CS 257: Introduction to
Automated Reasoning

Model Checking, Bounded Model Checking, K-Induction, Interpolation

Outline

 What is Model Checking?

* Modeling: Transition Systems
* Specification: Linear Temporal Logic

 Historical Verification Approaches
* Explicit-state
* BDDs
» SAT/SMT-based Verification Approaches

* Bounded Model Checking
e K-Induction

* Inductive Invariants

* Many of the slides today are contributed by

https://makaimann.github.io/

What is Model Checking?

Model Spec
* Approach for verifying the temporal behavior

of a system ‘ l

* Model: Representation of the system

* Specification: High-level desired property of Model Checker
system

e Considers infinite sequences y %
Example optional

Modeling: Transition System

* Model checking typically operates over Transition Systems
* A (symbolic) state machine

* A Transition System is (S, I, T)
» S:aset of states
e [: aset of initial states (sometimes use Init instead of I for clarity)

e T:atransition relation: T € XS
* T(sp, s1) holds when there is a transition from s, to s;

Symbolic Transition Systems in Practice

 States are made up of state variablesv € V
* A state is an assignment to all variables

* A Transition System is (V,I, T)
» I/: a set of state variables, V' denotes next state variables
e |: aset of initial states

e T: atransition relation
« T(vg, ..., Up, V§, ---, Vp) holds when there is a transition

* Note: will often still use s to denote symbolic states (just know they’re made up of
variables)

* Symbolic state machine is built by translating another representation
e E.g. a program, a mathematical model, a hardware description, etc...

Symbolic Transition System Example

* 2 variables: V = {vy, v;}
° SO = TV AN —V1, Sl = TV N\ (%1

° Sz = Vyp N —Vq, 53 = Vp N\ (%1 /
SO
* Transition relation \

(~vg A —vq) = ((=vg Avy) V (vg A =v1)) A
(Avg Avy) = (Vg Avy) A

(Vg A—11) = (Vi A V) A

(Vo Av1) = (Vg Avy)

S1

S2

E

Modeling: Transition System Executions

* An execution is a sequence of states that respects I in the first state
and T between every adjacent pair

* T =Sy S, ..Sy is a finite sequence if I(sg) A A= T(S;_1,S;)

Meta Note: State Machine vs Execution
Diagrams

State Machine uses capitals Symbolic execution uses lowercase

A

S1 » S3

7
.

S2

sO0 — s1 — s2 —> s3

Concrete Execution:

s0=S0, s1=S2, s2=S53, s3=S3

Specification: Linear Temporal Logic (LTL)

* Notation: M E f
* Transition system model, M, entails LTL property, f, for ALL possible paths
* i.e. LTL is implicitly universally quantified

* Other logics include

e CTL: computational tree logic (branching time)
e CTL*: combination of LTL and CTL
 MTL: metric temporal logic (for regions of time)

Specification: Linear Temporal Logic (LTL)

e Atomic state property P € S:
* Holdsiffs, € P

* Next P: X(P)
P holds Next time

e Also written op
e True iff the next state meets property P

* Invariant P: G(P)
* P Globally holds

e Also written op
* True iff every reachable state meets

property P

Specification: Linear Temporal Logic

* Eventually P: F(P) 0 — > s1 — 2 s
* P holds in the Future

* Also written $p P
* True iff P eventually holds

e P1 Until P2: P1 U P2
 P1 holds until P2 holds

* True iff P1 holds up until (but not
necessarily including) a state where
P2 holds

* P2 must hold at some point

P1 P1 P2

Specification: Linear Temporal Logic

* LTL operators can be composed
. G(Req = F(Ack))

* Every request eventually acknowledged

* G(F(DeviceEnabled))

* The device is enabled infinitely often (from every state, it’s eventually enabled again)
* F(G(—Initializing))

* Eventually it’s not initializing

* E.g. there is some initialization procedure that eventually ends and never restarts

Specification: Safety vs. Liveness

e Safety: “something bad does not happen”
* State invariant, e.g. G(—bad)

* Liveness: “something good eventually happens”
* Eventuality, e.g. GF(good)

* Fairness conditions
* Fair traces satisfy each of the fairness conditions infinitely often
e E.g. only fair if it doesn’t delay acknowledging a request forever

* Every property can be written as a conjunction of a safety and
liveness property

Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters, 21(4):181-185, October 1985.

