CS257: Introduction to Automated Reasoning

Quantifier Instantiation

Stanford ® TR

SMT solvers

e Traditionally:

e In

November 29,

- Efficient decision procedures for quantifier-free constraints over theories:

- Arithmetic

- Uninterpreted functions (UF)

- Bitvectors

- Arrays

- Datatypes

- More recently: strings, floating points, sets, relations, ...

the past decade or so:

- Efficient (heuristic) techniques for quantified formulas as well
- Focus of this lecture.

2023 CS257

1/32

Applications of ¥ in SMT

Quantifiers are used for:
e Automated theorem proving:

- Background axioms: Vx,y.(x+y =y +x)
e Software verification:

- Unfolding: Vx.(foo(x) = bar(x +1))
- Code contracts: Vx.(pre(x) — post(f(x)))
- Frame axioms: Vx.(x >0 — f(x) =f(x+1))

e Function synthesis:
- Synthesis conjectures: Vi : input.Jo : output.R(o,1)
e Planning:

- Specifications: 3p: plan.Vt: time.R(p,t)

November 29, 2023 CS257 2/32

Today

e Herbrand Theorem
e Quantifier Instantiation (DP Ch. 9.5)

- Trigger-based instantiation strategies
- Other instantiation strategies:

> conflict-based instantiation
> model-based instantiation

Some of the slides are contributed by Andrew Reynolds.

November 29, 2023 CS257

3/32

Review: Clausal Form

We say a first-order logic formula is in Clausal Form if,
1. it is in PCNF;

2. it is closed (i.e., does not contain free variables); and

3. it only contains universal quantifiers.

Example: Vy.Vz.(p(f(y)) A=-q(y,z))

Given any first-order logic sentence ¢, one can transform ¢ into an equi-satisfiable formula ¢’
in clausal form

Example: Vx.(p(x) - 3y.q(x,y))

1. Eliminate implications: Vx.(-p(x) Vv 3y.q(x,y))
2. Skolemize (y = f,(x)): Vx.(=p(x) Vv q(x,f,(x)))

November 29, 2023 CS257 4/32

First-order satisfiability

Skolemization reduces the problem of first-order satisfiability to first-order satisfiability of
formulas in clausal form

Herbrand's Theorem will further reduce this (in a weaker sense) to propositional satisfiability

For now, assume we are dealing with formulas in clausal form

November 29, 2023 CS257 5/32

Herbrand Interpretation

Given a X-formula ¢, e.g.,
Vx. (=p(x) v a(x,&(x)))

there is no easy way to describe the set of possible interpretations (e.g., the definitions of
p,q, g can be arbitrary)

We define canonical interpretations called Herbrand interpretations, which have the following
property:

if ¢ is satisfiable, then there is a Herbrand interpretation that satisfies ¢

For simplicity, consider a signature ¥ := {¥° ¥} without equality, with one sort S (other than
Bool), and assume the arguments of function symbols have sort S:

e For f e XF, either sort(f) =(S,...,S) or sort(f) =(S,...,S,Bool)

November 29, 2023 CS257 6 /32

Herbrand Interpretation: domain

The first thing that an interpretation needs is the domain of sort S

Given a formula ¢. Let A be the set of constant symbols in ¢, and F be the set of function
symbols that have positive arities and return S

The Herbrand universe of ¢, Hy, is the set of well-sorted terms generated by F from A
If there are no constant symbols, initialize A with an arbitrary symbol a of sort S

Example: Consider formula ¢ := Vx.Vy.A, what is the Herbrand universe when:

o A:={{p(a),-p(b),q(x)},{-p(b),~q(y)}}

- Hy ={a, b}
o A:={{-p(x,f(y))} {p(x,8(x))}}

- Hy={a,f(a),g(a),f(f(a)).f(g(a)).g(f(a)).g(g(a)),-.}
o A= {{-p(a,f(x,y))},{p(b, f(x,y))}}

