CS256/Winter 2009 Lecture #14

Zohar Manna

Satisfiability over a
finite-state program

P-validity problem (of ¢)

Given a finite-state program P
and formula ¢,

is ¢ P-valid?
i.e. do all P-computations satisfy 7

P-satisfiability problem (of)

Given a finite-state program P
and formula ¢

is ¢ P-satisfiable?

i.e., does there exist a P-computation which satisfies ¢?

To determine whether ¢ is P-valid,
it suffices to apply an algorithm for

deciding if there is a P-computation
that satisfies —p.
14-2

The Idea

To check P-satisfiability of ¢,
we combine the tableau Ty, and the

transition graph G p into one product graph,

called the behavior graph B(P.o):

and search for paths

(s0,A0), (s1,41), (s2,42), ...

that satisty the two requirements:

o oOFo:
there exists a fulfilling path
m. Apg,Aq,...
in the tableau T, such that ¢ € Ag.

e 0 1s a P-computation:

there exists a fair path

O . S0,S1,---

in the transition graph Gp.

14-3

State transition graph G p: Construction

e Place as nodes in G p all initial states s (s I ©)

e Repeat

for some s € Gp, T € 7T,
add all its 7-successors s’ to G p
if not already there,
and add edges between s and s’.

Until no new states or edges can be added.

If this procedure terminates, the system is
finite-state.

14-4

Example: Program mux-petl (Fig. 3.4)
(Peterson’s Algorithm for mutual exclusion)

local yi,y>: boolean where y; = F,yp =F
S . integer wheres =1

¢o . loop forever do

¢1 . mnoncritical
P, b (y1,s) = (T, 1)
¢3: await (—ys) V(s # 1)
¢4 . critical
| l5. Y1 = F |
|
mgo - loop forever do
'mq : noncritical |
P, mo 1 (Y2,) = (T, 2)

m3 . await (—y1) V (s = 2)

my . critical

ms . Yp . =— F
14-5

Abstract state-transition graph for MUX-PET1

m> m3 >m5
at_mqg o _ at_m3 _ at—mg4 5

at—tas | (=1 s =2
N

We use y1 < at—£3. 5 14-6
Y2 < at—_m3 5

Some states have been lumped together:

a super-state labeled by |7 | represents 7 states

MUX-PET1 has 42 reachable states.

Based on this graph it is straightforward to check the
properties

Wy o [(at_lg N at_my)
Yy o [(at—€3 AN —at_m3z — s=1)

Y3 . H(at—_m3z A —at_€z — s = 2)

14-7

MUX-PET1 Full state-transition graph (I;, m;, s)

o0
e, 1
= <t
- b
ol T
[
RO
—
=
-
[
S
——
=
s .
3 Ll Ll
— o — o —
N) “ £
|

(
Yy

(2,0,1) % (2,1,1)»(2,2,1) +—~
_ 5%

1) (3.21))

¢

'
(4,0,1)»(4,1,1)»(4,2,1)
/

(3,0,1) (3,1,

/

'

Definitions

For atom A, state(A) is the conjunction of all state

formulas in A
(by Rsat, state(A) must be satisfiable)

For A € T,
d(A) denotes the set of successors of A
n Ty

atom A is consistent with state s
if s Ik state(A),

l.e. s satisfies all state formulas in A.

v: Ag, Az, ... path in Ty
o. sp,S1, ... computation of P

v is a trail of Ty, over o if
Aj 1s consistent with s;, for all j > 0

14-9

Behavior Graph

For finite-state program P and formula o,
we construct the (P, ¢)-behavior graph

B,y =~ GpxT, (pruncd)

such that
e nodes are labeled by (s, A)

where s is a state from G p and

A is an atom from T\, consistent with s.

e cdges

There is an edge

~€
—
if and only if s’ € 7(s) and A’ € §(A)
=) A=)

in Gp n Ty,
e initial p-node (s, A)

if s is an initial state (s Ik ©)
and A is an initial p-atom (¢ € A)

[t is marked

14-10

Algorithm behavior-graph
(constructing B,)

e Place in B all initial ¢-nodes (s, A)

(s initial state of P,
A initial p-atom in T,
A consistent with s)

e Repeat until no new nodes or
new edges can be added:

Let (s, A) be a node in B
T € 7 a transition
(s’, A") a pair s.t.

s’ is a T-successor of s
A" € §(A) in pruned T,
A’ consistent with s’

— Add (s’, A") to B, if not already there

— Draw a 7-edge from (s, A) to (s', A),
if not already there

14-11

Example: Given F'T'S LOOP
©: x=0
T ={1,7,}
with 7, (idling)
7 where p.: ' = (z 4+ 1)mod4