Specification: Liveness to Safety

* Can reduce liveness to safety checking

 For SAT-based:

Armin Biere, Cyrille Artho, Viktor Schuppan. Liveness Checking as Safety
Checking, Electronic Notes in Theoretical Computer Science. 2002

* Several approaches for first-order logic

* From now on, we consider only safety properties

Historical Verification Approaches: Explicit
State

* Tableaux-style state exploration

* Form of depth-first search

* Many clever tricks for reducing search space

* Big contribution is handling temporal logics (including branching time)

Historical Verification Approaches: BDDs

 Binary Decision Diagrams (BDDs)
* Manipulate sets of states symbolically

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang. Symbolic
Model Checking: 104 States and beyond

* Great BDD resource

http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/somenzi99bdd.pdf
http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/somenzi99bdd.pdf

Historical Verification Approaches: BDDs

Binary Decision
Diagram

* Represent Boolean formula as a decision

diagram P T
. / F \
* Example: (x;Ax3) V (X3 A Xxy) _—m

* Can be much more succinct than other \
representations » : T
AF/ \TA F X4)
Binary c X2 . X / \.i
Decision Tree o AW P/ N F T
X3 = X3 X3

Credit for Example: Introduction to Formal Hardware Verification — Thomas Kropf

Historical Verification Approaches: BDDs

BDD Operators

* Negation
* Swap leaves (F 2 T)
* AND

* All Boolean operators implemented
recursively

* These two operators are sufficient

S

F

n
ot
—
:-l'l
:
o
—
¥ <
_.'

Vd
left(f) right(f) left(f,) right(£,) left(f)wleft(f2) right(f)seright(f,)

i w f2 ==

2

left(f,) right(fy) left(f) rght(fy) let(f)% S fight(f,) % f

pAs —_—

T
:%

:_|

n
:”

:_|

:Tl
<

-

Index 1

F T F F T F
Index 2
T A ﬁ)\‘
F T F F T F
Reduction
Index 3 ﬁ:@\ &D\
F T F
T F F T F

Fig. 2-7. AND-Operation between x,vx, and x,—x;

ety rghte/) (s SR s frseright(f2) Image Credit: Introduction to Formal Hardware Verification — Thomas Kropf

f@) = @Af|Ivraf])

BDDs: Cofactoring

* fl_x, for BDD f is fixing x, to be negative

Redirect incoming edges
to assignment (F)

x1 xl /
Py R e
F 7 F / remove

After reduction

Credit for Example: Introduction to Formal Hardware Verification — Thomas Kropf

. BDD image computation is based on the idea

B D D | m a ge CO m p U tat I O n that all reachable next states are either
already in R or they are the result of applying
the transition function to some set of states V

* Current reachable states are BDD R In R to reach the set of states V-

e Over variable set V T(V,V") AR(V) using BDD operations.
- Then, use cofactoring operation to
° Compute next states with: remove (non-next state) state-variables.

e N = 3V T(V; V’) N R(V) T R, and N are all BDDs
e Existential is implemented cofactoring: 3x; . f (..., x;, ...) == f(...,F,...) V

fC, T,)
L
Grow reachable states ...

*R=RVNI[V'/V] to state variables V
* Map next-state variables to current state, then add to reachable states

BDD-based model checking

e Start with R = Init
* Keep computing image and growing reachable states
* Stop when there’s a fixpoint (reachable states not growing)

e Can handle ~104Y states
* More with abstraction techniques and compositional model checking

BDD: Variable Ordering

e Good variable orderings can be exponentially more compact
* Finding a good ordering is NP-complete

* There are formulas that have no non-exponential ordering

BDD for the function f(x4, ..., Xg) = X1X2 + X3X4 + X5Xg + X7Xg using bad variable ordering o Good variable ordering o

Image Credit: https://en.wikipedia.org/wiki/Binary decision diagram

https://en.wikipedia.org/wiki/Binary_decision_diagram

SAT-based model checking

e Edmund Clarke

* One of the founders of model checking
* SAT solving taking off

* Clarke hired several post-doctoral students to try to use SAT as an
oracle to solve model checking problems

 Struggled for a while to find a general technique
* What if you give up completeness? - Bounded Model Checking

