CS256 /Winter 2009 Lecture #14

Zohar Manna

Satisfiability over a
finite-state program

P-validity problem (of ¢)

Given a finite-state program P
and formula ¢,

is ¢ P-valid?
i.e. do all P-computations satisfy ¢?

P-satisfiability problem (of ¢)

Given a finite-state program P
and formula ¢

is ¢ P-satisfiable?

i.e., does there exist a P-computation which satisfies 7

To determine whether ¢ is P-valid,
it suffices to apply an algorithm for
deciding if there is a P-computation
that satisfies —p.
14-2

The Idea

To check P-satisfiability of ¢,
we combine the tableau Ty, and the

transition graph G p into one product graph,

called the behavior graph B p .

and search for paths

(50, A0), (s1,41), (s2,A42), ...

that satisfy the two requirements:

o Fy:
there exists a fulfilling path
. Apg,Aq,...
in the tableau T}, such that ¢ € Ag.

o 1s a P-computation:
there exists a fair path
o . 80,81,---

in the transition graph G p.

14-3

State transition graph G p: Construction

e Place as nodes in Gp all initial states s (s lIE O)

e Repeat

for some s €e Gp, T € T,
add all its T-successors s’ to Gp
if not already there,
and add edges between s and s’.

Until no new states or edges can be added.

[f this procedure terminates, the system is
finite-state.

14-4

Example: Program mux-petl (Fig. 3.4)
(Peterson’s Algorithm for mutual exclusion)

local y1,yp>: boolean where y1 = F,yp = F
S . integer where s=1

¢o : loop forever do

/1 : mnoncritical
b ba: (y1,s) == (T, 1)
o 03 await (—yo) V (s £ 1)
£y . critical
| l5: Y1 = F |
mq . loop forever do
'm1 : noncritical |
mp . (y27 S) = (T7 2)
P

mz . await (-y1) V (s # 2)
my . critical

mg . Yo = F

14-5

Abstract state-transition graph for MUX-PET1

m2 m3
at_mo__zﬁ at_mg at—m4,5

o

N s

at_Lg o o=t IEI IE
2| VLB =
{ T
EI//S—]. s =

L
(@)
ﬁl

[T‘V]E

[
IS

atlas | (s =1 =%

We use y1 < at_{3 5 14-6
Y2 < at—m3 5

Some states have been lumped together:

a super-state labeled by |7 | represents ¢ states

MUX-PET]1 has 42 reachable states.

Based on this graph it is straightforward to check the
properties

w1 O-(at—L€a A at_mg)
vy i (at_l3 AN —at_m3z — s=1)

Y30 (at—m3z A —at_l3 — s = 2)

14-7

MUX-PET1 Full state-transition graph (I;, m;, s)

14-8

Definitions

For atom A, state(A) is the conjunction of all state

formulas in A
(by Rgqt, state(A) must be satisfiable)

For A € T,
d(A) denotes the set of successors of A
in Ty

atom A is consistent with state s
if s I state(A),

l.e. s satisfies all state formulas in A.
¥: Ag, A1, ... path in Ty

o. 80,81, --. computation of P

¥ is a trail of T, over o if
Aj is consistent with s;, for all 7 > 0

14-9

Behavior Graph

For finite-state program P and formula ¢,
we construct the (P, ¢)-behavior graph

Bp, = GpxT, (pruned)

such that
e nodes are labeled by (s, A)

where s is a state from G p and

A is an atom from T, consistent with s.

e cdges

There is an edge

-6
—
if and only if s’ € 7(s) and A’ € §(A)
=) @—@)

in Gp in Ty,
e initial p-node (s, A)

if s is an initial state (slE @)
and A is an initial p-atom (o € A)

[t is marked

14-10

Algorithm behavior-graph
(constructing B,)

e Place in B all initial p-nodes (s, A)

(s initial state of P,
A initial g-atom in Ti;
A consistent with s)

e Repeat until no new nodes or
new edges can be added:

Let (s, A) be a node in B
T € 7 a transition
(s', A") a pair s.t.
s’ is a T-successor of s
A" € 5(A) in pruned T,
A’ consistent with s’

— Add (s', A") to B, if not already there

— Draw a 7-edge from (s, A) to (s, A7),
if not already there

14-11

Example: Given FTS LOOP

O: x=0
T ={71,7,}
with 7, (idling)
T where p,: ' = (z + 1)mod4

J: A7}

Check P-satisfiability of [¢3: & [(x # 3)

state-transition graph G oop (Fig 5.9)
pruned T, (Fig 5.8)
Behavior graph B(1,00p) (Fig 5.10)

