CS257: Introduction to Automated Reasoning
First-order logic: Syntax

Stanford ® TR

Motivation

Consider reasoning about the following sentences in propositional logic.

English prop. logic
Every natural number is larger than 0 K
Not every natural number is larger than O -K

What facts can we logically deduce?

Propositional logic is sometimes too crude to mirror intuitively correct deductions.

First-order logic allows us to (dis)prove the validity of sentences like the above.

In this case, we need a first-order language for number theory.

October 16, 2023 CS257

1/21

Motivation

“Every natural number is larger than 0.”

Intuitively, this first-order language needs to have the following features:

English Formal language
The number 0 0 e
“vy is greater than v" > VpVp e e
“For every natural number” v

Quantifier

October 16, 2023 CS257 2/21

Motivation

“Every natural number is larger than 0.”

Intuitively, this first-order language needs to have the following features:

English Formal language
The number 0 0
“vy is greater than v" > V1V2
“For every natural number” v

“Every natural number is larger than 0."” translates to ¥V v; > v10

This sentence is false in the intended translation.

October 16, 2023 CS257

3/21

Plan for this week

e Syntax (Ml 2.1)
e Semantics (Ml 2.2)
e Proof rules for first-order logic (CC 2.3)
e Clausal Form (CC 2.5)
MI presents an single-typed first-order logic.
We will present a many-sorted first-order logic (FOL).
This makes it convenient to present (starting Week 4).

Many-sorted FOL is not more expressive than single-sorted FOL.
See MI 4.3 for reducing many-sorted logic to a single sorted one.

* Some of the slides today are contributed by Clark Barrett.

October 16, 2023 CS257 4/21

Symbols

Review: what does the syntax of a logic consist of?
First-order logic is an umbrella term for different first-order languages. The symbols of a
first-order language consist of:
1. Logical symbols
- Parentheses: (,)
Propositional connectives: —, =

- Variables: vq, vo, ...
- Quantifier: V

2. Signature, ¥ := (£°,%F), where:

- Y2 is a set of sorts: e.g., Real,Int,Set, D, O
- ¥F is a set of function symbols: e.g., +, +[3], <, 1

» For each sort o in £°, there may be an optional equality symbol =, in ©©

Note 1: we require that no symbol is a finite sequence of others.
Note 2: we have infinitely many distinct symbols.

October 16, 2023 CS257 5/21

Abbreviations

- Propositional connectives: v, A, <

- Existential quantifier: express 3v with —=Vv-

October 16, 2023 CS257 6 /21

Signature

The syntax of a first-order language is defined w.r.t. a signature, ¥ := (£°, £7), where:
e Y% is a set of sorts: e.g., Real,Int,Set, 9, O
o T is a set of function symbols: e.g., +, +[2], <, 1

We associate each variable symbol v with a sort in ¥°, denoted sort(v).

We associate each function symbol f € ¥ with:
e an arity n: a natural number denoting the number of arguments f takes
e an (n+1)-tuple of sorts: sort(f) =(o1,...,0n,0ns1)
We say f returns o,1.
Example: In the first-order language of number theory
e Y° contains a sort Nat
e For each variable v, sort(v) = Nat
e YF contains a function +
e + has arity 2 and sort(+) = (Nat, Nat, Nat)

October 16, 2023 CS257 7/21

Signature
We assume ¥° implicitly includes a distinguished sort Bool
We assume ¥/ implicitly contains distinguished symbols {T, 1} and sort(1) = sort(T) = (Bool)
There are two special kinds of function symbols:
e Constant symbol: a function symbol with 0 arity (e.g., L, T, 7, John, 0)
e Predicate symbol: a function symbol that returns Bool

- Each equality symbol =, is a predicate symbol with sort(=,) = (o, o, Bool)
- sort(<) = (Nat, Nat, Bool)

October 16, 2023 CS257 8 /21

First-Order Languages: Examples
A first-order language is defined w.r.t. a signature ¥ := (£°,%F). To specify a signature:
1. say what are the sorts;

2. say whether the equality symbol is present for each sort;
3. say what are the other function symbols.