Armin Biere, Alessandro Cimatti, Edmund Clarke, Yunshan Zhu.
Symbolic Model Checking without BDDs. TACAS 1999

Bounded Model Checking (BMC)

* Sacrifice completeness for quick bug-finding

* Unroll the transition system

* Each variable v € V gets a new symbol for each time-step, e.g. v is v
at time k

* Space-Time duality: unrolls temporal behavior into space

* For increasing values of k, check:
* [(s) A N2y T(si—1,5:) A =P (sy)
 |f it is ever SAT, return FALSE

* Can construct a counter-example trace

BMC Graphically

I(SO) P(Sk)?
So —> S1 —> So —> e —P> Sk
So must be an initial state Check if it can violate the

property at time k

Bounded Model Checking: Completeness

 Completeness condition: reaching the diameter

* Diameter: d
* Depth needed to unroll to such that every possible state is reachable in d steps or less

rd(M) := min{i|¥so,...,Si+1. 350, -, 5}- . 3)
1(s0) A Njmo T (555 j1) = (L(sp) AN T(85871) AVjmo s = sie1)}

* Recurrence diameter: d,

* The depth such that every execution of the system of length = d,- must revisit states
e Can be exponentially larger than the diameter

i—1 i—-1 i
rdr(M) == max{i| 3so...si. 1(so) A \ T(sjrsjs1) A\ /\ 55 # s} 4)
j=0 J=0k=j+1

*d,=>d

* Very difficult to compute the diameter

* Requires a quantifier: find d such that any state reachable at d 4+ 1 is also reachable
in < d steps (replace “i” with “d” in equation (3) above)

K-Induction

* Extends bounded model checking to be able to prove properties
e Based on the concept of (strong) mathematical induction

* For increasing values of k, check:

* Base Case: I(sg) A /\}é‘:1 T(s;_1,S;) N P(sg)
Inductive Case: (/\i-‘jll T(si—1,5) AP(si_1)) A =P(Sks1)
If base case is SAT, return a counter-example

If inductive case is UNSAT, return TRUE
Otherwise, continue

Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. Checking safety properties using induction and a SAT-solver. FMICAD 2000

K-Induction Graphically

I(so) P(sy)?

Base Case
So —* S1 —* S o T* Sk

So must be an initial state
P(so) P(sy) P(s2) P(si) P(sk+1)7?

. Hm —»Q—» Sk+1 Inductive Case

Arbitrary starting state s,
such that P(s,) holds

K-Induction: Simple Path

* This approach can be complete over a finite
domain

* requires the simple path constraint
e each state is distinct from other states in trace

* |f simple path is UNSAT, then we can return true

-------------- » : not equal

__——-_______’__‘::::‘_‘.‘_—. ~~~~~~~~~~~~~~~~~~~~~~~~~
T 'I// ~~~~~\“\\:‘
sO —— sl Ny

4
~, 70N,
~.
~~~~~~~~~~~~~~~
______________________

-
~o g
~ -

S~ -
~~~~~~
———————

K-Induction: Simple Path

* This approach can be complete over a finite Why?
domain

* requires the simple path constraint
e each state is distinct from other states in trace

* |f simple path is UNSAT, then we can return true

.............. > : not equal

—————
- ~
- S~
- ~,

\ Without simple path, inductive step could get:

~~~~~~~~~~~
~~~~~~~~~~~~
—————————————————————————

’
~.

~ -

~ -
~ -
~o -
~ -
-
~< -
~ -
~—— -

K-Induction Observation

* Crucial observation
* Does not depend on direct computation of reachable state space

* Beginning of “property directed” techniques
* We do not need to know the exact reachable states, as long as we can
guarantee they meet the property

* “Property directed” is associated with a family of techniques that build
inductive invariants automatically

Inductive Invariants

* The goal of most modern model checking algorithms

* Over finite-domain, just need to show that algorithm makes progress,
and it will eventually find an inductive invariant
* In the worst case, the reachable states are themselves an inductive invariant
* Hopefully there’s an easier to find inductive invariant that is sufficient

* Inductive Invariant: I1 State space
* Init(s) = ”(S) Property
° T(S, S') N\ II(S) = II(S') Simple Inductive
o II(S) = P(S) Invariant