- Hy={a,b,f(a,a),f(a,b),f(b,a),f(b,b),f(a f(aa)),..}

November 29, 2023 CS257 7/ 32

Herbrand Interpretation: functions
The Herbrand universe, Hy is the domain of S in a Herbrand interpretation

Now that we have a domain, we need to define the function symbols:

e non-predicate functions: Define a’ as a € Hy, define fZ(a) as f(a) € H,

e Predicate symbols: can be defined arbitrarily (i.e., arbitrary relations of the appropriate
arities over Hy)

November 29, 2023 CS257 8 /32

Herbrand Bases and ground instances

An alternative way to view predicate symbols is through the lens of a Herbrand base

Given a formula «, a ground instance of « is the result of replacing every free variable in «
with an element of the Herbrand universe Hy

The Herbrand base for ¢, By, is the set of ground instances of atomic formulas in ¢

Example: Consider the third example from the previous slide
(b:: {{_'P(a7 f(va))}v{P(ba f(va))}}
Hd) = {a7 b7 f(a5 a)7 f(a’ b)7 f(b’ a)7 f(b’ b)7 f(a’ f(a7 a))? M }
B¢ : {p(a7 f(a7 a))’ p(a7 f(a’ b))’ p(a7 f(b7 a))’ p(a7 f(b7 b))7 R
p(b,f(a,a)),p(b,f(a,b)),p(b,f(b,a)),p(b,f(b,b))...}
A predicate symbol in a Herbrand interpretation can be defined as a subset of By, containing
those instances of the predicate which evaluate to T
For example, {p(b,f(a,a)),p(b,f(a,b)),p(b,f(b,a)),p(b,f(b,b))}

Note: we call a formula/term that does not contain variables a ground formula/term

November 29, 2023 CS257 9 /32

Herbrand Bases and ground instances

An alternative way to view predicate symbols is through the lens of a Herbrand base

Given a formula «, a ground instance of « is the result of replacing every free variable in «
with an element of the Herbrand universe Hy

The Herbrand base for ¢, By, is the set of ground instances of atomic formulas in ¢

Exercise: What is the Herbrand base of the following formula:

o= {{-p(x,f(¥)}}
Hy = {a,f(a),f(f(a)),...}
B¢ = ?

Submit your answers to

https://pollev.com/andreww095

November 29, 2023 CS257 10 / 32

https://pollev.com/andreww095

Herbrand Models are Canonical

Theorem: if ¢ (a formula in clausal form) is satisfiable, then there is a Herbrand interpretation
T that satisfies ¢

Note: Z (first-order) satisfies ¢ := VX.A iff every ground instance of A is satisfied by Z

Proof sketch: Let J be an interpretation s.t. J = ¢, we define a Herbrand interpretation 7
based on J and show that 7 & ¢.

We only need to define R” for each predicate symbol R in ¢ Let e’ be the evaluation function
associated with J. Recall
e For each variable v, e’(v) = v7.

e If ty,...,t, are terms and f is an n-ary function symbol, then
el(fty,... . ty) = fl(el(t1),..., el (ts)).

We define R by the following subset of Herbrand base
{R(t1,....t)) | RI(e’(t1),...,e’(ts)) =T}

One can then show that 7 ¢.

Details can be found in Chap. 9.3 of “Mathematical Logic for Computer Science” by Ben-Ari
November 29, 2023 CS257 11 /32

Herbrand’s Theorem

We say a quantifier-free sentence is propositionally satisfiable if its boolean skeleton is
satisfiable

Theorem: A formula ¢ := Vx.A is first-order satisfiable iff the set of all ground instances of A
is (simultaneously) propositionally satisfiable.

Proof: Suppose ¢ is first-order satisfiable. Then there is some Herbrand interpretation Z s.t.
T = ¢. For each ground instance gr of an atomic formula in A, we associate it with a
propositional variable p,.. We give a variable assignment d over the set of all such
propositional variables based on Z. In particular, d(p,) =T iff e*(gr) = T.

