CS256/Winter 2009 Lecture #10

Zohar Manna

Nested Waiting-for Formulas

Rule nwait (nested waiting-for)
For assertions
$$p, q_0, q_1, \dots, q_m$$
 and $\varphi_0, \varphi_1, \dots, \varphi_m$
N1. $p \rightarrow \bigvee_{j=0}^m \varphi_j$
N2. $\varphi_i \rightarrow q_i$ for $i = 0, 1, \dots, m$
N3. $\{\varphi_i\}\mathcal{T}\left\{\bigvee_{j\leq i}\varphi_j\right\}$ for $i = 1, \dots, m$
 $p \Rightarrow q_m \mathcal{W} q_{m-1} \cdots q_1 \mathcal{W} q_0$

Nested Waiting-for Formulas (Cont'd)

Premise N3 states that for each assertion φ_i , each transition $\tau \in \mathcal{T}$ either preserves φ_i or leads to some φ_j , with j < i.

Example: Program mux-pet1 (Fig. 3.4)

An example of a nested waiting-for formula is 1-bounded overtaking for MUX-PET1:

$$\underbrace{\underbrace{at_{-\ell_{3}}}_{p} \Rightarrow}_{\neg at_{-}m_{4}} \mathcal{W} \underbrace{at_{-}m_{4}}_{q_{2}} \mathcal{W} \underbrace{\neg at_{-}m_{4}}_{q_{1}} \mathcal{W} \underbrace{at_{-\ell_{4}}}_{q_{0}}$$

It states that when process P_1 is at ℓ_3 , process P_2 can enter its critical section at most once ahead of process P_1 .

Example: Program mux-pet1 (Fig. 3.4) (Peterson's Algorithm for mutual exclusion)

local y_1, y_2 : boolean where $y_1 = F, y_2 = F$ s : integer where s = 1 ℓ_0 : loop forever do $P_{1}:: \begin{bmatrix} \ell_{1}: & \text{noncritical} \\ \ell_{2}: & (y_{1}, s):=(T, 1) \\ \ell_{3}: & \text{await} (\neg y_{2}) \lor (s \neq 1) \\ \ell_{4}: & \text{critical} \\ \ell_{5}: & y_{1}:=F \end{bmatrix}$

 m_0 : loop forever do

$$\begin{bmatrix} m_1 : \text{ noncritical} \\ m_2 : (y_2, s) := (T, 2) \\ m_3 : \text{ await } (\neg y_1) \lor (s \neq 2) \\ m_4 : \text{ critical} \\ m_5 : y_2 := F \end{bmatrix}$$

 P_2 ::

With the following strengthenings all premises of rule NWAIT become state-valid.

$$p: \underline{at}_{-\ell_3}$$

$$\varphi_3$$
: $at_{-\ell_3} \wedge \underline{\neg at_{-m_4}} \wedge at_{-m_3} \wedge s = 1$
"P₂ has priority over P₁"

$$\varphi_2$$
: $at_{-}\ell_3 \wedge \underline{at_{-}m_4}$

$$\varphi_{1}: \quad at_{-}\ell_{3} \wedge \underline{\neg at_{-}m_{4}} \wedge (at_{-}m_{3} \rightarrow s = 2)$$

"P_{1} has priority over P_{2}"
$$\varphi_{0} = q_{0}: \quad \underline{at_{-}\ell_{4}}$$

or equivalently,

 $p: at_{-\ell_3}$

$$\begin{array}{l} \varphi_{3} \colon at_{-}\ell_{3} \wedge at_{-}m_{3} \wedge s = 1 \\ \varphi_{2} \colon at_{-}\ell_{3} \wedge at_{-}m_{4} \\ \varphi_{1} \colon at_{-}\ell_{3} \wedge (at_{-}m_{0..2,5} \vee (at_{-}m_{3} \wedge s = 2)) \\ \varphi_{0} = q_{0} \colon at_{-}\ell_{4} \end{array}$$

Concatenation of waiting-for formulas

Rule CONC-W

$$p \Rightarrow q_m \mathcal{W} \cdots q_1 \mathcal{W} q_0$$

$$q_0 \Rightarrow r_n \mathcal{W} \cdots \mathcal{W} r_0$$

$$p \Rightarrow q_m \mathcal{W} \cdots \mathcal{W} q_1 \mathcal{W} r_n \mathcal{W} \cdots \mathcal{W} r_0$$

10-7

Collapsing of waiting-for formulas

10-8

Basic Verification Diagrams

A visual summary of verification proofs

Verification Diagrams (VDs) allow a graphical representation of a proof of a temporal property.