J. At}

Check P-satisfiability of |¢3: < O(x £ 3)

state-transition graph G 5p (Fig 5.9)
pruned T, (Fig 5.8)
Behavior graph B(p,o0p y4) (Fig 5.10)

14-12

Fig. 5.9. State-transition graph Gy,oop

14-13

Pruned tableau T/ (Fig. 5.8)

Eliminating
e MSCS’s not reachable from an initial

3-atom and
e non-fulfilling terminal MSCS’s

Promising formulas:

O O(x # 3) promising [J(z #= 3)
- [O(z # 3) promising (xz = 3)

~
v3, 7 (z 7% 3), O¢s3, ~O Oz # 3) V)
[AZ+133=3 J [Ag_:a:;él’) J

y
=3, 00 #3), Oys, ~U(z # 3),J¢3

V V?
A7 e #3, 00 #3), Ovs, O #3), ¥

Two non-transient MSCS’s:

|

i
A
\

{AZ+, Ag "} not fulfilling i

(AT} fulfilling

Behavior graph B(1,00p y-4) (Fig 5.10)

14-15

Example: Given F'T'S ONE:

©: x=0
T: {711,70,73,7T4,7T;}
with pr; 0 z=0A2'=1

pro i x=1A2'=0
P13 - r=0Az2 =-1
pra . x=-1A2'=0

J: 0

C: A{m,73}

Transition graph GoNg

s 5

T2

T3 T4

14-16

We want to know whether

p: OO@=1)

1s valid over ONE.

Check P-satisfiability of

OO #1L)
(0

of (¥, Ov, D@ #1), OO #1), =1}
basic formulas: {O v, O (x # 1), x = 1}

Promising formulas:

Y19 = OO # 1) promising vy 0 () # 1)
Yo i = [J(x# 1) promising ro: z =1

14-17

Pruned tableau 7',

"
~
v, ~O #1), Oy, ~OO(# 1) I//)
Aztia=1 | Az eEL |
~ v

AT e=1,00@#1), 0y, 0@ #1), Y

— v
ATT 2 #£1, O0@# D), Ov, O # 1)@)

14-18

Behavior graph Biong, ¢ (z#1))

73

83, A5
XL = —

Ty

s1, A 337

Two non-transient MSCS’s:

{(s2, A7), (s1,457), (53,45)}: not fulfilling,

{(s1, A;__F)a (53, A;—_F)}: fulfilling 14-19

Paths of B (P.o)

Claim 5.9 (paths of B(Pm)

The infinite sequence

7 (80,40), (51,41), ---
o-initial

is a path in B(Pﬁo)
iff
or. S0,81,.--18 arun of P
(i.e. computation of P less fairness)

. Ag, A1, ... 1s a trail of T, over or
(i.e. A; consistent with s;, for all j > 0)

Example: In By oop) (Fig. 5.10)

v (G50, As), (51, 45), (52, As), (53, 44))"

induces

or. (sg,s1,52,53)% run of LOOP
Y (A5, A5, A5, A4>w trail of T¢3 over o

14-20

Proposition 5.10 (P-satisfiability by path)

P has a computation satisfying ¢

iff
there is an infinite (-initialized path 7
in B(PM) s.t.

or is a P-computation (fair run of P)

9 is a fulfilling trail over o

Searching for “good” paths in B(P.o)

— not practical.

14-21

Definitions

For behavior graph B(P)

e node (s’, A”) is a T-successor of (s, A)

if B(P contains 7-edge connecting

(s, A) to (s', A"

e transition 7 is enabled on node (s, A)

if 7 1s enabled on state s

14-22

Definitions (Con't)

For scs S C B(P’SD):

e Transition 7 is taken in S if there exists
two nodes (s, A), (s, A") € S s.t.
(s’, A") is a T-successor of (s, A)

~ [just _ just
o Sisq—— . if every { . }
compassionate compassionate

< j} 1s either taken in S or
eC

some node) .
in .S

transition 7T {

1s disabled on {

all nodes

e S is fair if it is both just and compassionate

e S is fulfilling it every promising tormula ¢ € @,
is fulfilled by some atom A, s.t.
(s, A) € S for some state s

e S is adequate if it is fair and fulfilling

14-23

Adequate sCS’s

Proposition 5.11 (adequate sCS and satisfiability)

Given a finite-state program P and temporal formula .
@ 1s P-satisfiable
iff

B) has an adequate SCS

(P

Example: Consider LOOP and

Y3: O (x # 3)