We show that d propositionally satisfies any ground instance Ag of A.

By definition of first-order satisfiability, Z satisfies Ag, and for each (ground) clause C in Ay,
there is a (ground) literal ¢ that is satisfied by Z. This means the propositional literal
corresponding to ¢ must evaluate to T under d. Thus, d satisfies the boolean skeleton of C,
and in turn, of Ag.

November 29, 2023 CS257 12 /32

Herbrand’s Theorem

Theorem: A formula ¢ := Vx.A is first-order satisfiable iff the set of all ground instances of A
is (simultaneously) propositionally satisfiable.

Proof (continued): Conversely, suppose d is a variable assignment propositionally satisfying all
ground instances of A.

We can define a Herbrand interpretation Z using the following subset of the Herbrand base:
{gr | d(pgr) =T, gre By}
We claim that Z & ¢. That is, any ground instance Ag is satisfied by Z.

This is true because for any (ground) clause C in Ay, there must be a literal ¢ whose
corresponding propositional literal evaluates to T under d, which means £ is satisfied and in
turn C satisfied. a

November 29, 2023 CS257 13 /32

Herbrand’s Theorem

Compactness Theorem of Propositional Logic: a set of propositional logic formula is satisfiable
iff every finite subset of it is satisfiable.

The following corollary follows from the Compactness Theorem.

Corollary: A formula ¢ := VX.A is first-order satisfiable iff every finite set of ground instances of
A is propositionally satisfiable.

Herbrand's Theorem (second form): A formula ¢ := VX.A is first-order unsatisfiable iff some
finite set of ground instances of A is propositionally unsatisfiable.

November 29, 2023 CS257 14 / 32

Herbrand’s Theorem

Herbrand’s Theorem (second form): A formula ¢ := VX.A is first-order unsatisfiable iff some
finite set of ground instances of A is propositionally unsatisfiable.

This leads naturally to a procedure for proving the unsatisfiability of ¢

We can enumerate larger and larger sets of ground instances of A and test them for
propositional satisfiability

If we find a set of ground instances that is propositionally unsatisfiable, then ¢ is first-order
unsatisfiable

This process of generating ground instances to check for satisfiability is called quantifier
instantiation

This is (basically) how quantifiers are handled by SMT solvers!

Note: if we guarantee that all finite sets of ground instances are eventually tried, then this
gives us a semi-decision procedure for validity of first-order formulas

November 29, 2023 CS257 15 / 32

Quantifier Instantiation in SMT solvers

Quantifiers in formulas are generally handled by SMT solvers through instantiations
capitalizing on their capability to handle large ground formulas

Note: we will focus on the case where the background theory is T_, the theory of uninterpreted
functions with equality

So far, we focused on the scenario of checking the satisfiability of a single formula in clausal
form

Let us switch viewpoints and consider a more typical scenario in SMT: we want to check the
satisfiability of a set of ground formulas E in conjunction with a set of quantified formulas @
(in clausal form)

To prove unsatisfiability, try to generate a set of ground formulas E’ by instantiating the
universally quantified variables in @ in order to reach a contradiction with E

An instantiation can be defined by a substitution, a mapping from variables to ground terms

November 29, 2023 CS257 16 / 32

Quantifier Instantiation: Motivating Example

Suppose we want to prove
f(h(a),b) = f(b, h(a))

under the assumption that
Vx.Vy.(f(x,y) = f(y,x))

Presenting this as a satisfiability problem, we need to show that the following formula is
unsatisfiable:

Vx.Vy.(f(x,y)=f(y,x)) ~ f(h(a),b)=f(b,h(a))

What should we instantiate x and y with? {x — h(a),y — b}
Check T_-satisfiability of

f(h(a),b) =f(b,h(a)) ~ f(h(a),b)+f(b,h(a))

November 29, 2023 CS257 17 / 32

DPLL(T)-Based SMT Solvers

Conflicts,
lemmas

Partial

T-Clauses F | Fy| .| F,
|
Quantifier-free Solver

Th

SAT solver [+—i eory
solver(s)

...when F is ...when M is

unsatisfiable T-satisfiable

November 29, 2023

assignment M

CS257

18 / 32

DPLL(T)-Based SMT Solvers + V¥ Instantiation

Partial
assighnment M

T-Clauses F
|
Quantifier-free Solver

Theor

SAT solver v
solver(s)

...when F is ...when M is

unsatisfiable T-satisfiable

November 29, 2023

CS257

When M contains quantified
formulas...

