CS256/Winter 2009 Lecture #14

Zohar Manna

Satisfiability over a finite-state program

P-validity problem (of φ)

Given a finite-state program Pand formula φ , is φ P-valid? i.e. do all P-computations satisfy φ ?

P-satisfiability problem (of φ)

Given a finite-state program P and formula φ

is φ *P*-satisfiable?

i.e., does there exist a *P*-computation which satisfies φ ?

To determine whether φ is *P*-valid, <u>it suffices</u> to apply an algorithm for deciding if there is a *P*-computation that satisfies $\neg \varphi$.

<u>The Idea</u>

To check P-satisfiability of φ , we combine the <u>tableau</u> T_{φ} and the <u>transition graph</u> $\overline{G_P}$ into one product graph, called the <u>behavior graph</u> $\mathcal{B}_{(P,\varphi)}$, and search for paths

 $(s_0, A_0), (s_1, A_1), (s_2, A_2), \ldots$

that satisfy the two requirements:

• $\sigma \models \varphi$:

there exists a fulfilling path π : A_0, A_1, \dots in the tableau T_{φ} such that $\varphi \in A_0$.

• σ is a *P*-computation:

there exists a <u>fair path</u> σ : s_0, s_1, \ldots in the transition graph G_P . State transition graph G_P : Construction

- Place as nodes in G_P all initial states $s \ (s \models \Theta)$
- Repeat

for some $s \in G_P, \ \tau \in \mathcal{T}$, add all its τ -successors s' to G_P if not already there, and add edges between s and s'.

Until no new states or edges can be added.

If this procedure terminates, the system is finite-state.

(Peterson's Algorithm for mutual exclusion) local y_1, y_2 : boolean where $y_1 = F, y_2 = F$: integer where s = 1s ℓ_0 : loop forever do $P_1:: \qquad \begin{bmatrix} \ell_1 : \text{ noncritical} \\ \ell_2 : (y_1, s) := (T, 1) \\ \ell_3 : \text{ await } (\neg y_2) \lor (s \neq 1) \\ \ell_4 : \text{ critical} \\ \ell_5 : y_1 := F \end{bmatrix}$ m_0 : loop forever do m_1 : noncritical m_2 : $(y_2, s) := (T, 2)$ P_2 :: m_3 : await $(\neg y_1) \lor (s \neq 2)$ m_4 : critical

 $|m_5: y_2:=F$

Example: Program mux-pet1 (Fig. 3.4)

Abstract state-transition graph for MUX-PET1

 $y_2 \Leftrightarrow at_m_3$ 5

Some states have been lumped together: a super-state labeled by i represents i states

MUX-PET1 has 42 reachable states.

Based on this graph it is straightforward to check the properties

- ψ_1 : $\Box \neg (at_-\ell_4 \land at_-m_4)$
- ψ_2 : $\Box(at_-\ell_3 \land \neg at_-m_3 \to s = 1)$
- ψ_3 : $\Box(at_m_3 \land \neg at_-\ell_3 \to s=2)$

MUX-PET1 Full state-transition graph (l_i, m_j, s)

<u>Definitions</u>

- For atom A, state(A) is the conjunction of all state formulas in A
 (by R_{sat}, state(A) must be satisfiable)
- For $A \in T_{\varphi}$, $\frac{\delta(A)}{\text{in } T_{\varphi}}$ denotes the set of successors of A
- atom A is <u>consistent</u> with state s if $s \models state(A)$,
 - i.e. s satisfies all state formulas in A.
- θ: A₀, A₁,... path in T_φ
 σ: s₀, s₁,... computation of P
 θ is a <u>trail</u> of T_φ over σ if
 A_j is consistent with s_j, for all j ≥ 0

Behavior GraphFor finite-state program P and formula φ ,we construct the (P, φ) -behavior graph

$$\mathcal{B}_{(P,\varphi)} \approx G_P \times T_{\varphi}^{-} \text{(pruned)}$$

such that

• <u>nodes</u> are labeled by (s, A)where s is a state from G_P and

A is an atom from T_{φ} consistent with s.

• $\frac{\text{edges}}{\text{There is an edge}}$

if and only if $s' \in \tau(s)$ and $A' \in \delta(A)$

$$(s) \xrightarrow{\tau} (s') \qquad (A) \xrightarrow{} (A')$$

in G_P in T_{φ}

• initial φ -node (s, A)

if s is an initial state $(s \models \Theta)$ and A is an initial φ -atom $(\varphi \in A)$ It is marked (s, A)

 $\begin{array}{l} \textbf{Algorithm behavior-graph} \\ (\text{constructing } \mathcal{B}_{(P,\varphi)}) \end{array}$

- Place in \mathcal{B} all initial φ -nodes (s, A)(s initial state of P, A initial φ -atom in T_{φ}^{-} A consistent with s)
- Repeat until no new nodes or new edges can be added:

