CS256/Winter 2009 Lecture $\#14$

Zohar Manna

Satisfiability over a finite-state program

P-validity problem (of φ)

Given a finite-state program P and formula φ , is φ *P*-valid? i.e. do all P-computations satisfy φ ?

P-satisfiability problem (of φ)

Given a finite-state program P and formula φ

is φ *P*-satisfiable?

i.e., does there exist a P-computation which satisfies φ ?

To determine whether φ is P-valid, it suffices to apply an algorithm for deciding if there is a P-computation that satisfies $\neg \varphi$.

The Idea

To check P-satisfiability of φ , we combine the tableau T_{φ} and the transition graph G_P into one product graph, called the <u>behavior graph</u> $\mathcal{B}_{(P,\varphi)}$, and search for paths

 $(s_0, A_0), (s_1, A_1), (s_2, A_2), \ldots$

that satisfy the two requirements:

• $\sigma \models \varphi$: and and edges

there exists a fulfilling path π : A_0, A_1, \ldots in the tableau T_{φ} such that $\varphi \in A_0$.

 σ is a *P*-computation:

there exists a fair path $\sigma : s_0, s_1, \ldots$ in the transition graph G_P . State transition graph G_P : Construction

- Place as nodes in G_P all initial states s ($s \not\models \Theta$)
- Repeat

for some $s \in G_P$, $\tau \in \mathcal{T}$, add all its τ -successors s' to G_P if not already there, and add edges between s and s' .

Until no new states or edges can be added.

If this procedure terminates, the system is finite-state.

Example: Program mux-pet1 (Fig. 3.4)

Abstract state-transition graph for MUX-PET1

 $y_2 \Leftrightarrow at_{-}m_{3..5}$

Some states have been lumped together: a super-state labeled by \boxed{i} represents i states

mux-pet1 has 42 reachable states.

Based on this graph it is straightforward to check the properties

- ψ_1 : $\Box \neg (at_4 \wedge at_- m_4)$
- ψ_2 : $\Box(at _\ell_3 \land \neg at _mg \rightarrow s = 1)$
-

MUX-PET1 Full state-transition graph (l_i, m_j, s)

Definitions

- For atom A, $state(A)$ is the conjunction of all state formulas in A (by R_{sat} , $state(A)$ must be satisfiable)
- For $A \in T_{\varphi}$, $\delta(A)$ denotes the set of successors of A in T_{φ}
- \bullet atom A is consistent with state s if $s \vDash state(A)$,
	- i.e. s satisfies all state formulas in A.
- ϑ : A_0, A_1, \ldots path in T_{φ} σ : s_0, s_1, \ldots computation of P ϑ is a trail of T_{φ} over σ if A_j is consistent with s_j , for all $j \geq 0$

Behavior Graph For finite-state program P and formula φ , we construct the (P, φ) -behavior graph

$$
\mathcal{B}_{(P,\varphi)} \quad \approx \quad G_P \times T^-_\varphi \text{ (pruned)}
$$

such that

- nodes are labeled by (s, A) where s is a state from G_P and A is an atom from T_{φ} consistent with s.
- edges There is an edge

if and only if $s' \in \tau(s)$ and $A' \in \delta(A)$

$$
\begin{array}{ccc}\n\textcircled{s} & \xrightarrow{\tau} & \textcircled{s}' & \textcircled{A} & \xrightarrow{\tau} & \textcircled{A}' \\
\text{in } G_P & \text{in } T_{\varphi}\n\end{array}
$$

• initial φ -node (s, A)

if s is an initial state ($s \not\models \Theta$) and A is an initial φ -atom $(\varphi \in A)$ It is marked (s, A) 14-10 Algorithm behavior-graph (constructing $\mathcal{B}_{(P,\varphi)}$)

- Place in $\mathcal B$ all initial φ -nodes (s, A) $(s$ initial state of P , A initial φ -atom in T_{φ}^- A consistent with s)
- Repeat until no new nodes or new edges can be added:

Let (s, A) be a node in \mathcal{B} $\tau \in \mathcal{T}$ a transition (s', A') a pair s.t. s' is a $\tau\text{-successor}$ of s $A' \in \delta(A)$ in pruned $T_{\varphi}^ A'$ consistent with s'

- $-$ Add (s', A') to \mathcal{B} , if not already there
- Draw a τ -edge from (s, A) to $(s', A'),$ if not already there

Example: Given FTS loop Θ : $x=0$ $\mathcal{T} = {\tau, \tau_I}$ with τ_I (idling) τ where ρ_{τ} : $x' = (x + 1) \mod 4$ \mathcal{J} : $\{\tau\}$

