
CS256/Winter 2009 Lecture #11

Zohar Manna

Beyond Temporal Logics

Temporal logic expresses properties of infinite sequences

of states, but there are interesting properties that cannot

be expressed, e.g.,

“p is true only (at most) at even positions.”

Questions (foundational/practical):

• What other languages can we use to express

properties of sequences (⇒ properties of programs)?

• How do their expressive powers compare?

• How do their computational complexities (for the

decision problems) compare?

11-2

ω-languages

Σ: nonempty finite set (alphabet) of characters

Σ∗: set of all finite strings of characters in Σ

finite word w ∈ Σ∗

Σω: set of all infinite strings of characters in Σ

ω-word w ∈ Σω

(finitary) language: L ⊆ Σ∗

ω-language: L ⊆ Σω

11-3

States

Propositional LTL (PLTL) formulas are constructed
from the following:

• propositions p1, p2, . . . , pn.

• boolean/temporal operators.

• a state s ∈ {f, t}n

i.e., every state s is a truth-value assignment to all
n propositional variables.

Example:

If n = 3, then

s : 〈p1 : t, p2 : f, p3 : t〉
corresponds to state tft.

p1 ↔ p2 denotes the set of states

{fff, fft, t t f, t t t}

• alphabet Σ = {f, t}n

i.e, 2n strings, one string for every state.

Note: t, f = formulas (syntax)
t, f = truth values (semantics)

11-4

Models of PLTL 7→ ω-languages

• A model of PLTL for the language with n propositions

σ : s0, s1, s2, . . .

can be viewed as an infinite string s0s1s2 . . . , i.e.,

σ ∈ ({f, t}n)ω

• A PLTL formula ϕ denotes an ω-language

L = {σ | σ q ϕ} ⊆ ({f, t}n)ω

Example:

If n = 3, then

ϕ : 0 (p1 ↔ p2) denotes the ω-language

L(ϕ) = {fff, fft, t t f, t t t}ω

11-5

Other Languages to Talk about Infinite Sequences

• ω-regular expressions

• ω-automata

11-6

Regular Expressions

Syntax:

r ::= ∅ | ε | a | r1r2 | r1 + r2 | r∗

(ε = empty word, a ∈ Σ)

Semantics:

A regular expression r (on alphabet Σ) denotes a finitary

language

L(r) ⊆ Σ∗:

L(∅) = ∅
L(ε) = {ε}
L(a) = {a}

L(r1r2) = L(r1) · L(r2) =

{xy | x ∈ L(r1), y ∈ L(r2)}
L(r1 + r2) = L(r1) ∪ L(r2)

L(r∗) = L(r)∗ = {x1x2 · · ·xn | n ≥ 0,

x1, x2, . . . , xn ∈ L(r)}
11-7

ω-regular expressions

Syntax:

ωr ::= r1(s1)
ω + r2(s2)

ω + · · · + rn(sn)
ω

n ≥ 1, ri, si = regular expressions

Semantics:

L(rsω) = {xy1y2 · · · | x ∈ L(r),

y1, y2, . . . ∈ L(s) \ {ε}}

rsω denotes all infinite strings with an initial prefix in

L(r), followed by a concatenation of infinitely many nonempty

words in L(s).

11-8

ω-regular expressions (cont.)

Example:

Take A = {a, b}. What languages do the following
ω-r.e.’s denote?

aa bω ω-word starting with two

a’s, followed by b’s

a∗ bω all ω-words starting with a

finite string of a’s, followed

by b’s

(a + b)∗ bω all ω-words with only finitely

many a’s

((a + b)∗b)ω all ω-words containing
infinitely many b’s

11-9

PLTL (future) 7→ ω-r.e.’s

Example:

p is an abbreviation for tt + tf
q is an abbreviation for tt + ft
t is an abbreviation for tt + tf + ft + ff

⇓0 p: pω1 q: t∗q tω

pUq: p∗q tω

p ⇒ 0 q: (¬p)∗ qω + (¬p)ω0 1 p: (t∗p)ω1 0 q: t∗ qω

11-10

Expressive Power

• Every PLTL formula has an equivalent ω-r.e.

• PLTL is strictly weaker than ω-r.e.’s:

“p is true only (at most) at even positions.”

– not expressible in PLTL (Pierre Wolper, 1983)

– ω-r.e.: (t(¬p))ω

• ω-r.e.’s are equivalent to ω-automata.

