
CS257: Introduction to Automated Reasoning
Theory Solvers

Roadmap for Today

Theory Solvers

• Difference Logic

• Equality and Uninterpreted Functions

• Arrays

• Strings

November 7, 2023 CS257 1 / 54

Theory Solvers

A theory solver for T is a decision procedure for determining whether a conjunction of
literals is T-satisfiable

Theory solvers are crucial building blocks in modern SMT solvers

November 7, 2023 CS257 2 / 54

A Fragment of Arithmetic: Difference Logic

In difference logic, we are interested in the satisfiability of a conjunction of arithmetic
atoms.

Each atom is of the form x − y & c, where x and y are variables, c is a numeric
constant, and & ∈ {=,<,≤,>,≥}.

The variables can range over either the integers (QF IDL) or the reals (QF RDL).

November 7, 2023 CS257 3 / 54

Difference Logic

The first step is to rewrite everything in terms of ≤:

• x − y = c Ô⇒ x − y ≤ c ∧ x − y ≥ c

• x − y ≥ c Ô⇒ y − x ≤ −c

• x − y > c Ô⇒ y − x < −c

• x − y < c Ô⇒ x − y ≤ c − 1 (integers)

• x − y < c Ô⇒ x − y ≤ c − δ (reals)

Note: using δ requires some additional infrastructure which we will not cover here

November 7, 2023 CS257 4 / 54

Difference Logic

Now we have a conjunction of literals, all of the form x − y ≤ c.

From these literals, we form a weighted directed graph with a vertex for each variable.

For each literal x − y ≤ c, there is an edge x
c
Ð→ y.

The set of literals is satisfiable iff there is no cycle for which the sum of the weights on
the edges is negative.

There are a number of efficient algorithms for detecting negative cycles in graphs

• e.g., Bellman-Ford, O(∣V ∣ ⋅ ∣E∣)

November 7, 2023 CS257 5 / 54

Difference Logic Example

x − y = 5 ∧ z − y ≥ 2 ∧ z − x > 2 ∧ w − x = 2 ∧ z −w < 0

x − y = 5
z − y ≥ 2
z − x > 2

⇒

w − x = 2

w − x ≤ 2 ∧ x −w ≤ −2

z −w < 0

November 7, 2023 CS257 6 / 54

Difference Logic Example

x − y = 5 ∧ z − y ≥ 2 ∧ z − x > 2 ∧ w − x = 2 ∧ z −w < 0

x − y = 5
z − y ≥ 2
z − x > 2 ⇒

w − x = 2

w − x ≤ 2 ∧ x −w ≤ −2

z −w < 0

November 7, 2023 CS257 7 / 54

Difference Logic Example

x − y = 5 ∧ z − y ≥ 2 ∧ z − x > 2 ∧ w − x = 2 ∧ z −w < 0

x − y = 5 x − y ≤ 5 ∧ y − x ≤ −5
z − y ≥ 2 y − z ≤ −2
z − x > 2 ⇒ x − z ≤ −3
w − x = 2 w − x ≤ 2 ∧ x −w ≤ −2
z −w < 0 z −w ≤ −1

November 7, 2023 CS257 8 / 54

Difference Logic Example

−3

−2

−12

−2

5

−5

November 7, 2023 CS257 9 / 54

Theory Solvers as Satisfiability Proof Systems

How do we determine whether a set of literals is T-satisfiable?

For many theories, we can use the framework of satisfiability proof systems.

November 7, 2023 CS257 10 / 54

Notation and Assumptions

A literal is flat if it is of the form: x = y, x /= y, or x = f(z⃗), where x, y are variables, f
is a function symbol and z⃗ is a tuple of 0 or more variables.

Any set of literals can be converted to an equisatisfiable flat set of literals by
introducing new variables.