Check P-satisfiability of
$$
|\psi_3
$$
: \diamond \square $(x \neq 3)$

state-transition graph G_{LOOP} (Fig 5.9) pruned $T_{\psi_3}^{-}$ (Fig 5.8) Behavior graph $\mathcal{B}_{(\text{LOOP}, \psi_3)}$ (Fig 5.10)

Fig. 5.9. State-transition graph G_{LOOP}

Pruned tableau $T_{\psi_3}^-$ (Fig. 5.8)

Eliminating

- MSCS's not reachable from an initial ψ 3-atom and
- $\bullet\,$ non-fulfilling terminal ${\rm MSCS}^{\prime}{\rm s}$

Promising formulas:

$$
\diamondsuit \square (x \neq 3) \text{ promising } \square (x \neq 3)
$$

$$
\neg \square (x \neq 3) \text{ promising } (x = 3)
$$

$$
\psi_3, \neg \Box(x \neq 3), \bigcirc \psi_3, \neg \bigcirc \Box(x \neq 3)
$$
\n
$$
\underbrace{\boxed{A_4^{-+} : x = 3}}_{\text{max}} \underbrace{\boxed{A_5^{--} : x \neq 3}}_{\text{max}} \underbrace{\boxed{A_6^{-+} : x = 3, \bigcirc \Box(x \neq 3), \bigcirc \psi_3, \neg \Box(x \neq 3), \psi_3}}_{\text{max}}}
$$
\n
$$
\underbrace{\text{max} \quad \psi_3}_{\text{max}} \underbrace{\psi_3}_{\text{max}}_{\text{max}}}
$$

Two non-transient MSCS's:

 ${A_4^{-+}}$, $\frac{-+}{4}, A_5^{--}$ ${\hbox{not fulfilling}}\\{\hbox{fulfilling}}$ ${A_7^{\dagger}}^+$ fulfilling

Behavior graph $\mathcal{B}_{(\text{LOOP},\psi_3)}$ (Fig 5.10)

Example: Given FTS one: Θ : $x = 0$ $T: \quad \{\tau_1, \tau_2, \tau_3, \tau_4, \tau_I\}$ with $\rho_{\tau_1}: x = 0 \wedge x' = 1$ ρ_{τ_2} : $x = 1 \wedge x' = 0$ $\rho_{\tau_3}: x=0 \wedge x'=-1$ $\rho_{\tau_4}: x=-1 \wedge x'=0$ \mathcal{J} : \emptyset $C: \{\tau_1, \tau_3\}$

Transition graph Gone

We want to know whether

$$
\boxed{\varphi:\ \Box\ \Diamond(x=1)}
$$

is valid over one.

Check P-satisfiability of

$$
\boxed{\neg \varphi : \underbrace{\diamondsuit \square (x \neq 1)}_{\psi}}
$$

$$
\Phi_{\psi}^{+} : \{\psi, \bigcirc \psi, \Box(x \neq 1), \bigcirc \Box(x \neq 1), x = 1\}
$$

basic formulas: $\{\bigcirc \psi, \bigcirc \Box(x \neq 1), x = 1\}$

Promising formulas:

$$
\psi_1 : \psi = \diamondsuit \square(x \neq 1) \text{ promising } r_1 : \square(x \neq 1)
$$

$$
\psi_2 : \neg \square(x \neq 1) \text{ promising } r_2 : x = 1
$$

Paths of $\mathcal{B}_{(P,\varphi)}$

Behavior graph $\mathcal{B}_{(\text{ONE}, \diamondsuit \square(x \neq 1))}$

Two non-transient MSCS's:

$$
\{(s_2, A_4^{-+}), (s_1, A_5^{-}), (s_3, A_5^{-})\}:\text{not fulfilling},
$$

$$
\{(s_1, A_7^{++}), (s_3, A_7^{++})\}:\text{fulfilling}
$$
¹⁴⁻¹⁹

Claim 5.9 (paths of $\mathcal{B}_{(P,\varphi)})$

The infinite sequence

$$
\pi: \underbrace{(s_0, A_0)}_{\varphi\text{-initial}}, (s_1, A_1), \dots
$$
\n
$$
\text{path in } B_{\zeta_1}.
$$

is a path in
$$
\mathcal{B}_{(P,\varphi)}
$$
 iff

$$
\sigma_{\pi}: s_0, s_1, \ldots \text{ is a } \underline{\text{run}} \text{ of } P
$$