14-12

Fig. 5.9. State-transition graph Gy,0op Pruned tableau T, (Fig. 5.8)

Eliminating
e MSCS’s not reachable from an initial

iz-atom and
e non-fulfilling terminal MSCS’s

Promising formulas:
& O(x # 3) promising [J(x # 3)
—[(x # 3) promising (x = 3)

~
¢37 _'D(:U;&3)7 O¢3a _'OD(QZ#:3) VD

[A;*:xzs] [AE_:m#3]

= |
\Ag"' 2 =3, OOz #3), O s, ﬂD(a;;&S),}%

™ \
477 e %3, 00@#3), Ovs, O # 3)2}

Two non-transient MSCS’s:

14-14

14-13

{AZ+, Ag ™} ot fulfilling
(AT} fulfilling

Behavior graph B(1,00p) (Fig 5.10) Example: Given FTS ONE:

O x=0
T: {11,72,73,74,7;}

/,/- with pry - r=0Azx'=1

: : =1A2'=0
— (s0, As5) T P2 X

_ Prs - r=0Az' =—-1
J: 0

/""1 - C {7_1,7-3}

((s1, As) T;

\\-..

Transition graph GoNg

s, 82

T2

T3 T4

14-15 14-16

We want to know whether

p: OO@E=1)

is valid over ONE.

Check P-satisfiability of

o OO@#1)
(

of {p, O, O@#1), OO #1), 2 =1}
basic formulas: {O ¢, QO O(x # 1), z =1}

Promising formulas:

Y119 = 0@ # 1) promising 710 [# 1)
Yo . = [J(x# 1) promising ro: x =1

14-17

Pruned tableau T',_

(0
™~
Y, 0@ #1), Op, ~O0O(z # 1) Q
gt a=1 | A5 eEL |

AT 2=1,00@#1), Ov, "0 #1), 4

AT T e#£1, 00@#1), O, O # 1%9

14-18

Behavior graph B(ONE,<> O(z#1))

-
) \\jg_leg,

81,A5 S3,Ag
T1 — Ta =
1
sp, Ag
T2
AT A
T, 51, A7 §3, A7 Tr

Two non-transient MSCS’s:

{(SQ,AZ-'-), (s1,A5 "), (s3,Ag ")}: not fulfilling,

{(s1, ATT), (s3, AT T)}: fulfilling 1419

Tr

Paths of B(P,cp)

Claim 5.9 (paths of B(P’(P))

The infinite sequence
: A A e
0 (qu . .o), (s1,A1),
p-initial

is a path in B(R@)

iff
or. S0,81,---1sarun of P

(i.e. computation of P less fairness)

Vr: Ag, A1, ... Is a trail of T, over or
(i.e. A; consistent with s, for all j > 0)

Example: In B(j,00p y4) (Fig: 5.10)

. ((SO,AS), (517A5)’ (527A5)’ (83’A4)>w

induces

Or. (80, S1, 82, 83)w run of LOOP
Ir: (As, As, Asg, Ag)® trail of Ty, over ox

14-20

Proposition 5.10 (P-satisfiability by path)

P has a computation satisfying ¢

iff
there is an infinite @-initialized path
n B(P’(P) s.t.

or is a P-computation (fair run of P)

¥ is a fulfilling trail over o

Searching for “good” paths in Bp,,)

— not practical.

14-21

Definitions

For behavior graph B(P.o)

e node (s’, A’) is a T-successor of (s, A)
if B(P contains T-edge connecting
(s, A) to (s, A"

e transition 7 is enabled on node (s, A)
if 7 is enabled on state s

14-22

Definitions (Con't)

For scs S C B(P’@):

e Transition 7 is taken in S if there exists
two nodes (s, A), (s', A") € S s.t.
(s’, A") is a T-successor of (s, A)

~ [just . just
o Sis{— . if every { . }
compassionate compassionate

transition 7 {2 2}7} is either taken in S or

is disabled on {some node} in S

all nodes

e S is fair if it is both just and compassionate

e S is fulfilling if every promising formula ¢ € &,

is fulfilled by some atom A, s.t.
(s, A) € S for some state s

e S is adequate if it is fair and fulfilling

14-23

Adequate SCS’s

Proposition 5.11 (adequate sSCs and satisfiability)