Reachable

States

Advanced Algorithms

* Interpolant-based model checking
* Constructs an over-approximation of the reachable states
* Terminates when it finds an inductive invariant or a counterexample

* IC3 /PDR

* Computes over (under) approximations of forward (backward) reachable
states

* Refines approximations by guessing relative inductive invariants
* Terminates when it finds an inductive invariant or a counterexample

Building Blocks: Approximations

* Problems
* Explicit reachability computation (e.g. BDDs) is difficult
* Inductive invariants are difficult to find

 Solution (motivation for approximations)
* Build approximations of reachable states
* lteratively refine it until inductive

What is an approximation?

e Actual reachable state set: R

* Over-approximation, O: R = 0O
* Proofs on over-approximation holds
* Counterexamples can be spurious

Over-approximation

* Under-approximation, U: U — R Exact States
* Proofs on under-approximation can be spurious
e Counterexamples are real Under-approximation

Craig Interpolation

e Given an unsatisfiable formula, A A B

* Craig Interpolant, I
e A1
[A B is UNSAT
« V(1) S V(A)NV(B)

* Where V returns the free variables (uninterpreted constants) of a formula

* We can use interpolants as over-approximations of 4

Obtaining Craig Interpolants

* Mechanical over SAT
e Label clauses in the proof
* Some straightforward post-processing

 Non-trivial for SMT

* But there are solvers that support it
e MathSAT
e Smt-Interpol
* CVC4 — through SyGusS

K. L. McMillan, Interpolation and SAT-based Model Checking, CAV 2003

Interpolant-based Model Checking

* Big picture
e Perform BMC

* |teratively compute and refine an over-approximation of states reachable in k
steps

* |f it becomes inductive, you're done

Interpolants for Abstraction from BMC Run

e Obtain interpolant, I, from an unsat BMC run with A and B as shown below

e Useful properties
* | over-approximates A, i.e. states reachable in one-step from Init: A — |

. BI?\IeSrETare no states reachable in k — 1 steps from I that violate the property: I A B

* [only contains symbols from one time step (time 1): V(I) € V(A)NV(B)

Init AT(sg, S1) T(s1,S2) A+ AT(Sk—1,Sk) N P(sg)

From UNSAT A A B, Craig Interpolant, I:
A-1
I N B is UNSAT
V() < VANV (B)

Interpolant-based Model Checking

Initialize R to the
initial states.

A = set of states
reachable in 1
step from R.

If it is and R = Init, return
false. True counterexample.

Otherwise, increment, reset
R to Init and restart. We
may have found a spurious
counterexample.

We reached a fixed point where R

if check(Init AT(sy,51) A (=P(sy) V —P(s;)) Base case: Check if s, or s, violate P
return False
k=2

B = Represents a violation of the property P in
R = Init K-1 steps from the states represented by A.

while True
A =RAT(sy,81), B ==P(si) AN T (53, 8i41)
if check(AAB)

if R == Init Check to see if P is violated is K
steps from R.
return False P
else
R = Init If A and B is UNSAT, we find an interpolant I. Recall that I
k++ over-approximates A, i.e. states reachable in one-step

from R: 4 - I. Also, there are no states reachable in k —

else 1 steps from I that violate the property: I A B UNSAT.

I = get_interpolant()
R=RVI[1/0] // map symbols at 1 to symbols at ©

if —check(RA T(SO' s1) A =R) Check to see if R AT(sy,s;) — R isvalid. l.e., check to see if

s (e aE i, W daund o return True RI’/]\‘ Th(so, S1) /\h—.R is SAT. IfoNSAT, thgl;/aludlty cheF;:k holds
invariant and proved the property. which means the transition tunction will not grow R.