(i.e. computation of P less fairness)

$$
\vartheta_{\pi}: A_0, A_1, \dots \text{ is a } \underline{\text{trail}} \text{ of } T_{\varphi} \text{ over } \sigma_{\pi}
$$

(i.e. A_j consistent with s_j , for all $j \ge 0$)

Example: In
$$
\mathcal{B}_{(LOOP,\psi_3)}
$$
 (Fig. 5.10)
 π : $((s_0, A_5), (s_1, A_5), (s_2, A_5), (s_3, A_4))^{\omega}$
induces

$$
\sigma_{\pi}: (s_0, s_1, s_2, s_3)^{\omega} \text{ run of LOOP}
$$

$$
\vartheta_{\pi}: (A_5, A_5, A_5, A_4)^{\omega} \text{ trail of } T_{\psi_3} \text{ over } \sigma_{\pi}
$$

Proposition 5.10 (P -satisfiability by path)

P has a computation satisfying φ iff there is an infinite φ -initialized path π in $\mathcal{B}_{(P,\varphi)}$ s.t. σ_{π} is a P-computation (fair run of P)

 ϑ is a fulfilling trail over σ_{π}

Searching for "good" paths in $\mathcal{B}_{(P,\varphi)}$

— not practical.

Definitions

For behavior graph $\mathcal{B}_{(P,\varphi)}$

- node (s', A') is a <u>*T*-successor</u> of (s, A) if $\mathcal{B}_{(P,\varphi)}$ contains τ -edge connecting (s, A) to (s', A')
- transition τ is enabled on node (s, A) if τ is enabled on state s

Definitions (Con't)

For scs $S \subseteq \mathcal{B}_{(P,\varphi)}$:

• Transition τ is taken in S if there exists two nodes $(s, A), (s', A') \in S$ s.t. (s', A') is a τ -successor of (s, A)

•
$$
S
$$
 is $\left\{\frac{\text{just}}{\text{compassionate}}\right\}$ if every $\left\{\text{compassionate}\right\}$
transition $\tau \left\{\frac{\in \mathcal{J}}{\in \mathcal{C}}\right\}$ is either taken in S or
is disabled on $\left\{\text{some node}\right\}$ in S

- S is fair if it is both just and compassionate
- S is fulfilling if every promising formula $\psi \in \Phi_{\psi}$ is fulfilled by some atom A , s.t. $(s, A) \in S$ for some state s
- S is adequate if it is fair and fulfilling

Adequate scs's

Proposition 5.11 (adequate scs and satisfiability)

Given a finite-state program P and temporal formula φ . φ is P-satisfiable iff

 $\mathcal{B}_{(P,\varphi)}$ has an adequate scs

Example: Consider loop and

 ψ_3 : $\diamondsuit \square$ ($x \neq 3$)

Is ψ_3 LOOP-satisfiable? Check the scs's in $\mathcal{B}_{(LOOP,\psi_3)}$ (Fig. 5.10) Behavior graph $\mathcal{B}_{(\text{LOOP},\psi_3)}$ (Fig 5.10)

Example (Con't)

- { (s_0, A_5^{--}) , (s_1, A_5^{--}) , (s_2, A_5^{--}) , (s_3, A_4^{-+}) } is fair but not fulfilling
- { (s_0, A_7^{++}) }, { (s_1, A_7^{++}) }, { (s_2, A_7^{++}) }

each is fulfilling but not fair Not just with respect to transition τ

• $\{(s_3, A_6^{-+})\}$

is neither fair (unjust toward τ) nor fulfilling (being transient)

No adequate subgraphs in $\mathcal{B}_{(\text{LOOP},\psi_3)}$ Therefore, by proposition 5.11, LOOP has no computation that satisfies ψ_3 : $\diamondsuit \square$ ($x \neq 3$)

Example: Consider loop and

$$
\boxed{\varphi_3: \Box \diamondsuit(x=3)}
$$

Is φ_3 LOOP-satisfiable?