To prove φ is *P*-valid, find diagram Ψ such that:

$$\mathcal{L}(P) \subseteq \mathcal{L}(\Psi) \subseteq \mathcal{L}(\varphi)$$

i.e., every *P*-computation σ is a Ψ -sequence and every Ψ -sequence σ is a model of φ (satisfies $\sigma \models \varphi$). Verification Diagrams (VDs)

 $\mathcal{L}(P) \subseteq \mathcal{L}(\Psi)$ proved by verification conditions.

 $\mathcal{L}(\Psi) \subseteq \mathcal{L}(\varphi)$ follows from well-formedness of

diagram.

10-10

Verification Diagram (VD)

Directed labeled graph with

• Nodes - labeled by assertions

• Edges – labeled by names of transitions

• <u>Terminal Node</u> ("goal") – no edges depart

from it

<u>Verification conditions</u> (VCs)

VD provides a concise representation of sets of VCs:

• The verification condition associated with a node labeled by φ and a transition τ is

There is an implicit τ -edge connecting each φ -node to itself.

• Nonterminal node without outgoing edges

$$\overbrace{\varphi} \ \Rightarrow \ \{\varphi\} \ \tau \ \{\varphi\}$$

<u>Note:</u> No verification conditions for terminal node.

Definition: VD is \underline{P} -valid iff all VCs10-12associated with nodes in the diagramare P-state valid

Compound Nodes: Statecharts Conventions

• Departing edges

• Arriving edges

Classes of Diagrams

• Proofs of invariance properties

$\hfill q$ are represented by INVARIANCE diagrams

• Proofs of precedence properties

$$p \Rightarrow q_m \mathcal{W} q_{m-1} \cdots q_1 \mathcal{W} q_0$$

are represented by WAIT diagrams

• Proofs of response properties

$$p \Rightarrow \diamondsuit q$$

are represented by <u>CHAIN</u> and RANK diagrams (Vol. III)

Wait Diagrams

VDs with nodes $\varphi_m, \ldots, \varphi_0$ such that:

• weakly acyclic, i.e.,

then $i \geq j$

• φ_0 is a terminal node

Claim (wait diagram):

A P-valid WAIT diagram establishes that

$$\bigvee_{j=0}^{m} \varphi_j \Rightarrow \varphi_m \mathcal{W} \varphi_{m-1} \cdots \varphi_1 \mathcal{W} \varphi_0$$

is P-valid.

If, in addition,

(N1)
$$p \rightarrow \bigvee_{j=0}^{m} \varphi_j$$

(N2) $\varphi_i \rightarrow q_i$ for $i = 0, 1, \dots, m$

are *P*-state valid, then

$$p \Rightarrow q_m \mathcal{W} q_{m-1} \cdots q_1 \mathcal{W} q_0$$

is P-valid.

Example: Program MUX-PET1 (Fig 3.4)

1-bounded overtaking from ℓ_3

$$\psi: \underbrace{at_\ell_3}_{p} \Rightarrow$$

$$(\underbrace{\neg at_m_4}_{q_3}) \mathcal{W} \underbrace{at_m_4}_{q_2} \mathcal{W} (\underbrace{\neg at_m_4}_{q_1}) \mathcal{W} \underbrace{at_\ell_4}_{q_0}$$

Proof is summarized in WAIT diagram

(Fig 3.8)

Example: Program mux-pet1 (Fig. 3.4) (Peterson's Algorithm for mutual exclusion)

local y_1, y_2 : boolean where $y_1 = F, y_2 = F$ s : integer where s = 1 ℓ_0 : loop forever do ℓ_1 : noncritical ℓ_2 : $(y_1, s) := (T, 1)$ ℓ_3 : await $(\neg y_2) \lor (s \neq 1)$ ℓ_4 : critical ℓ_5 : $y_1 := F$

 m_0 :

 m_0 : loop forever do

$$\begin{bmatrix} m_{1} : \text{ noncritical} \\ m_{2} : (y_{2}, s) := (T, 2) \\ m_{3} : \text{ await } (\neg y_{1}) \lor (s \neq 2) \\ m_{4} : \text{ critical} \\ m_{5} : y_{2} := F \end{bmatrix}$$
10-19

 P_2 ::

Example: Program MUX-PET1 (Con't)

WAIT diagram (Fig. 3.8) (1-bounded overtaking from ℓ_3)

10-20

Example: Program MUX-PET1 (Con't)