Interpolant-based Model Checking Example

if check(Init AT (sy,S51) A (=P(sy) V =P(s1))
return False

* Check to see if initial states or
states reachable in 1 step violate P

1 —, S6 . S7
/' /55
SO — S2 X//////// \\\\iIEEI‘;>

Init: SO NG 7
Bad: P = =59

s3 S8

Y N

S4

Interpolant-based Model Checking Example

if check(Init AT (sy,S51) A (=P(sy) V =P(s1))
return False

* Check to see if initial states or
states reachable in 1 step violate P

Sl Jj— S6 . S7
/' /55
SO —— S2 K//////// \\\\iIEEI‘;>

Init: SO N 7
Bad: P = =59

s3 S8

U A

S4

Interpolant-based Model Checking Example

k =2; R = Init
while True
* k=2 A =R AT(s0,51),B = =P(si) AN T(50541)
if check(AAB)
oL ——, S6 Y
/ S5
S2
R: over-approx ! /
Bad: P = =59
53 S8

Y N

Interpolant-based Model Checking Example

e Start — can’t violate in 2 steps

R: over-approx
Bad: P = =59

S4

R = Init

while True
A =RAT(S,51),B = =P(sp) NN T (55, Si41)
if check(AAB)

S6 » S7

7

S8

Interpolant-based Model Checking Example

I = get_interpolant()

ek=2

R: over-approx
Bad: P = =59

R=RVI[1/0] // map symbols at 1 to symbols at ©
if —check(R AT(sy,s1) A—R)
return True

S4

S6

v

S7

S8

From UNSAT A A B, Craig Interpolant, I:
A-1
I N B is UNSAT
V() € VANV (B)

Interpolant-based Model Checking Example

k=2

R: over-approx
Bad: P = =59

S4

while True
A = RAT(S,51),B = =P(sp) AN T (st Si41)
if check(AAB)

S6 » S7

S8

From UNSAT A A B, Craig Interpolant, I:
A-1
I A B is UNSAT
V() € VANV (B)

Interpolant-based Model Checking Example

I = get _interpolant()

R=RvVI[1/0] // map symbols at 1 to symbols at ©
e k=2 if —check(R AT(sp,s;) A —R)
return True

S8

R: over-approx
Bad: P = =59

é From UNSAT A A B, Craig Interpolant, I:

A- 1
I A B is UNSAT
V(i) €< V(A)NV(B)

Interpolant-based Model Checking Example

k=2

R: over-approx
Bad: P = =59

I = get _interpolant()
R=RvVI[1/0] // map symbols at 1 to symbols at ©
if —check(R AT(sy,s1) A—R)
return True

e @;&
S8

é From UNSAT A A B, Craig Interpolant, I:

A- 1
I A B is UNSAT
V(i) €< V(A)NV(B)

Interpolant-based Model Checking Example

e %
S8

e k=2, can reach S9 in 2 steps from R

R: over-approx
Bad: P = =59

if check(AAB)
if R == Init
return False

else
R = Init
K++

Interpolant-based Model Checking Example

e k = 3, restart with R = Init and increment K

L s6 > 57
/ S5
S2
R: over-approx | /
Bad: P = =59
s3 S8

U A if check(A AB)
if R == Init
return False
else
R = Init
k++

Interpolant-based Model Checking Example

e k = 3, restart with R = Init and increment K

R: over-approx
Bad: P = =59

S4

S6 » S7

7

S8

R = Init

while True
A =R AT(Sp,81),B =P (s) A /\?:_11 T(si)Si+1)
if check(AAB)

Interpolant-based Model Checking Example

I = get_interpolant()

*k=3

R: over-approx
Bad: P = =59

R=RVI[1/0] // map symbols at 1 to symbols at ©
if —check(R AT(sy,s1) A—R)
return True

S4

S6

v

S7

S8

From UNSAT A A B, Craig Interpolant, I:
A-1
I N B is UNSAT
V() € VANV (B)

Interpolant-based Model Checking Example

S6

R: over-approx
Bad: P = =59

/\' R = Init

S4 while True
A =R AT(sp,51),B = =P(s) AN T(Si,Si41)
if check(AAB)

Interpolant-based Model Checking Example

* k = 3, interpolant guarantees property not violated in k-1 = 2 steps

[S6 - » S7

R: over-approx

Bad: P = =59 S8

From UNSAT A A B, Craig Interpolant, I:
A-1
I A B is UNSAT
V(i) €< V(A)NV(B)

Interpolant-based Model Checking Example

* Terminate with True! We reached a fixed point!

S6 > S7 i

S8

R: over-approx
Bad: P = =59

é if —check(R AT(sy,51) A—=R)

return True

Interpolant-based model checking

* Advantages
* Approximate reachability
* Clever refinements

e Disadvantages
* Requires unrolling (can become expensive)
* Needs to restart every time k is incremented
* Refinements are clever, but not directly targeting induction