Example

x + y > 0 = T, y = f(g(z))

⇒

v1 = x + y, v2 = 0, v3 = T, v3 = v1 > v2, v4 = g(z), y = f(v4)

For the proof systems we present next, we assume that all literals are flat

November 7, 2023 CS257 11 / 54

Notation and Assumptions

For tuples v⃗ and w⃗ of the same size, we write v⃗ = w⃗ as an abbreviation for the set of
pairwise equalities between corresponding elements of the tuples

Proof states (besides sat, unsat) are sets of formulas, and the satisfiable states are
those that are T-satisfiable (plus sat)

We use Γ to refer to the current proof state in rule premises

When presenting rules, a list formulas as a premise means these are all required to be
in the starting proof state (i.e., we omit ∈ Γ, leaving it implicit)

We list in the conclusion of each rule only the literals to be added to the proof state
and assume no literals are ever deleted

From now on, we also assume that if applying a rule does not change Γ, then that rule
is not applicable to Γ, i.e., Γ is irreducible with respect to that rule

November 7, 2023 CS257 12 / 54

A Satisfiability Proof System for QF UF

As an example, we present a simple satisfiability proof system RUF for QF UF

contr
x = y, x /= y

unsat
refl

x occurs in Γ

x = x

symm
x = y

y = x
trans

x = y, y = z

x = z

cong
x = f(v⃗), y = f(w⃗), v⃗ = w⃗

x = y
sat

no other rule applies

sat

Is RUF sound? terminating?

November 7, 2023 CS257 13 / 54

Soundness, Termination, Completeness

By inspecting each rule, all but sat are clearly satisfiability preserving, so it follows that
RUF is refutation sound

Since RUF only introduces equalities between variables and never introduces new
variables (and there are only a finite number of possible equalities between existing
variables), every strategy for RUF must terminate

Solution soundness can be shown by constructing an interpretation from any proof
state to which sat applies and is the most challenging step

Theorem If sat applies to Γ, then Γ is satisfiable

Proof Sketch Let x ∼ t iff x = t ∈ Γ. We can show that ∼ is an equivalence relation.
Let the domain of I be the equivalence classes of ∼. Let α = [v]∼ for some arbitrary
variable v ∈ Γ. Let xI = if x ∈ Γ then [x]∼ else α. For a unary function symbol f , let
f I = λe. if f(x) occurs in Γ for some x ∈ e, then [f(x)]∼ else α. Define f I for
non-unary f similarly. We can show that I ⊧ Γ.

November 7, 2023 CS257 14 / 54

Theory of Arrays TA

Signature:

• Equality: Yes

• ΣS = {A, I,E} (for arrays, indices, elements)

• ΣF = {read,write}

• sort(read) = ⟨A, I,E⟩, sort(write) = ⟨A, I,E,A⟩

Useful for modeling memories or array data structures.

November 7, 2023 CS257 15 / 54

Example

1 void ReadBlock(int data[], int x, int len)

2 {

3 int i = 0;

4 int next = data[0];

5 for (; i < next && i < len; i = i + 1) {

6 if (data[i] == x)

7 break;

8 else

9 Process(data[i]);

10 }

11 assert(i < len);

12 }

One path through this code can be translated using the theory of arrays as:

i = 0 ∧ next = read(data,0) ∧ i < next ∧ i < len ∧ read(data, i) = x ∧ ¬(i < len)

November 7, 2023 CS257 16 / 54

Semantics of TA

Recall that a theory is made up of a signature and a class of structures.

How do we define which structures are allowed?

One way is to say it is all structures satisfying a set of sentences. These sentences are
the axioms of the theory.

Not all theories can be finitely axiomatized, but the theory of arrays can. It requires
only three axioms:

∀a∶A. ∀ i∶I. ∀ v∶E. read(write(a, i, v), i) = v , (RW1)

∀a∶A. ∀ i, j∶I. ∀ v∶E. i /= j → read(write(a, i, v), j) = read(a, j) , (RW2)

∀a, b∶A. (∀ i∶I. read(a, i) = read(b, i)) → a = b . (EX)

November 7, 2023 CS257 17 / 54

A Satisfiability Proof System for TA

The satisfiability proof system RA for TA extends the proof system for QF UF with
the following rules:

RIntro1
a = write(b, i, v)

v = read(a, i)

RIntro2
a = write(b, i, v), x = read(c, j) a = c ∈ Γ or b = c ∈ Γ

i = j read(a, j) = read(b, j)

Ext
a /= b

read(a, ka,b) /= read(b, ka,b)

where for each pair (a, b) of array variables, ka,b denotes a distinguished fresh variable
of sort I.