Promising formulas :

 $\diamondsuit(x = 3)$ promising $(x = 3)$

Pruned tableau T_{φ_3} (Fig. 5.6)

$$
S = \{ (s_0, A_1^{-+}), (s_1, A_1^{-+}), (s_2, A_1^{-+}), (s_3, A_0^{++}) \}
$$

is an adequate subgraph:

fair $(\tau \text{ taken in } S)$ fulfilling

Therefore, by **proposition 5.11**, program LOOP has a computation satisfying φ_3 : $\Box \diamondsuit (x = 3)$

The periodic computation σ : $(x: 0, x: 1, x: 2, x: 3)^\omega$ satisfies φ_3

From Atom Tableau T_{φ} to ω -Automaton \mathcal{A}_{φ}

For temporal formula φ , construct the ω -automaton

$$
\mathcal{A}_{\varphi} : \langle \underbrace{N, N_0, E}_{\text{Same as}} , \mu, \mathcal{F} \rangle
$$

$$
T_{\varphi}
$$

where

• Node labeling μ : For node $n \in N$ labeled by atom A in T_{φ} ,

$$
\mu(n) = state(A).
$$

• Acceptance condition \mathcal{F} : Muller: $\mathcal{F} = \{\text{SCS } S \mid S \text{ is fulfilling }\}$

Street:

$$
\mathcal{F} = \{ (P_{\psi}, R_{\psi}) \mid \psi \in \Phi_{\varphi} \text{ promises } r \},
$$

where

$$
P_{\psi} = \{ A \mid \neg \psi \in A \}
$$

$$
R_{\psi} = \{ A \mid r \in A \}
$$

$$
\texttt{Example: } \varphi: \ \diamondsuit \, p
$$

Tableau $T\varphi$:

$$
(A_1^+ : \{p, \bigcirc \Diamond p, \Diamond p\})
$$
\n
$$
(A_2^- : \{\neg p, \bigcirc \Diamond p, \Diamond p\})
$$
\n
$$
(A_3^+ : \{p, \neg \bigcirc \Diamond p, \Diamond p\})
$$
\n
$$
(A_4^+ : \{\neg p, \neg \bigcirc \Diamond p, \neg \Diamond p\})
$$
\n
$$
(A_4^+ : \{\neg p, \neg \bigcirc \Diamond p, \neg \Diamond p\})
$$
\n
$$
F_M = \{\{n_1\}, \{n_1, n_2\}, \{n_4\}\}
$$

$$
\underline{\texttt{Example}}\colon\,\mathcal{A}_{\bigdiamondsuit\,p}\,\,\text{from}\,\,T_{\bigdiamondsuit\,p}
$$

$$
\mathcal{F}_S = \{ (P_{\bigdiamondsuit p}, R_{\bigdiamondsuit p}) \}
$$

$$
= \{ (\{n_4\}, \{n_1, n_3\}) \}
$$

 $\approx \{(\{n_4\}, \{n_1\})\}$ since no path can visit n_3 infinitely often

Abstraction

Abstraction $=$ a method to verify infinite-state systems.

Idea:

We want to ensure that if $P^A \models \varphi^A$ then $P \models \varphi$.

Abstraction (Cont'd)

How do we obtain such an abstraction function?

- 1) Abstract the domain to a finite-state one (data abstraction): For variables \vec{x} ranging over domain D, find an abstract domain D^A and an abstraction function $\alpha: D \to D^A$.
- $P \models \varphi$? \longrightarrow $P^A \models \varphi^A$ pute an abstraction for the program and for the prop-• 2) From the data abstraction it is possible to comerty such that if $P^A \models \varphi^A$ then $P \models \varphi$.

Example: Abstracting Bakery

Program MUX-BAK (infinite-state program)

$$
P_1 :: \left[\begin{array}{l} \left[\begin{array}{l
$$

Abstract domain: the boolean algebra over $B = \{b_1, b_2, b_3 : \text{boolean}\},\$ with $b_1 : y_1 = 0$ b_2 : $y_2 = 0$ $b_3: y_1 \leq y_2$

Example: Abstracting Bakery (Cont'd)

Program MUX-BAK-ABSTR (finite-state program)

$$
P_1 :: \begin{bmatrix} \text{loop forever do} \\ \begin{bmatrix} \ell_0 : \text{noncritical} \\ \ell_1 : (b_1, b_3) := (false, false) \\ \ell_2 : \text{await } b_2 \vee b_3 \\ \ell_3 : \text{critical} \\ \ell_4 : (b_1, b_3) := (true, true) \end{bmatrix} \end{bmatrix}
$$

||

$$
P_2 :: \begin{bmatrix} \text{loop forever do} \\ m_0 : \text{noncritical} \\ m_1 : (b_2, b_3) := (false, true) \\ m_2 : \text{await } b_1 \vee \neg b_3 \\ m_3 : \text{critical} \\ m_4 : (b_2, b_3) := (true, b_1) \end{bmatrix}
$$

This program can now be checked for mutual exclusion, bounded overtaking, response.

Show MUX-BAK-ABSTR $\models \Box \neg (at_4, \land at_2m_3)$. Then it follows that MUX-BAK $\models \Box \neg(at_4_3 \land at_-m_3)$.