Let (s, A) be a node in \mathcal{B} $\tau \in \mathcal{T}$ a transition (s', A') a pair s.t. s' is a τ -successor of s $A' \in \delta(A)$ in pruned T_{φ}^{-} A' consistent with s'

- Add (s', A') to \mathcal{B} , if not already there
- Draw a τ -edge from (s, A) to (s', A'), if not already there

 $\begin{array}{l} \underline{\text{Example:}} \text{ Given FTS LOOP} \\ & \varTheta: \ x = 0 \\ & \mathcal{T} = \{\tau, \tau_I\} \\ & \text{with } \tau_I \ (\text{idling}) \\ & \tau \ \text{where } \rho_\tau \text{: } x' = (x+1) \textit{mod4} \\ & \mathcal{J} \text{: } \{\tau\} \end{array}$

Check *P*-satisfiability of
$$\psi_3$$
: $\bigcirc \Box(x \neq 3)$

state-transition graph G_{LOOP} (Fig 5.9) pruned $T_{\psi_3}^-$ (Fig 5.8) Behavior graph $\mathcal{B}_{(\text{LOOP},\psi_3)}$ (Fig 5.10) Fig. 5.9. State-transition graph G_{LOOP}

Pruned tableau $T_{\psi_3}^-$ (Fig. 5.8)

- EliminatingMSCS's not reachable from an initial $\psi_{\mathsf{3}}\text{-}\mathrm{atom}$ and
 - non-fulfilling terminal MSCS's

Promising formulas:

$$\bigcirc \square(x \neq 3) \text{ promising } \square(x \neq 3)$$
$$\neg \square(x \neq 3) \text{ promising } (x = 3)$$

$$\psi_{3}, \neg \Box (x \neq 3), \bigcirc \psi_{3}, \neg \bigcirc \Box (x \neq 3)$$

$$A_{4}^{-+} : x = 3$$

$$A_{5}^{--} : x \neq 3$$

$$A_{6}^{-+} : x = 3, \bigcirc \Box (x \neq 3), \bigcirc \psi_{3}, \neg \Box (x \neq 3), \psi_{3}$$

$$\downarrow$$

$$A_{6}^{++} : x \neq 3, \bigcirc \Box (x \neq 3), \bigcirc \psi_{3}, \Box (x \neq 3), \psi_{3}$$

Two non-transient MSCS's:

 $\{A_4^{-+}, A_5^{--}\} \\ \{A_7^{++}\}$ not fulfilling fulfilling

14-14

Behavior graph $\mathcal{B}_{(\text{LOOP},\psi_3)}$ (Fig 5.10)

Transition graph G_{ONE}

We want to know whether

$$\varphi$$
: \Box $\diamondsuit(x = 1)$

is valid over ONE.

Check P-satisfiability of

$$\neg \varphi : \underbrace{\bigcirc \Box(x \neq 1)}_{\psi}$$

$$\Phi_{\psi}^{+}: \{\psi, \bigcirc \psi, \bigsqcup(x \neq 1), \bigcirc \bigsqcup(x \neq 1), x = 1\}$$

basic formulas: $\{\bigcirc \psi, \bigcirc \Box (x \neq 1), x = 1\}$

Promising formulas:

$$\psi_1: \psi = \diamondsuit \square (x \neq 1) \text{ promising } r_1: \square (x \neq 1)$$

$$\psi_2: \neg \square (x \neq 1) \text{ promising } r_2: x = 1$$

Behavior graph $\mathcal{B}_{(ONE, \bigcirc \square(x \neq 1))}$

Two non-transient MSCS's:

{ $(s_2, A_4^{-+}), (s_1, A_5^{--}), (s_3, A_5^{--})$ }: not fulfilling, { $(s_1, A_7^{++}), (s_3, A_7^{++})$ }: fulfilling ¹⁴⁻¹⁹ Claim 5.9 (paths of $\mathcal{B}_{(P,\varphi)}$)

The infinite sequence

$$\pi: \underbrace{(s_0, A_0)}_{\varphi\text{-initial}}, (s_1, A_1), \ldots$$

- is a path in $\mathcal{B}_{(P,\varphi)}$ iff
- σ_{π} : s_0, s_1, \dots is a <u>run</u> of *P* (i.e. computation of *P* less fairness)
- ϑ_{π} : A_0, A_1, \dots is a <u>trail</u> of T_{φ} over σ_{π} (i.e. A_j consistent with s_j , for all $j \ge 0$)

Example: In
$$\mathcal{B}_{(LOOP,\psi_3)}$$
 (Fig. 5.10)
 π : $((s_0, A_5), (s_1, A_5), (s_2, A_5), (s_3, A_4))^{\omega}$
induces

$$\sigma_{\pi}: (s_0, s_1, s_2, s_3)^{\omega} \text{ run of LOOP} \\ \vartheta_{\pi}: (A_5, A_5, A_5, A_4)^{\omega} \text{ trail of } T_{\psi_3} \text{ over } \sigma_{\pi}$$