November 7, 2023 CS257 18 / 54

Example

Let Γ = write(a, i, read(b, i)) = write(b, i, read(a, i)), a /= b

November 7, 2023 CS257 19 / 54

Example

Let Γ = write(a, i, read(b, i)) = write(b, i, read(a, i)), a /= b

a′ = write(a, i, v), b′ = write(b, i,w), v = read(b, i),w = read(a, i), a′ = b′, a /= b
x = read(a, k), y = read(b, k), x /= y

i = k
x = w, v = y
v = read(a′, i)
w = read(b′, i)

w = v
x = y
unsat

x′ = read(a′, k), x = x′

i = k
. . .

y′ = read(y′, k), y′ = y
x′ = y′

x = y
unsat

November 7, 2023 CS257 20 / 54

A Satisfiability Proof System for TA

The satisfiability proof system RA for TA extends the proof system for QF UF with
the following rules:

RIntro1
a = write(b, i, v)

v = read(a, i)

RIntro2
a = write(b, i, v), x = read(c, j) a = c ∈ Γ or b = c ∈ Γ

i = j read(a, j) = read(b, j)

Ext
a /= b

read(a, ka,b) /= read(b, ka,b)

where for each pair (a, b) of array variables, ka,b denotes a distinguished fresh variable
of sort I

Is RA sound? terminating?

November 7, 2023 CS257 21 / 54

Soundness, Termination, and Completeness

Refutation soundness is straightforward and follows from the TA axioms.

Termination follows from the following argument. Once we add all of the ka,b
variables, no rule introduces new variables. There are only a finite number of terms
that match the conclusions that can be constructed with a finite number of variables,
so eventually, Γ will become reducible only by the sat rule.

Solution soundness is again by constructing an interpretation but is much more
involved. Essentially, we construct an interpretation much as we did for RUF , but then
we modify it to ensure the array axioms are satisfied.

More details in Section 5 of Jovanović and Barrett, “Being Careful about Theory Combination”, 2013.

November 7, 2023 CS257 22 / 54

Reasoning about Strings

Joint work with David Brumley, Morgan Deters, Tianyi Liang, Andres Nötzli,
Andrew Reynolds, Cesare Tinelli, Nestan Tsiskaridze, and Maverick Woo

November 7, 2023 CS257 23 / 54

Symbolic
Execution

Security
Policies

Security
Policy

Code SMT
Formula

SMT
Solver

Unsafe

Safe

Motivation: Symbolic Execution

Symbolic Execution

• Enumerate program paths that end in a bad state

- (e.g., invalid memory access)

• Represent program inputs as SMT variables

• Translate statements in the path into constraints on the variables

• Constraints represent all possible executions along the path

• Solving the constraints determines whether the path is feasible

November 7, 2023 CS257 24 / 54

Symbolic
Execution

Security
Policies

Security
Policy

Code SMT
Formula

SMT
Solver

Unsafe

Safe

Example: Symbolic Execution for Security

Security Vulnerabilities

• Input: code and security policy

• Symbolic execution: generates formula satisfiable iff code can violate security policy

• SMT solver: returns a solution or proves that none exists

November 7, 2023 CS257 25 / 54

Symbolic
Execution

Security
Policies

Security
Policy

Code SMT
Formula

SMT
Solver

Unsafe

Safe

String Analysis

Strings in Symbolic Execution

• Input code may manipulate strings

November 7, 2023 CS257 26 / 54

Basic Theory of Strings

Alphabet

A fixed finite set of characters

Constants
Empty string ϵ ∶ String
Character string c ∶ String for all c ∈ A

Operators
Length ∣ ∣ ∶ String → Int
Concatenation ++ ∶ String × String → String
Equality = ∶ String × String → Bool
Membership ∈ ∶ String ×RegEx

November 7, 2023 CS257 27 / 54

A Theory Solver for Strings

Alphabet

A fixed finite set of characters

Constants
Empty string ϵ ∶ String
Character string c ∶ String for all c ∈ A

Operators
Length ∣ ∣ ∶ String → Int
Concatenation ++ ∶ String × String → String
Equality = ∶ String × String → Bool
Membership ∈ ∶ String ×RegEx