11-11

Finite-State Automata

�- n1 : a, b
�
�

�
�

' $
&-

-
� n2 : c

�
�

�
�

' $
%�

Finite alphabet Σ.

Automaton A: 〈N, N0, E, µ, F 〉, where

• N : nodes

• N0 ⊆ N : initial nodes

• E ⊆ N ×N : edges

• µ : N → 2Σ: node labeling function

• F ⊆ N : final nodes

Note: We label the nodes and not the edges.

11-12

Finite-State Automata (Cont’d)

Main question:

Given a string

σ: s0 . . . sk

over Σ, is σ accepted by A?

• path

A sequence of nodes

π:n0, . . . , nk

is a path of A if

– n0 ∈ N0

– for every i: 0 . . . k−1, 〈ni, ni+1〉 ∈ E.

11-13

Finite-State Automata (Cont’d)

• trail

A path

π: n0, . . . , nk

of A is a trail of a string

σ: s0, . . . , sk

in A if for every i: 0 . . . k,

si ∈ µ(ni).

• accepted

A string

σ: s0 . . . sk

is accepted by A if it has a trail

π:n0, . . . , nk

in A such that

nk ∈ F.

11-14

Finite-State Automata (Cont’d)

• L(A)

The set of all strings (“languages”) accepted by A.

• deterministic

An automatonA is called deterministic if every string

has exactly one (not necessarily accepting) trail inA.

• total

An automaton A is called total if every string has

at least one (not necessarily accepting) trail in A.

11-15

Finite-State Automata:
Decision Problems

• Emptiness:

Is any string accepted?

L(A)
?
= Ø

• Universality:

Are all strings accepted?

L(A)
?
= Σ∗

• Inclusion:

Are all strings accepted by A1 accepted

by A2?

L(A1)
?⊆ L(A2)

11-16

Finite-State Automata:
Operations

• Complementation: A
L(A) = Σ∗ − L(A)

• Product: A1 ×A2

L(A1 ×A2) = L(A1) ∩ L(A2)

• Union: A1 +A2

L(A1 +A2) = L(A1) ∪ L(A2)

Using complementation and product construction,

we only need a decision procedure for emptiness

to decide universality and inclusion:

• Universality:

L(A) = Σ∗ ⇐⇒ L(A) = Ø

• Inclusion:

L(A1) ⊆ L(A2) ⇐⇒ L(A1 ×A2) = Ø

11-17

Finite-State Automata:
Determinization

For every nondeterministic automaton AN , there exists

a deterministic automaton AD such that

L(AN) = L(AD).

(May cause exponential blowup in size.)

11-18

ω-Automata

Finite-state automata over infinite strings.

Main question:

Given an infinite sequence of states

σ : s0, s1, s2, . . .

is σ accepted by A?

Additional references:

• Section 5 of Wolfgang Thomas: “Languages, Automata,

and Logic”. In G. Rozenberg and A. Salomaa (eds.),

Handbook of Formal Languages, V. III. (Tech Report

version available on the web), pp. 389–455, 1997.

• Part I of Wolfgang Thomas: “Automata on Infinite

Objects”. In Jan van Leeuwen (ed.), Handbook of

Theoretical Computer Science, vol. B, Elsevier, 1990,

pp.133–165.

• Moshe Vardi and Pierre Wolper, “An Automata

Theoretic Approach to Program Verification”,

Symposium on Logic in Computer Science, 1986,

pp.322–331.

11-19

ω-Automata (Motivation)

�- n1 : p1

�
�

�
�

' $
&-

-
� n2 : ¬p1 ∧ p2

�
�

�
�

' $
%�

n1 represents all states in which p1 is true;

i.e. tf and t t.

µ(n1) = {tf, t t}

n2 represents all states in which p1 is false and p2 is

true.

µ(n2) = {ft}

11-20

ω-Automata (Definition)

Set of propositions: p1, . . . , pn.

Alphabet Σ = {t, f}n.

Automaton A: 〈N, N0, E, µ, F 〉, where

• N : finite set of nodes

• N0 ⊆ N : initial nodes

• E ⊆ N ×N : edges

• µ : N → 2Σ: node labeling function (assertions)

• F : acceptance condition

Note: Most of the literature on ω-automata uses

edge labeling, similarly to automata on finite strings.

However, we use node labeling to ease the transition to

diagrams. The two approaches are equally expressive and

can easily be translated into each other.