Proposition 5.10 (*P*-satisfiability by path)

 $\begin{array}{l} P \text{ has a computation satisfying } \varphi \\ & \text{iff} \\ \text{there is an infinite } \varphi \text{-initialized path } \pi \\ \text{in } \mathcal{B}_{(P,\varphi)} \text{ s.t.} \\ & \sigma_{\pi} \text{ is a } \underline{P \text{-computation }} (\text{fair run of } P) \end{array}$

 ϑ is a fulfilling trail over σ_{π}

Searching for "good" paths in $\mathcal{B}_{(P,\varphi)}$

— not practical.

Definitions

For behavior graph $\mathcal{B}_{(P,\varphi)}$

- node (s', A') is a <u>τ-successor</u> of (s, A) if B_(P,φ) contains τ-edge connecting (s, A) to (s', A')
- transition τ is <u>enabled</u> on node (s, A) if τ is enabled on state s

Definitions (Con't)

For SCS $S \subseteq \mathcal{B}_{(P,\varphi)}$:

• Transition τ is <u>taken in S</u> if there exists two nodes $(s, A), (s', A') \in S$ s.t. (s', A') is a τ -successor of (s, A)

•
$$S$$
 is $\left\{ \begin{array}{c} \underline{\text{just}} \\ \underline{\text{compassionate}} \end{array} \right\}$ if every $\left\{ \begin{array}{c} \underline{\text{just}} \\ \underline{\text{compassionate}} \end{array} \right\}$
transition $\tau \left\{ \begin{array}{c} \in \mathcal{J} \\ \in \mathcal{C} \end{array} \right\}$ is either taken in S or
is disabled on $\left\{ \begin{array}{c} \underline{\text{some node}} \\ \underline{\text{all nodes}} \end{array} \right\}$ in S

- S is <u>fair</u> if it is both just and compassionate
- S is <u>fulfilling</u> if every promising formula ψ ∈ Φ_ψ is fulfilled by some atom A, s.t.
 (s, A) ∈ S for some state s
- S is adequate if it is fair and fulfilling

Adequate SCS's

Proposition 5.11 (adequate SCS and satisfiability)

Given a finite-state program P and temporal formula $\varphi.$ φ is P-satisfiable iff

 $\mathcal{B}_{(P,\varphi)}$ has an adequate SCS

Example: Consider LOOP and

 ψ_3 : $\bigcirc \Box(x \neq 3)$

Is ψ_3 LOOP-satisfiable? Check the SCS's in $\mathcal{B}_{(LOOP,\psi_3)}$ (Fig. 5.10) Behavior graph $\mathcal{B}_{(\text{LOOP},\psi_3)}$ (Fig 5.10)

Example (Con't)

- { $(s_0, A_5^{--}), (s_1, A_5^{--}), (s_2, A_5^{--}), (s_3, A_4^{-+})$ } is fair but not fulfilling
- { (s_0, A_7^{++}) }, { (s_1, A_7^{++}) }, { (s_2, A_7^{++}) }

each is fulfilling but not fair Not just with respect to transition τ

• $\{(s_3, A_6^{-+})\}$

is neither fair (unjust toward τ) nor fulfilling (being transient)

No adequate subgraphs in $\mathcal{B}_{(\text{LOOP},\psi_3)}$

Therefore, by proposition 5.11, LOOP has no computation that satisfies ψ_3 : $\bigcirc \Box(x \neq 3)$

Example: Consider LOOP and

$$\varphi_3$$
: $\Box \diamondsuit (x = 3)$

Is φ_3 LOOP-satisfiable?

Promising formulas :

(x = 3) promising (x = 3) $\neg \Box \diamondsuit (x = 3)$ promising $\neg \diamondsuit (x = 3)$

Pruned tableau T_{φ_3} (Fig. 5.6)

$$S = \{ (s_0, A_1^{-+}), (s_1, A_1^{-+}), (s_2, A_1^{-+}), (s_3, A_0^{++}) \}$$

is an adequate subgraph:

fair (au taken in S) fulfilling

Therefore, by proposition 5.11, program LOOP has a computation satisfying φ_3 : $\Box \diamondsuit (x = 3)$

The periodic computation σ : $(x:0, x:1, x:2, x:3)^{\omega}$ satisfies φ_3 $\frac{\text{From Atom Tableau } T_{\varphi}}{\text{to } \omega\text{-Automaton } \mathcal{A}_{\varphi}}$