November 7, 2023 CS257 28 / 54

Challenge: complexity
concatenation + equality: word equations
problem

• Decidable in PSPACE
+ length

• Decidability open

+ replace (all instances of some substring)

• Undecidable

A Theory Solver for Strings

Alphabet

A fixed finite set of characters

Constants
Empty string ϵ ∶ String
Character string c ∶ String for all c ∈ A

Operators
Length ∣ ∣ ∶ String → Int
Concatenation ++ ∶ String × String → String
Equality = ∶ String × String → Bool
Membership ∈ ∶ String ×RegEx

November 7, 2023 CS257 29 / 54

Pragmatic approach

• Rule-based proof system

• Use existing arithmetic theory solver

• Embrace incompleteness

Satisfiability Proof System for Strings

Proof States

A proof state is either:

• One of the distinguished states sat, unsat

• A pair (S,A), where S contains string constraints and A contains arithmetic
constraints

Assumptions

• All literals are flat

• For every string variable x, there exists a variable ℓx, such that ℓx = ∣x∣ ∈ S

• Ignore regular expression membership for now

November 7, 2023 CS257 30 / 54

Notation

Definitions

• T (S) denotes all terms in S

• S ⊧ ϕ means that ϕ follows from S using the rules of QF UF

• A ⊧LIA ϕ means that ϕ follows from A in the theory of linear integer arithmetic

Rewrite rules for string length

• ∣ϵ∣ ↓= 0
• ∣c∣ ↓= 1, where c ∈ A

• ∣s1 ++⋯ ++ sn∣ ↓= ∣s1∣ + ⋯∣sn∣

November 7, 2023 CS257 31 / 54

Core Rules

A-Conf
A ⊧LIA �

unsat
A-Prop

A ⊧LIA s = t s, t ∈ T (S)

S ∶= S, s = t

S-Conf
S ⊧ �

unsat
S-Prop

S ⊧ s = t s, t ∈ T (S) s, t are ΣLIA-terms

A ∶= A, s = t

S-A
x, y ∈ T (S) ∩ T (A) x, y ∶ Int

A ∶= A,x = y A ∶= A,x /= y

L-Intro
s ∈ T (S) s ∶ String

S ∶= S, ∣s∣ = ∣s∣ ↓
L-Valid

x ∈ T (S) x ∶ String

S ∶= S,x = ϵ A ∶= A, ℓx > 0

Const-Conf
S ⊧ c = d c, d ∈ A, c /= d

unsat
Sat

no other rule applies

sat

November 7, 2023 CS257 32 / 54

Example

Let S0 = {x = y ++ x ++ z, y = “a”, ℓx = ∣x∣, ℓy = ∣y∣, ℓz = ∣z∣},A0 = ∅

November 7, 2023 CS257 33 / 54

Example

Let S0 = {x = y ++ x ++ z, y = “a”, ℓx = ∣x∣, ℓy = ∣y∣, ℓz = ∣z∣},A0 = ∅

(∣y ++ x ++ z∣ = ∣y∣ + ∣x∣ + ∣z∣,∅)

(∣“a”∣ = 1,∅)

(∅, ℓx = ℓy + ℓx + ℓz)

(∅, ℓy = 1)

(z = ϵ,∅)

(∣ϵ∣ = 0,∅)

(∅, ℓz = 0)

unsat

(∅, ℓz > 0)

unsat

November 7, 2023 CS257 34 / 54

Concatenation Rules

Given a variable x, we can recursively expand x by substituting using equalities from S
whose right-hand sides are concatenation terms until this is no longer possible

If t is the result, we say that S ⊧∗
++

x = t

We write z⃗ as a short-hand for a concatenation of one or more variables

C-Eq
S ⊧∗

++
x = z⃗ S ⊧∗

++
y = z⃗

S ∶= S,x = y

C-Split

S ⊧∗
++

x = w⃗ ++ y ++ z⃗ S ⊧∗
++

x = w⃗ ++ y′ ++ z⃗′

A ∶= A, ℓy > ℓy′ ;S ∶= S, y = y′ ++ k
A ∶= A, ℓy < ℓy′ ;S ∶= S, y′ = y ++ k
A ∶= A, ℓy = ℓy′ ;S ∶= S, y = y′