...cannot use quantifier-free solver
for establishing M is sat

19 / 32

DPLL(T)-Based SMT Solvers + V¥ Instantiation

T-Clauses F
|
Quantifier-free Solver . Ground formulas:
E
Theory Partial eg., f(a)=b,P(a)=T
SAT solver [—i so|ver(5) assignment M ﬂ Quantiﬁed formulas:
e.g., Vx.P(x)

...when F is ...when M is
unsatisfiable T-satisfiable

November 29, 2023 CS257 20 /32

DPLL(T)-Based SMT Solvers + V¥ Instantiation

T-Clauses F

l

Quantifier-free Solver

SAT solver [+—

Theory
solver(s)

Partial
assighment M

..when F is
unsatisfiable

November 29, 2023

CS257

V Solver

Instantiations

..when M is
T-satisfiable

21 /32

Quantifier Instantiation: Motivating Example

We wanted to show that the following formula is unsatisfiable:
VxVy.(f(x,y) =f(y,x)) A f(h(a),b)+f(b,h(a))

One successful instantiation substitutes x with h(a), and y with b

In principle, to find a successful instantiation, we could enumerate the corresponding Herbrand
universe, but it is too large.

It seems to be a good idea to limit ourselves to terms already in E

November 29, 2023 CS257 22 /32

Quantifier Instantiation: Strategies
Let VX.9) A E be the formula that we attempt to prove to be unsatisfiable
A naive strategy: instantiate x with all the terms in E of the same sort
Can lead to an exponential number (in |X|) of added ground terms
For example:

Vx.Vy.(f(x,y)=f(y,x)) ~ f(h(a),b)=+f(b,h(a))

x and y can be instantiated with a, b, h(a), f(h(a), b), (b, h(a)), yielding 25 new predicates

November 29, 2023 CS257 23 /32

Quantifier Instantiation: Strategies

A better strategy: instantiate X to match existing terms in E

e For a quantified formula Vx.1), select subterms {t1,...,t,} in ¢ that contain references to
all variables in X

- these terms are called triggers
- In Vx.Vy.(f(x,y) = f(y,x)), both f(x,y) and f(y,x) can be triggers

e Try to match a trigger tr to an existing ground term gr in E
- Matching f(x,y) to f(h(a), b) yields the substitution s = {x — h(a),y — b}
e Check the satisfiability of ¢)[s] A B

- 1[s] denotes the ground formula resulting from substituting s for X in 1

November 29, 2023 CS257 24 /32

Example
Suppose we want to prove
b=c—f(h(a),g(c))=f(g(b),h(a))
under the same assumption that
VxVy.(f(x,y) = f(y,x))
Cast in terms of satisfiability, we need to prove the unsatisfiability of
VxVy.(f(x,y) =f(y,x)) A b=c a f(h(a),g(c))*f(g(b),h(a))

Select f(x,y) as the trigger. Can match f(x,y) to f(h(a),g(c)) with the substitution
{x+— h(a),y — g(c)} orto f(g(b),h(a)) with {x— g(b),y — h(a)}. Now we check the
T_-satisfiability of

f(h(a),g(c)) = f(g(c), h(a)) ~
f(g(b),h(a)) = f(h(a),g(b)) A
b=c ~ f(h(a),g(c))*r(g(b),h(a))