Associated VCs

• From φ_3 $\{\varphi_3\} m_3 \{\varphi_3 \lor \varphi_2\}$ $\vdots \vdots \land \land \land at' _ m_4 \rightarrow \vdots \lor \lor at' _ m_4$ $\varphi_3 \land \overleftarrow{m_3} \{\varphi_3\}$ for all non- m_3 transitions. But since we are at_ℓ_3 , at_m_3 , check only ℓ_3 .

$$\{\varphi_3\} \ \ell_3 \ \{\varphi_3\} \text{ holds, since}$$

 $\underbrace{at - m_3 \land \ldots \land s = 1}_{\varphi_3} \land \underbrace{\ldots \land ((\neg y_2) \lor (s \neq 1))}_{\rho_{\ell_3}}$
Becall that by $\gamma_2 \ at \ m_2 \rightarrow u_2$

Recall that by χ_2 , $at_-m_3 \rightarrow y_2$.

- From φ_2 $\{\varphi_2\} m_4 \{\varphi_2 \lor \varphi_1\}$ $\{\varphi_2\} \overline{m_4} \{\varphi_2\}$
- From φ_1 $\{\varphi_1\} \ \ell_3 \ \{\varphi_1 \lor \varphi_0\}$ $\{\varphi_1\} \ \overline{\ell_3} \ \{\varphi_1\}$

They are *P*-state valid [not state-valid - require invariants χ_0, \ldots, χ_4]

Therefore, WAIT diagram is valid over MUX-PET1 Example: Program MUX-PET1 (Con't) Therefore,

$$\bigvee_{i=0}^{3} \varphi_i \Rightarrow \varphi_3 \mathcal{W} \varphi_2 \mathcal{W} \varphi_1 \mathcal{W} \varphi_0$$

is valid over MUX-PET1.

In addition,

are P-state valid.

Therefore,

$$\psi: at_{\ell_3} \Rightarrow$$

 $(\neg at_{m_4}) \mathcal{W} at_{m_4} \mathcal{W} (\neg at_{m_4}) \mathcal{W} at_{\ell_4}$
is valid over MUX-PET1

Invariance Diagrams

VDs with no terminal nodes (cycles OK)

Claim (invariance diagram):

A P-valid INVARIANCE diagram establishes that

$$\bigvee_{j=1}^{m} \varphi_j \implies \Box(\bigvee_{j=1}^{m} \varphi_j)$$

is P-valid.

If, in addition,

(I1)
$$\Theta \to \bigvee_{j=1}^{m} \varphi_j$$

(I2) $\bigvee_{j=1}^{m} \varphi_j \to q$

are P-state valid, then

$$\Box q$$

is P-valid

Example: Program MUX-PET1 (Fig 3.4)

because

$\{\varphi_1\}\ell_2\{\varphi_1\vee\varphi_2\}$	$\{\varphi_1\}\overline{\ell_2}\{\varphi_1\}$
$\{\varphi_2\}\ell_5\{\varphi_2\vee\varphi_1\}$	$\{\varphi_2\}\overline{\ell_5}\{\varphi_2\}$

Thus

$$\varphi_1 \lor \varphi_2 \Rightarrow \Box(\varphi_1 \lor \varphi_2)$$

10-25

Also, (I1) $\underbrace{at_{-\ell_{0}} \land \neg y_{1} \land \cdots}_{\Theta} \rightarrow \underbrace{at_{-\ell_{0..2}} \land \neg y_{1}}_{\varphi_{1}} \lor \underbrace{\cdots}_{\varphi_{2}}$

(I2)
$$\underbrace{at_{-\ell_{0..2}} \land \neg y_{1}}_{\varphi_{1}} \lor \underbrace{at_{-\ell_{3..5}} \land y_{1}}_{\varphi_{2}} \rightarrow \underbrace{y_{1} \leftrightarrow at_{-\ell_{3..5}}}_{q}$$

are state-valid

Therefore

$$\Box \underbrace{(y_1 \leftrightarrow at_{-}\ell_{3..5})}_{q}$$

is P-valid.

Example: Program MUX-PET1 (Fig. 3.4)

Establish
$$\Box \neg (at_{-}\ell_{4} \land at_{-}m_{4})$$

non-critical: nc_1 : $at_{-\ell_{0..2}}$ nc_2 : $at_{-m_{0..2}}$ critical: c_1 : $at_{-\ell_{3..5}} \land \neg y_2$ c_2 : $at_{-m_{3..5}} \land \neg y_1$ pre-critical: pc_1 : $at_{-\ell_3} \land s = 1 \land y_2$ pc_2 : $at_{-m_3} \land s = 2 \land y_1$

10-27