For temporal formula φ , construct the ω -automaton

$$\mathcal{A}_{\varphi} : \langle \underbrace{N, N_{0}, E}_{\text{Same as}}, \mu, \mathcal{F} \rangle$$

where

• Node labeling μ : For node $n \in N$ labeled by atom A in T_{φ} ,

$$\mu(n) = state(A).$$

• Acceptance condition \mathcal{F} : Muller: $\mathcal{F} = \{SCS \ S \mid S \text{ is fulfilling } \}$

Street:

 $\mathcal{F} = \{ (P_{\psi}, R_{\psi}) \mid \psi \in \Phi_{\varphi} \text{ promises } r \},$ where

$$P_{\psi} = \{ A \mid \neg \psi \in A \}$$

$$R_{\psi} = \{ A \mid r \in A \}$$

 $\underline{\texttt{Example}}: \ \varphi : \ \diamondsuit p$

Tableau T_{φ} :

$$A_{1}^{+}: \{p, \bigcirc \diamondsuit p, \diamondsuit p\}$$

$$A_{2}^{-}: \{\neg p, \bigcirc \diamondsuit p, \diamondsuit p\}$$

$$A_{3}^{+}: \{p, \neg \bigcirc \diamondsuit p, \diamondsuit p\}$$

$$A_{4}^{+}: \{\neg p, \neg \bigcirc \diamondsuit p, \neg \diamondsuit p\}$$

Example:
$$\mathcal{A}_{\bigotimes p}$$
 from $T_{\bigotimes p}$

 $\mathcal{F}_M = \{\{n_1\}, \{n_1, n_2\}, \{n_4\}\}$

$$\mathcal{F}_S = \{ (P_{\diamondsuit p}, R_{\diamondsuit p}) \}$$

$$= \{(\{n_4\}, \{n_1, n_3\})\}$$

 $\approx \{(\{n_4\}, \{n_1\})\}$ since no path can visit n_3 infinitely often

Abstraction

Abstraction = a method to verify infinite-state systems.

<u>Idea</u>:

We want to ensure that if $P^A \models \varphi^A$ then $P \models \varphi$.

Abstraction (Cont'd)

How do we obtain such an abstraction function?

- 1) Abstract the domain to a finite-state one (data abstraction): For variables \vec{x} ranging over domain D, find an abstract domain D^A and an abstraction function $\alpha : D \to D^A$.
- 2) From the data abstraction it is possible to compute an abstraction for the program and for the property such that if $P^A \models \varphi^A$ then $P \models \varphi$.

Example: Abstracting Bakery

Program MUX-BAK (infinite-state program)

$$P_{1} :: \begin{bmatrix} \text{loop forever do} \\ \ell_{0} : \text{noncritical} \\ \ell_{1} : y_{1} := y_{2} + 1 \\ \ell_{2} : \text{await } y_{2} = 0 \lor y_{1} \le y_{2} \\ \ell_{3} : \text{critical} \\ \ell_{4} : y_{1} := 0 \end{bmatrix} \end{bmatrix}$$
$$\|$$
$$P_{2} :: \begin{bmatrix} \text{loop forever do} \\ m_{0} : \text{noncritical} \\ m_{1} : y_{2} := y_{1} + 1 \\ m_{2} : \text{await } y_{1} = 0 \lor y_{2} < y_{1} \\ m_{3} : \text{critical} \\ m_{4} : y_{2} := 0 \end{bmatrix} \end{bmatrix}$$

Abstract domain: the boolean algebra over $B = \{b_1, b_2, b_3 : \text{boolean}\},\$ with $b_1 : y_1 = 0$ $b_2 : y_2 = 0$ $b_3 : y_1 \leq y_2$ Example: Abstracting Bakery (Cont'd)

Program MUX-BAK-ABSTR (finite-state program)

$$P_{1} :: \begin{bmatrix} \text{loop forever do} \\ \ell_{0} : \text{noncritical} \\ \ell_{1} : (b_{1}, b_{3}) := (false, false) \\ \ell_{2} : \text{await } b_{2} \lor b_{3} \\ \ell_{3} : \text{critical} \\ \ell_{4} : (b_{1}, b_{3}) := (true, true) \end{bmatrix} \end{bmatrix}$$
$$\|$$
$$P_{2} :: \begin{bmatrix} \text{loop forever do} \\ m_{0} : \text{noncritical} \\ m_{1} : (b_{2}, b_{3}) := (false, true) \\ m_{2} : \text{await } b_{1} \lor \neg b_{3} \\ m_{3} : \text{critical} \\ m_{4} : (b_{2}, b_{3}) := (true, b_{1}) \end{bmatrix} \end{bmatrix}$$

This program can now be checked for mutual exclusion, bounded overtaking, response.

Show MUX-BAK-ABSTR $\models \Box \neg (at_{-}\ell_{3} \land at_{-}m_{3})$. Then it follows that MUX-BAK $\models \Box \neg (at_{-}\ell_{3} \land at_{-}m_{3})$.