Given a finite-state program P and temporal formula ¢.
p is P-satisfiable
iff

B) has an adequate SCS

(P

Example: Consider LOOP and

Y3: OOz # 3)

[s 13 LOOP-satisfiable?
Check the SCSs in B(p,00p,45) (Fig. 5.10)

14-24

Behavior graph B(1,00p y4) (Fig 5.10)

14-25

Example (Con’t)

o { (307 Ag_)a (317A§_)7 (827 Ag_)7 (837 AZ+) }
is fair but not fulfilling

o { (s0, AT}, {(s1, AT}, {(s2,4T)}

each is fulfilling but not fair
Not just with respect to transition 7

o {(s3,4:1)}

is neither fair (unjust toward)
fulfilling (being transient)

No adequate subgraphs in B(LOOP,wg)

Therefore, by proposition 5.11, LOOP has no
computation that satisfies ¢3: < (x # 3)

14-26

Example: Consider LOOP and Behavior graph B(LOOP,%) (Fig. 5.11)

p3: OO =3)

[s 3 LOOP-satisfiable?

Promising formulas :

O (x=3) promising (z = 3)
- (e =3) promising - >(x = 3)

Pruned tableau Ty, (Fig. 5.6)

N
¢3, O(@=3), Ops, OO(@=3)

14-27 14-28

S ={(s0, A7), (51,47 "), (52,47), (53, A7)} From Atom Tableau T,
to w-Automaton Ay,

is an adequate subgraph:

For temporal formula ¢, construct the w-automaton

Ay (N, No, E, u, F)
. . ——————
fair (7 taken in S) Same as

fulfilling Te
where

e Node labeling pu:
For node n € N labeled by atom A in T,

Therefore, by proposition 5.11, program LOOP has a

computation satisfying ¢3: [1 < (x = 3) u(n) = state(A).
The periodic computation o: (x:0,z:1,z:2,x: 3)%¥ e Acceptance condition F:
satisfies ©3 Muller:
F = {SCS S| S is fulfilling }
Street;:
F = {(Py, Ry) | ¢ € §yp promises 7},
where
P¢ = { A |) € A }
Ry = {AlreA}

14-29 14-30

Example: ¢ : p
Tableau T,:

Example: .A<>p from Top

B e
é}+{n0<nw®m %nO<ﬂw®%§

N

A3 {p.~ O O P, Ok

@4z {ﬁp,ﬁoop,ﬁo@

14-31

n4:—|p):

{{n1},{n1,n2},{n4}}
(P p By)}
{({na},{n1,n3})}
{({na}, {n1})}

since no path can visit n3 infinitely often

14-32

Abstraction

Abstraction = a method to verify infinite-state systems.

Idea:
abstraction
1
Program P —
(infinite state)
Property ¢ —

PEy? —

We want to ensure that
if PAE @A then P k.

Abstract program P4
(finite state)

Abstract property 4
PAth

!

model checking

14-33

Abstraction (Cont’d)

How do we obtain such an abstraction function?

e 1) Abstract the domain to a finite-state one (data
abstraction):
For variables & ranging over domain D, find an
abstract domain D4 and an abstraction function
a: D — D4

e 2) From the data abstraction it is possible to com-
pute an abstraction for the program and for the prop-
erty such that
if PAE@A then P E .

14-34

Example: Abstracting Bakery

Program MUX-BAK (infinite-state program)

mo -
cy2 i =y1+1

cawait y1 = 0V ys < yq
m3 .
typ =0

mi
m>

ma

[loop forever do

[¢o : noncritical

ryr i =y2+1

cawait yo =0V y; < yo
. critical

ty1 =0

[loop forever do

noncritical

critical

Abstract domain: the boolean algebra over

B = {bq1,by,b3 : boolean},

with b1 1 y1 =0
b2 Yo = 0

b3 y1 <yo

14-35

Example: Abstracting Bakery (Cont’d)

Program MUX-BAK-ABSTR (finite-state program)

[loop forever do

{p : noncritical

p. - l1 1 (b1,b3) := (false, false)
L. {5 : await by V b3

¢3 : critical

la 1 (b1,b3) := (true, true)

loop forever do

[mg : noncritical

m1 : (bo, b3) := (false, true)
mo : await by V —b3

m3 . critical

mgq . (b2,53) = (true, bl)

This program can now be checked for mutual exclusion,
bounded overtaking, response.

Show MUX-BAK-ABSTR E[] —(at_¢3Aat_ms3). Then
it follows that MUX-BAK E[] —(at_¢3 A at_m3).

14-36