November 7, 2023 CS257 35 / 54

Example of C-Split

C-Split

S ⊧∗
++

x = w⃗ ++ y ++ z⃗ S ⊧∗
++

x = w⃗ ++ y′ ++ z⃗′

A ∶= A, ℓy > ℓy′ ;S ∶= S, y = y′ ++ k
A ∶= A, ℓy < ℓy′ ;S ∶= S, y′ = y ++ k
A ∶= A, ℓy = ℓy′ ;S ∶= S, y = y′

y z

y’ z’

y k z’

x =

x =

x =

November 7, 2023 CS257 36 / 54

Properties of the proof system

Is the proof system sound? terminating?

November 7, 2023 CS257 37 / 54

Properties of the proof system

Is the proof system sound? terminating?

The proof system is refutation sound. This can easily be checked by examining each
rule.

The proof system is not terminating. For pathological cases, C-Split can be applied
infinitely often

Since it is not terminating, it is also not complete

However, it is solution sound. Proving this is highly non-trivial

November 7, 2023 CS257 38 / 54

Iterating to Improve the Solver

The first version of the proof system was implemented in 2014

Based on requests and feedback from users, a number of iterative improvements have
been made

November 7, 2023 CS257 39 / 54

More String Operators

SMT user: That’s great but I need more operators!

Iterate and Improve

• Extend the theory by adding new operators

• Implement by reducing to the core theory

• substr(x,n,m): the maximal substring of x, starting at position n, with length
at most m

• contains(x, y): true iff x contains y as a substring

• index of(x, y, n): position of the first occurrence of y in x, starting from
position n

• replace(x, y, z): the result of replacing the first occurrence of x in y by z

November 7, 2023 CS257 40 / 54

More String Operators

[[x = substr(y, n,m)]] = ite(0 ≤ n < ∣y∣ ∧ 0 <m,
y = z1 ++ x ++ z2 ∧ ∣z1∣ = n ∧ ∣z2∣ = ∣y∣´ (m + n),
x = ϵ)

[[contains(y, z)]] = ∃k. 0 ≤ k ≤ ∣y∣ − ∣z∣ ∧ substr(y, k, ∣z∣) = z

[[x = index of(y, z, n)]] = ite(0 ≤ n ≤ ∣y∣ ∧ contains(y′, z), substr(y′, x′, ∣z∣) = z ∧
¬contains(substr(y′,0, x′ + ∣z∣ − 1), z), x = −1)

with y′ = substr(y, n, ∣y∣ − n) and x′ = x − n

[[x = replace(y, z,w)]] = ite(contains(y, z) ∧ z /= ϵ, x = z1 ++w ++ z2 ∧
y = z1 ++ z ++ z2 ∧ index of(y, z,0) = ∣z1∣, x = y)

Note: x ´ y = max(x − y,0)

November 7, 2023 CS257 41 / 54

Reasoning about High-Level Operators

SMT user: That’s great but now it’s too slow!

Iterate and Improve

• Extend the implementation to reason directly on the new operators

• How?
- Keep formulas with original operators
- Periodically try to simplify them based on new knowledge

November 7, 2023 CS257 42 / 54

Reasoning about High-Level Operators

Examples using contains

contains(l1, l2) → ⊺ if l1 contains l2

contains(l1, l2) → � if l1 does not contain l2

contains(l1, l2 ++ t⃗) → � if l1 does not contain l2

contains(l1, l2 ++ t⃗) → � if contains(l1 ∖ l2, t⃗) →
∗ �

contains(l1, x ++ t⃗) → � if contains(l1, t⃗) →
∗ �

contains(l1 ++ t⃗, l2) → ⊺ if l1 contains l2

contains(x ++ t⃗, s) → ⊺ if contains(t⃗, s) →∗ ⊺

contains(t ++ s⃗, t ++ u⃗) → ⊺ if contains(s⃗, u⃗) →∗ ⊺

contains(l1 ++ t⃗, l2) → contains(t⃗, l2) if l1 ⊔l l2 = ϵ

contains(t⃗ ++ l1, l2) → contains(t⃗, l2) if l1 ⊔r l2 = ϵ

contains(ϵ, t) = ⊺ → ϵ = t

contains(t⃗1 ++ l1 ++ t⃗2, l2) = ⊺ → ∨2
i=1contains(t⃗i, l2) = ⊺ if l1 ⊔r l2 = l1 ⊔l l2 = ϵ