11-21

ω-Automata: Trails

Definition: A path

π : n0, n1, . . .

of A is a trail of an infinite sequence of states

σ : s0, s1, . . .

if for every i ≥ 0,

si q µ(ni) (or si ∈ µ(ni)).

Example:

�- n1 : p1

�
�

�
�

' $
&-

-
� n2 : ¬p1 ∧ p2

�
�

�
�

' $
%�

The sequence of states

σ :

p1↓
t

p2↓
t , tf, ft, t t, tf, ft, . . .

has trail
π : n1, n1, n2, n1, n1, n2, . . .

Note: no trail for σ : . . . , ff,

• In general, A is nondeterministic i.e., trail π is not
necessarily unique for σ.

• A is deterministic if for every σ, there is exactly one
trail π of σ.

11-22

Inf(π)

infinite sequence of states σ : s0, s1, s2, . . .
↓

infinite trail π : n0, n1, n2, . . .

inf(π):
The set of nodes appearing
infinitely often in π.

Observe:
• inf(π) is nonempty since the set of nodes of the

automaton is finite.
• The nodes in inf(π) form a Strongly Connected

Subgraph (SCS) in A.

SCS S: Every node in S is reachable from every other
node in S.

MSCS S: a maximal SCS;
i.e., S is not contained in any larger SCS.

Definition: An infinite sequence of states σ is accepted
by A if it has a trail π such that inf(π) is accepted by
the acceptance condition.

11-23

ω-Automata: Acceptance Conditions

A: �- n1 : ¬p
�
�

�
�

' $
&-

-
� ��

n2 : p
�
�

�
�

' $
%�

Name Büchi Muller

Type of
acceptance
condition

F ⊆ N
a set of nodes

F ⊆ 2N

a set of subsets of
nodes

Condition
for

acceptance inf(π) ∩ F 6= Ø inf(π) ∈ F

To accept
L(0 1 p)

with A F = {n2} F = {{n1, n2}, {n2}}

To accept
L(1 0 p)

with A

no deterministic
Büchi automaton

accepts this
language F = {{n2}}

11-24

ω-Automata: Acceptance Conditions (Cont’d)

A: �- n1 : ¬p
�
�

�
�

' $
&-

-
� ��

n2 : p
�
�

�
�

' $
%�

Name Streett Rabin

Type of
acceptance
condition

F ⊆ 2N × 2N

a set of pairs
{(P1, R1), . . . , (Pn, Rn)}

where each Pi, Ri is a set of nodes

Condition
for

acceptance

for every i : [1..n]
inf(π) ⊆ Pi or

inf(π) ∩ Ri 6= Ø

for some i : [1..n]
inf(π) ⊆ Pi and

inf(π) ∩ Ri 6= Ø

To accept
L(0 1 p)

with A F = {(Ø, {n2})}
F =

{({n1, n2}, {n2})}

To accept
L(1 0 p)

with A F = {({n2},Ø)} F = {({n2}, {n2})}
11-25

Automata

Automaton for 0 1 p → 0 1 q
(if p happens infinitely often, then q happens infinitely
often) 1 0 ¬p ∨ 0 1 q
Deterministic: �

?'

&

$

%

' $
&-

n1 : p ∧ q
�
�

�
� n2 : p ∧ ¬q

�
�

�
�

n3 : ¬p ∧ q
�
�

�
� n4 : ¬p ∧ ¬q

�
�

�
�

Muller acceptance condition (P = powerset):

F = P({n1, n2, n3, n4})− {{n2}, {n2, n4}}
Streett acceptance condition:

F = {(

eventually
always ¬p︷ ︸︸ ︷
{n3, n4}

or

,

infinitely
often q︷ ︸︸ ︷
{n1, n3})}

11-26

Automata (Cont’d)

Automaton for 0 1 p → 0 1 q1 0 ¬p ∨ 0 1 q

Nondeterministic:

'

&

$

%

�
?

' $
&-

�- n1 : t
�
�

�
�

' $
&- n3 : t

�
�

�
�

?

n2 : ¬p
�
�

�
�

' $
&- n4 : q

�
�

�
�

Muller acceptance condition:

F = {{n2}, {n4}, {n3, n4}}

Streett acceptance condition:

F = {({n2}, {n4})}
11-27

More Examples: Muller/Streett0 p p ⇒ 1 q

�
?

' $
&- n1 : p

�
�

�
�

FM = {{n1}}

FS = {({n1},Ø)}

�
?'

&

$

%

' $
%

?�
�

�
�n1 : ¬p

?'

