mutual exclusion)

local y1, y2: boolean where y1 = f, y2 = f

s : integer where s = 1

P1 ::

ℓ0 : loop forever do

ℓ1 : noncritical

ℓ2 : (y1, s) := (t, 1)

ℓ3 : await (¬y2) ∨ (s 6= 1)

ℓ4 : critical

ℓ5 : y1 := f

∣
∣
∣

∣
∣
∣

P2 ::

m0 : loop forever do

m1 : noncritical

m2 : (y2, s) := (t, 2)

m3 : await (¬y1) ∨ (s 6= 2)

m4 : critical

m5 : y2 := f

9-37

We want to prove simple precedence

ψ2: at−ℓ3 ∧ at−m0..2
︸ ︷︷ ︸

p

⇒ ¬at−m4
︸ ︷︷ ︸

q

W at−ℓ4
︸ ︷︷ ︸
r

We try to find an assertion ϕ such that

W1 – W3 of rule wait hold

Let

ϕ : at−ℓ3 ∧ (at−m0..2 ∨ (at−m3 ∧ s = 2))

9-38

W1:

at−ℓ3 ∧ at−m0..2
︸ ︷︷ ︸

p

→

at−ℓ3 ∧ (at−m0..2 ∨ · · ·)
︸ ︷︷ ︸

ϕ

∨ · · ·︸︷︷︸
r

W2:

· · · ∧ (at−m0..2 ∨ (at−m3 ∧ · · ·))
︸ ︷︷ ︸

ϕ

→ ¬at−m4
︸ ︷︷ ︸

q

W3:

ρτ ∧ at−ℓ3 ∧ (at−m0..2 ∨ (at−m3 ∧ s = 2))
︸ ︷︷ ︸

ϕ

→

at ′−ℓ3 ∧ (at ′−m0..2 ∨ (at ′−m3 ∧ s′ = 2))
︸ ︷︷ ︸

ϕ′

∨ at ′−ℓ4
︸ ︷︷ ︸

r′

Check:

ℓ3,m2: OK

m3: disabled (with the help of the invariant

at−ℓ3..5 ↔ y1, we have y1 = t).

9-39

Proving precedence properties:

Systematic derivation of intermediate assertions

ϕ

[p) .

p q r

Recall:

Rule wait (general waiting-for)

For assertions p, q, r, ϕ

W1. p → ϕ ∨ r

W2. ϕ → q

W3. {ϕ}T {ϕ ∨ r}

p ⇒ q W r

How to find ϕ?

9-40

Escape Transition

Transition that leads to r-state.

q

ϕ

p r

9-41

Forward propagation

Weaken p ∧ ¬r until it becomes an assertion preserved

under all nonescape transitions.

Based on postcondition:

Ψ(V) = post(τ, ϕ): ∃V 0 . ϕ(V 0) ∧ ρτ(V
0, V)

post(τ, ϕ) characterizes all states that are

τ -successors of a ϕ-state.

ϕ

post(τ, ϕ)

9-42

Example: Postcondition

V = {x, y},

ρτ : x′ = x+ y ∧ y′ = x,

Φ : x = y

Then post(τ,Φ) is given by

∃x0, y0 : x0 = y0
︸ ︷︷ ︸

Φ(V 0)

∧x = x0 + y0 ∧ y = x0
︸ ︷︷ ︸

ρτ(V 0,V)

,

which can be simplified to

Ψ : x = y+ y.

9-43

Forward Propagation: Algorithm

Φt - characterizes all states that can be

reached from a (p ∧ ¬r)-state without taking an escape

transition.

1. Φ0 = p ∧ ¬r

2. Repeat

Φk+1 = Φk ∨ post(τ,Φk)

for any non-escape transition τ

Until

post(τ,Φt) → Φt [may use invariants]

for all non-escape transitions τ

If this terminates (it may not), Φt is a good assertion to

be used in rule wait.

Satisifies W1, W3, but check W2.

9-44

Backward propagation

Strengthen q until it becomes an assertion

preserved under all nonescape transitions.

Based on precondition:

pre(τ, ϕ): ∀V ′ . ρτ(V, V
′) → ϕ(V ′)

pre(τ, ϕ) characterizes all states all of whose

τ -successors satisfy ϕ.

pre(τ, ϕ)

ϕ

9-45

Example: Precondition

For Peterson’s Algorithm, consider

Γ0 : ¬at m4︸ ︷︷ ︸

and calculate pre(m3,Γ0):

∀V ′ : at m3 ∧ (¬y1 ∨ s 6= 2) ∧ at m4
′ ∧ · · ·

︸ ︷︷ ︸

ρm3(V,V
′)

→ ¬at m4
′

︸ ︷︷ ︸

Γ0(V
′)

.

P -equivalent to

at m3 → (y1 ∧ s = 2).

9-46

Backward Propagation: Algorithm

Γf - characterizes all states that can reach

a q-state without taking an escape transition

1. Γ0 = q

2. Repeat

Γk+1 = Γk ∧ pre(τ,Γk)

for any non-escape transition τ

Until

Γf → pre(τ,Γf) [may use invariants]

for all non-escape transitions τ

If this terminates (it may not), Γf is a good assertion to

be used in rule wait.