Set Theory

e Y5 :{Set,Bool}
e Equality: yes for Set
o Y i{e, @ =gt}
where:
e sort(e€) = (Set, Set, Bool)
o sort(@) = (Set)

October 16, 2023 CS257 9/21

First-Order Languages: Examples

A first-order language is defined w.r.t. a signature ¥ := (£°,%F). To specify a signature:
1. say what are the sorts;
2. say whether the equality symbol is present for each sort;

3. say what are the other function symbols.

Elementary Number Theory

e ¥°:{Nat,Bool}
e Equality: yes for Nat
L4 ZF : {<7 Oa 57 +, X, :Nat}

where:
e sort(<) = (Nat, Nat, Bool)
e sort(0) = (Nat)
e sort(S) = (Nat, Nat)
e sort(+/x) = (Nat, Nat, Nat)

October 16, 2023 CS257 10 /21

Expressions

Recall from Lecture 1, an expression is any finite sequence of symbols.
For example:

e Vvi((<0wv) = (=Vwa(< vlv2)))
o Vi< VVQ))
Most expressions are nonsensical.

Expressions of interest in first-order logic are the terms and the well-formed formulas
(wffs).

October 16, 2023 CS257 1 /21

Terms

Terms are building blocks of wffs in a first-order language.

Concretely, terms are expressions that can be built up from the constant symbols and the
variables by prefixing the function symbols.

Formally, let B be the set of all variables and the constant symbols.
For each non-constant function symbol f € £ (i.e., with arity n > 0), we define a term-building
operation Fy:

Felag,...,an) =fag,...,ap
Denote this set of operations F.
Terms are expressions that are generated by F from B.
Examples of terms in the language of number theory:

[+V250
e 55550

e S<00 We do not want terms like S < 00, because S takes as argument
terms with sort Nat but < 00 has sort Bool.

October 16, 2023 CS257 12/21

Well-sorted terms

We formulate the notion of well-sortedness.

We define sort, a function from terms to sorts as follows:

e If v is a variable, then sort(v) = sort(v).

e If f is a constant, where sort(f) = (o), then sort(f) = o.

o Ift="fty...t, where sort(f)={(01,...,0n,0n:1), then sort(t) = opi1.
We define a function well from terms to {1,0}.

e For every variable v, well(v) = 1.

e For every constant f, well(f) = 1.

o If t="ft...t, where sort(f)={(01,...,00,0ns1), well(t) =1 iff

(well(ty) =1) A A (well(t,) = 1)A (sort(ty) = o1) A=+ A (Sort(t,) = op).

A term t is well-sorted if well(t) = 1.

October 16, 2023 CS257

13/ 21

Well-sorted terms: example

Elementary Number Theory

Let ¥° = {Nat,Bool} and X = {0, S, +, x, <, =nat }.

Suppose we have variables v; where sort(v;) = Nat for all v;. Define sort as follows:
sort(0) = (Nat)

sort(S) = (Nat, Nat)

sort(+/x) = (Nat, Nat, Nat)

sort(< [=nat) = (Nat, Nat, Bool)

Are the following well-sorted?

[+0V5

o ++0vs

° 5+0V5

o =Nt Swstly

Note: we are using prefix notation. In practice, there are first-order languages for which it is

more standard to use infix notation.
October 16, 2023 CS257 14 /21

> -Formulas

An atomic formula is a well-sorted term t with sort(t) = Bool.
Example: =n5t 0 SO
We define the following formula-building operations, denoted F:
o £.(a) = (~0)
° &(a,B) =(a~p)
e For each variable v, Q,(a) =Vva

Given a signature ¥, the set of well-formed formulas (also called X-formulas) is the set of
expressions generated from the atomic formulas by F.

Let Xy = <ZS = {Nat},xf :={0,5,+,x,<, :Nat})- Are the following ¥ y-formulas?
=Nat +v10v» yes
+0vy no
Vvi =nat +t0vivy yes

October 16, 2023 CS257 15 /21

> -Formulas

An atomic formula is a well-sorted term t with sort(t) = Bool.

We define the following formula-building operations, denoted F:
o & (a)=(~a)

o E(,8) = (a—B)

e For each variable v, Q,(a) =Vva

Given a signature ¥, the set of well-formed formulas (also called X-formulas) is the set of
expressions generated from the atomic formulas by F.