November 29, 2023 CS257 25 /32

Example (cont.)
Now we check the T_-satisfiability of
f(h(a), g(c)) = f(g(c),h(a)) A

f(g(b),h(a)) = f(h(a),g(b)) A
b=c n f(h(a),g(c)) # f(g(b), h(a))

Unsatisfiable: thus the instantiation is successful
In fact, the first substitution is already enough

How eagerly we should add the terms is a heuristic choice

November 29, 2023 CS257

26 / 32

Quantifier Instantiation: Strategies

Current strategy: instantiate X to match existing terms in E

Sometimes, the instantiations necessary for proving unsatisfiability are not based on terms in
the existing formulas

Consider the formula
Vx.p(x,b) A b=c A -p(ac)

Suppose we select trigger p(x, b), we cannot match it with any ground terms
A successful instantiation would be p(a, b)

A more flexible matching strategy (E-Matching): find a substitution s for trigger tr, such that
E =_ tr[s] = gr for some ground term gr in E

Need knowledge about equalities between terms in E, which can be obtained with the
Congruence Closure algorithm

November 29, 2023 CS257 27 /32

E-Matching: Challenges

e Too many instances

- Typical real problems: hundreds of V in @, and thousands of terms in E
- Can add millions of ground instances
- Need heuristics to select triggers and control eagerness

e Incompleteness

- (Vx.(f(2x=x) <x)) A (f(a) = a)
Without rewriting 2x — x to x, E-Matching cannot find the correct instantiation

- (Yxf(x) =f(g(x))) rf(g(a)) =a
Can get stuck in infinite loops and cannot conclude sat

November 29, 2023 CS257 28 /32

Beyond E-Matching
Challenges

e Too many instances

e Incompleteness

Many techniques have been proposed to tackle the above two challenges.

We briefly survey two of them:
o Conflict-based instantiation [Reynold'2014]

e Model-based instantiation [Ge'2009]

November 29, 2023 CS257

29 / 32

Conflict-based Instantiation
Search for one instance of one quantified formula in Q that makes E unsatisfiable
o £={-P(a),~P(b),P(c),~R(b)} and
Q = {¥x.(P(x) v R(x))}
Since E, P(b) v R(b) E L, returns x — b

More generally, given E, VX.¢
returns s s.t. E E —¢[s] or & otherwise

Detecting such conflicts can be computationally expensive (NP-Complete)

In practice, only look for “shallow” conflicts and avoid exponential behaviors

Reynolds et al. “Finding Conflicting Instances of Quantified Formulas in SMT"”, FMCAD, 2014

November 29, 2023 CS257 30/ 32

Model-based Instantiation

If E is T-satisfiable, build a candidate interpretation Z where Z £ E
check if M also satisfies Q using a quantifier-free satisfiability query
Gives us ability to answer “sat”

o E= {_‘P(a)7 P(b)v_‘R(b)a_‘R(C)v R(a)} and

Q={Vx.(P(x)vVR(x))}

o PL:=ite(x=a,l,ite(x=b,T,ite(x=c,T,T)))
RT :=ite(x=a,T,ite(x=b,1,ite(x =c, 1,T)))
Check satisfiability of —~(PZ(x) v RZ(x))

If unsatisfiable, 7 also satisfies @

If satisfiable, refine the model with the counter-example found and try again

Ge and de Moura. “Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories”,
CAV, 2009

November 29, 2023 CS257 31/32

Quantifier Instantiation: Summary

In practice, all the aforementioned strategies are used. One possible order is the following:
1. Conflict-based instantiation
if successful, return UNSAT, otherwise, go to step 2

2. E-matching
check the resulting ground formulas E and construct candidate model Z

3. Model-based instantiation
check whether Z is a model for both E and @

Other instantiation strategies exist:

e Counter-example guided:
Reynolds et al. "Counterexample-Guided Quantifier Instantiation for Synthesis in SMT",
CAV 2015

e Enumeration-based:
Reynolds et al. “Revisiting Enumerative Instantiation”, TACAS 2018

November 29, 2023 CS257 32/32