Satisfies W2, W3, but check W1.

9-47

Backward vs. Forward

Γf

Φt

p ∧ ¬r r

q

If p⇒ q W r is P -valid

Φt → Γf

is P -state valid.

9-48

Example: Program mux-pet1 (Fig. 3.4)

(Peterson’s Algorithm for mutual exclusion)

local y1, y2: boolean where y1 = f, y2 = f

s : integer where s = 1

P1 ::

ℓ0 : loop forever do

ℓ1 : noncritical

ℓ2 : (y1, s) := (t, 1)

ℓ3 : await (¬y2) ∨ (s 6= 1)

ℓ4 : critical

ℓ5 : y1 := f

∣
∣
∣

∣
∣
∣

P2 ::

m0 : loop forever do

m1 : noncritical

m2 : (y2, s) := (t, 2)

m3 : await (¬y1) ∨ (s 6= 2)

m4 : critical

m5 : y2 := f

9-49

Example: Forward Propagation

at ℓ3 ∧ at m0..2︸ ︷︷ ︸
p

⇒ ¬at m4︸ ︷︷ ︸
q

W at ℓ4︸ ︷︷ ︸
r

Start with

Φ0 : at ℓ3 ∧ at m0..2︸ ︷︷ ︸
p

.

and calculate post(m2,Φ0):

∃ (π0, y01, y
0
2, s

0)
︸ ︷︷ ︸

V 0

: (at ℓ3)
0 ∧ (at m0..2)

0
︸ ︷︷ ︸

Φ0(V
0)

∧

(at m2)
0 ∧ at m3 ∧ ((at ℓ3)

0 ↔ at ℓ3) ∧ s = 2 ∧ · · ·
︸ ︷︷ ︸

ρm2(V
0,V)

P -equivalent to

Ψ1 : at ℓ3 ∧ at m3 ∧ s = 2,

using the invariant ϕ1 : y1 ↔ at ℓ3..5.

Thus,

Φ1 : at ℓ3 ∧ at m0..2︸ ︷︷ ︸

Φ0

∨ at ℓ3 ∧ at m3 ∧ s = 2
︸ ︷︷ ︸

Ψ1

,

9-50

Example: Forward Propagation (cont.)

i.e.,

at ℓ3 ∧ (at m0..2 ∨ (at m3 ∧ s = 2))

Φ1 is preserved under all transitions except the escape

transition ℓ3, so the process converges.

9-51

Example: Backward Propagation

Start with

Γ0 : ¬at m4︸ ︷︷ ︸
q

.

We calculated pre(m3,Γ0) above, which is P -equivalent

to

∆1 : at m3 → (y1 ∧ s = 2).

Thus,

Γ1 : ¬at m4︸ ︷︷ ︸

Γ0

∧ at m3 → (y1 ∧ s = 2)
︸ ︷︷ ︸

∆1

.

Consider transition τm2, and calculate pre(m2,Γ1):

∀V ′ : at m2 ∧ at m3
′ ∧ y′1 = y1 ∧ s′ = 2 ∧ · · ·

︸ ︷︷ ︸
ρm2

→ ¬at m4
′ ∧ (at m3

′ → (y′1 ∧ s′ = 2))
︸ ︷︷ ︸

Γ ′
1

.

P -equivalent to

∆2 : at m2 → y1.

9-52

Example: Backward Propagation (Cont’d)

Thus,

Γ2 : ¬at m4 ∧ (at m3 → s = 2) ∧ (at m2,3 → y1).

Considering transitions τm1, τm0, and τm5 leads to the

following sequence:

Γ3 : ¬at m4 ∧ (at m3 → s = 2) ∧ (at m1..3 → y1)

Γ4 : ¬at m4 ∧ (at m3 → s = 2) ∧ (at m0..3 → y1)

Γ5 : ¬at m4 ∧ (at m3 → s = 2) ∧ (at m0..3,5 → y1)

By the control invariant at m0..5, Γ5 can be simplified

to

Γ5 : ¬at m4 ∧ (at m3 → s = 2) ∧ y1.

9-53

Example: Backward Propagation (Cont’d)

Calculating pre(ℓ5,Γ5),

∀V ′ : at ℓ5 ∧ y′1 = f ∧ · · ·
︸ ︷︷ ︸

ρℓ5

→

¬at m4
′ ∧ (at m3

′ → s′ = 2) ∧ y′1︸ ︷︷ ︸

Γ ′
5

,

gives

∆6 : at ℓ5 → f.

Propagating Γ5 ∧ ∆6 via τℓ4 gives

∆7 : at ℓ4 → f.

Hence,

Γ7 : ¬at m4 ∧ (at m3 → s = 2) ∧ at ℓ3,

using the invariant ϕ1 : y1 ↔ at ℓ3..5 for simplifica-

tions. The assertion is preserved under all but the escape

transitions, ending the process.

9-54