Exercise: draw a Venn Diagram that illustrates the relations between A: terms, B: well-sorted
terms, C: atomic formulas, D: well-formed formulas, and E: expressions.

Describe the relations between B, C, and D, and submit your answer to

https://pollev.com/andreww095

October 16, 2023 CS257 16 / 21

https://pollev.com/andreww095

Free and Bound Variables

We define a recursive function free from ¥-formulas and variables to {1,0} to capture what it
means for a variable x to occur free in a wff a:

e When « is an atomic formula, then free(c, x) = 1 iff x occurs in «;

e When «:= (=), then free(a, x) = free(3, x);
e When «a:= (5 — 7), then free(a, x) = max(free(f3, x), free(y, x));
e When «:=V v §, then free(a, x) = free(S3, x) if x # v, and 0 otherwise.

If Vv appears in «, then v is said to be bound in a.
Can a variable both occur free and be bound in a?
This can be confusing, so we typically require the set of free and bound variables to be disjoint.

We say a 2 -formula « is closed or « is a sentence, if no variable occurs free in a.

October 16, 2023 CS257 17 /21

Induction and recursion

- To define a set C inductively:
1. Define a universe U. (e.g., set of expressions)

2. Define a base set B¢ U. (e.g., set of atomic formulas)

3. Define a family of building operators, F, each of which takes one or more element of U as
arguments and returns an element of U. (e.g., One for each of -, —, V)

C is defined to be the set generated from B by F (e.g., wffs).

- To define a function h on C recursively:
1. Define h(b) for each b e B. (e.g., define free on atomic formulas)

2. For each f € F, define the value of h(f(ay,...,ak)) in terms of h(aq),. .., h(ak). (e.g.,
define free on (-f3) in terms of free(f3))

In general, is h always well-defined? No!

October 16, 2023 CS257 18 /21

Induction and Recursion: Pitfalls

Consider the following inductive definition:
e Universe U: the set of real numbers

e Base set B: {0}

e Building operators F: f(x,y)=x-y and g(x) =x+1
Now define h recursively as:

e h(0)=0

o h(f(x,y)) =h(x)+h(y)

e h(g(x))=nh(x)+2
Is h well-defined? Try computing h(1)?

h(1) = h(g(0)) = h(0) +2 =2
h(1) = h(f(g(0),g(0))) = h(g(0)) + h(g(0)) =2+2=4 Why does this happen?

October 16, 2023 CS257 19 /21

Induction and Recursion

We say C is freely generated from B by F iff C is generated by 5, and in addition:
e The range of each f € F is disjoint from the ranges of all other functions in F and from B

e each f € F is one-to-one
The Recursion Theorem: Let C be the set freely generated from B by F. Assume V is a set,
hg: B~V is a function, and hs : V¥ = V for each f € F with arity k > 0.

Then there exists a unique function h: C » V, such that:
e h(b) = hy(b) for each b€ B;

e for each f € F, h(f(aa,...,ax)) = he(h(ar),. .., h(ak))

To show a recursive function h on an inductive set C is well-defined, it suffices to show that C
is freely generated.

October 16, 2023 CS257 20 /21

Induction and Recursion: Unique Readability Theorem

Theorem: the set of terms is freely generated from the set of variables and constant symbols by
the term-building operations.

Proof: First, given f,g € F, where f + g, the range of f is clearly disjoint from the range of g,
because they result in terms with different prefixes. Further, f's range is also disjoint from the
set of variables and constant symbols.

It remains to show that f is one-to-one. That is, suppose f has arity n, for any terms
By ooy by, th i fty .ty =ft] ... t), then t; = ¢t{,..., and t, = t].

The proof makes use of the following fact, which you will prove in the homework.
Lemma A: No proper initial segment of a term is itself a term.
By deleting the first symbol, we have t;...t, =t] ...t

t; must be equal to t, because otherwise, one would be a proper initial segment of the other,
contradicting Lemma A. The same argument can be repeated to show tp...t, =t5...t).

Theorem: the set of formulas is freely generated from the atomic formulas and the
formula-building operations.

October 16, 2023 CS257 21 /21