November 7, 2023 CS257 43 / 54

Reasoning about High-Level Operators

SMT user: That’s great but I have a few really hard problems!

Iterate and Improve

• Supercharge the simplifier

• Many simplifications are conditional

• Build a mini-inference engine inside the simplifier to derive more conditions

November 7, 2023 CS257 44 / 54

Reasoning about High-Level Operators

Examples of Conditional Simplifications based on String Length

t = s → � if ⊢ ∣t∣ ≥ ∣s∣ + 1

t = s ++ r ++ q → t = s ++ q ∧ r = ϵ if ⊢ ∣s∣ + ∣q∣ ≥ ∣t∣

contains(t, s) → t = s if ⊢ ∣s∣ ≥ ∣t∣

substr(t, v,w) → ϵ if ⊢ 0 > v ∨ v ≥ ∣t∣ ∨ 0 ≥ w

substr(t ++ s, v,w) → substr(s, v − ∣t∣,w) if ⊢ v ≥ ∣t∣

substr(s ++ t, v,w) → substr(s, v,w) if ⊢ ∣s∣ ≥ v +w

substr(t ++ s,0,w) → t ++ substr(s,0,w − ∣t∣) if ⊢ w ≥ ∣t∣

index of(t, s, v) → ite(substr(t, v) = s, v,−1) if ⊢ v + ∣s∣ ≥ ∣t∣

November 7, 2023 CS257 45 / 54

Too Domain-Specific?
SMT user: Wow! - but after all that, I bet you really overfit to that one
symbolic execution domain, right?

Amazon Automated Reasoning Group:

• Hey! - we really like your string solver...

• ...and we are calling it a few billion times a day...

• to secure access control policies in the cloud for our customers!

November 7, 2023 CS257 46 / 54

Zelkova
(allow,
 principal : *,
 action : getObject,
 resource : cs240/*,
 condition : (StringEquals, aws:sourceVpc, vpc-111bbb222),
 (StringLike, s3:prefix, cs240/Exam*))

a = “getObject” Ù r = “cs240/*” Ù vpcExists Ù
 vpc = “vpc-111bbb222” Ù s3PrefixExists Ù
 “cs240/Exam” prefixOf s3Prefix

Security Policy

SMT Encoding

SMT Solvers (cvc5 and z3)

Strings and RegExp Bitvectors Arithmetic

November 7, 2023 CS257 47 / 54

One More Thing

Amazon Automated Reasoning Group:

• Just one small thing though...

• We use a lot of regular expressions

• I don’t suppose you could speed those up a bit?

November 7, 2023 CS257 48 / 54

Reasoning about Regular Expressions

Regular Expression Example

x∈ [0..9]∗ ++ "a" ++Σ∗ ++ "b" ++Σ∗

x/∈ [0..9]∗ ++ "a" ++Σ∗

Automata-based approach

x ∈ R1 x /∈ R2

x ∈ R1 ∩ comp(R2)

Problem

• Complement and interesection are expensive

November 7, 2023 CS257 49 / 54

Reasoning about Regular Expressions

Regular Expression Example

x∈ [0..9]∗ ++ "a" ++Σ∗ ++ "b" ++Σ∗

x/∈ [0..9]∗ ++ "a" ++Σ∗

Word-Based Approach

x= x1 ++ "a" ++ x2 ++ "b" ++ x3 ∧ x1 ∈ [0..9]
∗

∀x4, x5, x6. x= x4 ++ x5 ++ x6 → x4 /∈ [0..9]
∗
∨ x5 /= "a"