&

$

%$
%&6

�
�

�
�n2 : ¬q

�
�

�
�n3 : q&

'-

FM = {{n1}, {n3}, {n1, n3},
{n2, n3}, {n1, n2, n3}}

FS = {(Ø, {n1, n3})}

Question: Why is {n1, n2} not in FM?

11-28

More Examples: Muller/Streett

pWq pUq
'

&

$

%

�
?' $

&-

�
�

�
�n1 : p

?�
�

�
�n2 : q

?

' $
&-

�
�

�
�n3 : t

FM = {{n1}, {n3}}

FS = {({n1, n3},Ø)}

'

&

$

%

�
?' $

&-

�
�

�
�n1 : p ∧ ¬q

?�
�

�
�n2 : q

?

' $
&-

�
�

�
�n3 : t

FM = {{n3}}

FS = {({n3},Ø)}

Question: Why n1 : p ∧ ¬q and not n1 : p ?

11-29

More Examples: Muller/Streett

p ⇒ 1 0 q p ⇒ qWr

'

&

$

%

�
?' $

&-

�
�

�
�n1 : ¬p

?'

&

$

%

' $
%�

�
�

�
�n2 : ¬q

�
�

�
�n3 : q

FM = {{n1}, {n3}}

FS = {({n1, n3},Ø)}

'

&

$

%

�
?' $

&-

�
�

�
�n1 : ¬p

?'

&

$

%

' $
&-

�
�

�
�n2 : q

?�
�

�
�n3 : r

��6
FM = P({n1, n2, n3})

−{n1, n2}

FS = {(Ø, {n1, n2, n3})}

11-30

More Examples: Muller/Streett

p ⇒ qmWqm−1 . . . q1Wq0

FM = P({n1, . . . , nm+2})

FS = {(Ø, {n1, . . . , nm+2})}

11-31

�
?'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

' $
&-

�
�

�
�n1 : ¬p

?' $
&-

�
�

�
�n2 : qm

?' $
&-

�
�

�
�n3 : qm−1

?' $
&-

�
�

�
�n4 : qm−2

?
...

' $
&-

�
�

�
�nm+1 : q1

?�
�

�
�nm+2 : q0

��6
11-32

Existence of ω-Automaton

Theorem: For every PLTL formula ϕ,
there exists an ω-automaton Aϕ such that
L(ϕ) = L(Aϕ).

Question: Does the converse also hold?

• Consider A:

�- n1 : t
�
�

�
�

-
� n2 : p

�
�

�
�

FM = {{n1, n2}}

L(A) = all sequences of form
p¬p p

p¬p p
p¬p p

p¬p p . . .

Is there a PLTL formula ϕ such that
L(A) = L(ϕ)?

11-33

Existence of ω-Automaton (Cont’d)

• First attempt: 2 p ∧ 0 (p ↔ 2 ¬p)

– Not good because it only accepts

¬p p ¬p p ¬p . . .

– That is, it accepts L(A1), with A1:

�- n1 : ¬p
�
�

�
�

-
� n2 : p

�
�

�
�

FM = {{n1, n2}}

11-34

Existence of ω-Automaton (Cont’d)

• Second attempt: 2 p ∧ 0 (p ≡ 2 2 p)

– Not good because it accepts only

¬p p ¬p p ¬p . . .

and

p p p p p . . .

– That is, it accepts L(A2), with A2:

�- n1 : ¬p
�
�

�
�

-
� n2 : p

�
�

�
�

�- n3 : p
�
�

�
�

' $
%�

FM = {{n1, n2}, {n3}}

11-35

ω-Automaton Expressiblity

It was shown by Wolper (1982) that there does not exist

a PLTL formula ϕ such that

L(ϕ) = L(A) for the automaton A shown above.

Theorem: ω-automata are strictly more

expressive than PLTL.

Theorem: For every ω-automaton A there

exists an existentially quantified formula ϕ such that

L(A) = L(ϕ).

11-36

Example:

�- n1 : t
�
�

�
�

-
� n2 : p

�
�

�
�

F = {{n1, n2}}

∃k.(2 k︸ ︷︷ ︸
k holds in
the second
position

∧ 0 (k ↔ 2 ¬k)︸ ︷︷ ︸
k-positions
alternate

∧ 0 (k → p)︸ ︷︷ ︸
whenever k

holds, p
also holds

)

k is a flexible, auxiliary boolean variable:

its value may be different in different positions.

Note: ¬k at position 0. Why?

11-37