[s 93 LOOP-satisfiable?
Check the SCS’s in B(,00p 4p5) (Fig. 5.10)

14-24

Behavior graph B(1,00p y-4) (Fig 5.10)

14-25

Example (Con’t)

o { (50,45), (s1,A45), (82,45), (53,4, 7))}
is fair but not fulfilling

o { (50, AT}, {(s1, A7)}, {(s2, A7)}

cach is fulfilling but not fair
Not just with respect to transition 7

o {(s3, A7)}

is neither fair (unjust toward 7) [nor

fulfilling (being transient)

No adequate subgraphs in B(LOOP,¢3)

Therefore, by proposition 5.11, LOOP has no
computation that satisfies ¢3: < [J(x # 3)

14-26

Example: Consider LOOP and

p3: OO =3)

Is 3 LOOP-satisfiable?

Promising formulas :

(x = 3) promising (x = 3)
-] (= 3) promising — O (x = 3)

Pruned tableau T4 (Fig. 5.6)

TN\
[03, O(@=3), O¢3, OO(=3) Y)
_ Y

14-27

Behavior graph B(LOOP,%) (Fig. 5.11)

\

\\(

e

14-28

S ={(s0,A7 "), (s1, A7), (s2,A77), (53,43 1)}

is an adequate subgraph:

fair (7 takenin S)
fulfilling

Therefore, by proposition 5.11, program LOOP has a
computation satisfying p3: [] < (x = 3)

The periodic computation o: (z:0,z:1,z:2,x:3)¥
satisfies 3

14-29

From Atom Tableau Ty
to w-Automaton A,

For temporal formula ¢, construct the w-automaton

ASO: <;]V7 N07 E; My F>

Same as

Ty

where

e Node labeling pu:
For node n € N labeled by atom A in Ty,

w(n) = state(A).

e Acceptance condition F:

Muller:
F = {SCS §| S is fulfilling }
Street:
F = {(Py,Ry) | ¥ € Py promises },
where
R¢ = {A|reA}

14-30

Example: ¢ : p
Tableau To:

> C
CgAT {(p.OOP.OP}) (A7 : {-», O<>p,<>p?)

AN

A+ {p,~ O Op, <>p>\

@{ 1 {ﬂpﬁCSOpﬁOp?

14-31

Example: A<>p from Top

Nng . P

Fu = {{ni}{n1,n2},{na}}
Fs = A(PopRop)t

= {({n4},{n1,n3})}
{({na},{n1})}

since no path can visit ng infinitely often

Q

14-32

Abstraction

Abstraction = a method to verify infinite-state systems.

Idea:

abstraction

l

Program P —
(infinite state)

Property ¢ —

PEp? —

We want to ensure that
if PAE 4 then P k.

Abstract program PA
(finite state)

Abstract property @<
PAth

l

model checking

14-33

Abstraction (Cont’d)

How do we obtain such an abstraction function?

e 1) Abstract the domain to a finite-state one (data
abstraction):
For variables & ranging over domain D, find an
abstract domain D4 and an abstraction function
a: D — D4

e 2) From the data abstraction it is possible to com-
pute an abstraction for the program and for the prop-
erty such that
if PAE@A then P Eo.

14-34

Example: Abstracting Bakery

Program MUX-BAK (infinite-state program)

" loop forever do

| ¢o : noncritical

Py iiypi=y2+1

> awalt yop = 0V y1 < yo
¢3 : critical

lg iy1 :=0

[loop forever do
| mq . noncritical
P ’m11y23.=y1—|-1
mo > awalt y1 = 0V yo < y1
ms3 . critical
maq Yo =0

Abstract domain: the boolean algebra over
B = {b1,b5,b3 : boolean},
with b1 : y1 =0
bQ . Yo = 0
b3 1 Y1 <2
14-35

Example: Abstracting Bakery (Cont’d)

Program MUX-BAK-ABSTR (finite-state program)

" loop forever do

i /o : noncritical

P ¢1 : (b1,b3) := (false, false)
L. {5 . await by V b3

¢3 : critical

la : (b1,b3) := (true, true)

[loop forever do

| mq . noncritical

mq : (bp, b3) := (false, true)
mo . await by V —b3

m3 . critical

mg @ (bp,b3) 1= (true, by)

This program can now be checked for mutual exclusion,
bounded overtaking, response.

Show MUX-BAK-ABSTR E[] ~(at_¢3Aat_m3). Then
it follows that MUX-BAK E[] —(at_¥f3 A at_m3).

14-36