Problem: Leads to a non-terminating sequence of unfoldings:

x1 = ϵ ∨ x1 ∈ [0..9] ∨ (x1 = x7 ++ x8 ++ x9 ∧ x7 ∈ [0..9]∧

x8 ∈ [0..9]
∗
∧x9 ∈ [0..9])

November 7, 2023 CS257 50 / 54

Reasoning about Regular Expressions

Regular Expression Example

x∈ [0..9]∗ ++ "a" ++Σ∗ ++ "b" ++Σ∗

x/∈ [0..9]∗ ++ "a" ++Σ∗

Word-based approach with incomplete procedures

x ∈ R1 x /∈ R2 L(R1) ⊆ L(R2)

unsat

• Use fast, incomplete procedure to justify L(R1) ⊆ L(R2)

November 7, 2023 CS257 51 / 54

Proving L(R1) ⊆ L(R2)

L(ϵ) ⊆ L(R) L(R) ⊆ L(Σ∗)

∀x ∈ L(R). ∣x∣ = 1

L(R) ⊆ L(Σ)

L(R1) ⊆ L(R2) L(R2) ⊆ L(R3)

L(R1) ⊆ L(R3) L(R) ⊆ L(R∗)

L(R1) ⊆ L(R2)

L(R∗1) ⊆ L(R
∗

2)

L(R1) ⊆ L(R2)

L(R ++R1) ⊆ L(R ++R2)

c1 ≥ c3 c2 ≤ c4
L([c1..c2]) ⊆ L([c3..c4])

November 7, 2023 CS257 52 / 54

Reasoning about Regular Expressions

Regular Expression Example

x∈ [0..9]∗ ++ "a" ++Σ∗ ++ "b" ++Σ∗

x/∈ [0..9]∗ ++ "a" ++Σ∗

Reasoning about Language Inclusion

L(Σ∗ ++ "b" ++Σ∗) ⊆ L(Σ∗)

L([0..9]∗ ++ "a" ++Σ∗ ++ "b" ++Σ∗) ⊆ L([0..9]∗ ++ "a" ++Σ∗)

November 7, 2023 CS257 53 / 54

More Information

Strings Papers
• “A DPLL(T) Theory Solver for a Theory of Strings and Regular Expressions” by Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark

Barrett, and Morgan Deters. In Proceedings of the 26th International Conference on Computer Aided Verification (CAV ’14), (Armin Biere
and Roderick Bloem, eds.), July 2014, pp. 646-662. Vienna, Austria.

• “An Efficient SMT Solver for String Constraints” by Tianyi Liang, Andrew Reynolds, Nestan Tsiskaridze, Cesare Tinelli, Clark Barrett, and
Morgan Deters. Formal Methods in System Design, vol. 48, no. 3, June 2016, pp. 206-234, Springer US.

• “Scaling up DPLL(T) String Solvers Using Context-Dependent Simplification” by Andrew Reynolds, Maverick Woo, Clark Barrett, David

Brumley, Tianyi Liang, and Cesare Tinelli. In Proceedings of the 29th International Conference on Computer Aided Verification (CAV ’17),
(Rupak Majumdar and Viktor Kuncak, eds.), July 2017, pp. 453-474. Heidelberg, Germany.

• “High-Level Abstractions for Simplifying Extended String Constraints in SMT” by Andrew Reynolds, Andres Nötzli, Clark Barrett, and Cesare
Tinelli. In Proceedings of the 31st International Conference on Computer Aided Verification (CAV ’19), (Isil Dillig and Serdar Tasiran, eds.),
July 2019, pp. 23-42. New York, New York.

• “Even Faster Conflicts and Lazier Reductions for String Solvers” by Andres Nötzli, Andrew Reynolds, Haniel Barbosa, Clark Barrett, and

Cesare Tinelli. In Proceedings of the 34th International Conference on Computer Aided Verification (CAV ’22), (Sharon Shoham and Yakir
Vizel, eds.), Aug. 2022, pp. 205-226. Haifa, Israel.

Amazon’s Zelkova Tool
• J. Backes et al., “Semantic-based Automated Reasoning for AWS Access Policies using SMT,” 2018 Formal Methods in Computer Aided

Design (FMCAD), Austin, TX, 2018.

November 7, 2023 CS257 54 / 54

