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Sofic Systems and Encoding Data 
BRIAN MARCUS 

Abstract-Techniques of symbolic dynamics are applied to prove the 
existence of codes suitable for certain input-restricted channels. This 
generalizes the earlier work of Adler, Coppersmith, and Hassner on the 
same problem. 

R ECENTLY, Adler, Coppersmith, and Hassner [l] ad- 
dressed the problem of encoding digital data from a 

free (unconstrained) n-ary source to a constrained set of 
available sequences. Their approach leads to codes of 
roughly the same complexity as codes previously con- 
structed and, in fact, shares some ideas with P. Franaszek’s 
approach [2]-[5]. However, what is new in [l] is a proof of 
the existence of codes (and an explicit algorithm for gener- 
ating them), which guarantees several desirable properties 
(in particular, state independence and limited error propa- 
gation in decoding). The main assumption of [l] is that the 
constrained set of available sequences is generated by some 
discrete, noiseless, input-restricted channel with finite 
memory (“subshifts of finite type”). We treat here the case 
of possibly infinite memory (“sofic systems”). These sys- 
tems are described by labeling the edges of a directed 
graph. It is important to remember that any one of these 
systems can be described by several different graphs. We 
exploit this fact. 

All of these codes are synchronous. That is, the asymp- 
totic ratio of input (unconstrained) bits to output (con- 
strained) symbols is a constant, p/q, independent of the 
input sequence. The number 

R = flog, (a) 

is called the rate of the code. Of course, given the con- 
strained set of sequences, one desires to have codes of high 
rate. But Shannon’s classical theorem [6] gives an upper 
bound on the rate, namely R I C, where C is the capacity 
of the channel that generates the constrained set of se- 
quences. The point of [l] was to prove that, subject only to 
the condition R I C, there exist codes that satisfy the 
following. 

1) They are synchronous. 
2) They have limited look-ahead in encoding. 
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3) They have limited look-ahead and look-back in de- 
coding. 

4) They are stationary (i.e., if R = (p/q) log, (n), then 
the coding rule is invariant under shifting the input 
by p positions and shifting the output by q positions). 

It is impossible to guarantee, in general, limited look-back 
in encoding, as well as the above. One can use eigenvectors 
to make estimates on the amount of look-back, look-ahead 
required, but we do not deal with that here. 

Reference [l] was motivated by the problems of encod- 
ing computer data on a magnetic medium. Channels of 
finite memory arise naturally in attempting to control 
intersymbol interference and clock drift. The coding prop- 
erties listed above are all important in this context; in 
particular, 3) guarantees that the very few hardware errors 
made will not be propagated .into many decoding errors. 

In some products, it is also desirable to shape the 
spectrum of read/write signals in some way. This generally 
leads to channels .with infinite memory. An example of this 
type, described in Section I-D was the motivation for our 
study. 

After providing some background information in Section 
I, we prove in Section II that the results of [l] generalize to 
the infinite memory case under the assumption R < C. 
This is done by approximating any discrete, noiseless in- 
put-restricted channel with infinite memory by such chan- 
nels of finite memory, (i.e., throw away some bad blocks in 
the channel so that what is left has finite memory but large 
capacity), and then applying [l]. 

In the case R = C, there is no room to spare, so no 
blocks can be thrown out. Nevertheless, under an ad- 
ditional restriction, we do in principle get codes with 
properties l), 2), 3), and a weak version of the stationary 
condition 4) mentiongd above. Namely, the coding rule is 
invariant under shifting the input by kp positions and 
shifting the output by kq positions for some k. (See 
Section IV.) 

While our proofs are constructive, a blind application of 
the algorithms contained in them leads, in general, to codes 
of unacceptable block length. Our main purpose is to proue 
the existence of codes and to give a skeleton scheme for 
finding reasonable codes. 

The purely mathematical content of this work can be 
summarized as follows (see Section I for background). 

Theorems: Let S be a sofic system, and let h(S) denote 
its entropy. Let n be a positive integer. 

a) If /i(S) > log(n), then S factors continuously onto 
the full n-shift (Corollary 1, presented in Section II). 
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b) If h(S) < log(n), then S factors continuously, finite- 
to-one into the full n-shift (Theorem 1  (see Section 
III)). 

Example 1: A, is the space of sequences with alphabet 
A = { 1,2}, where 2’s are required to be  isolated (called the 
golden mean  system). 

c) If h(S) = log(n) and  S is almost of finite type (see 
Definition 4), then some power of S factors continu- 
ously, finite-to-one onto the same power of the full 
n-shift (Theorem 2  (see Section IV)). 

Note: W e  do  not know if part c) can be  improved. 
The  ma in idea for applications is that the set of allow- 

able sequences to be  recorded on  a  magnetic med ium is 
represented by a  sofic system and the computer data is 
represented by a  full shift. The  factor maps in the afore- 
ment ioned Theorems ( a) and  c) ) provide the codes; b) is 
used as a  starting point for the proof of c). 

Example 2: A2 is the space of sequences with alphabet 
{a, b}, where b’s are required to appear  in blocks of even 
length between two a’s (called the euen system [S]). 

By a  A-block, we mean  a  block that appears in some 
point of A. By a  k-block, we mean  a  A-block of length k 
(A being understood by context). 

Since a  subshift A is defined to be  shift invariant, the 
shift map  (I naturally restricts to a  map  u: A -+ A. 

Sometimes we use A to refer to either A or A together 
with u/A, the restriction of the map  u  to the set A. 

The  procedures here and in [l] were developed from 
techniques used to study the classification problem for 
smooth dynamical systems. The  relationship is as follows. 
The  phase space of the dynamical system is partitioned 
into a  finite number  of pieces, each piece labeled by a  
symbol; then, by observing the itinerary of an  orbit relative 
to the pieces of the partition, the orbits are coded into 
sequences of symbols. The  motion of the dynamical system 
is then reflected by the shift map  on  the space of se- 
quences. The  classification problem is, thus, turned into a  
shift-invariant coding problem on these sequence spaces. 
The  connection between magnetic recording and dynami- 
cal systems was discovered by Hassner [7]. 

B. Factor Maps 

I. BACKGROUNDANDEXAMPLES 

Let A, and  A, be  two subshifts with possibly different 
alphabets. Let g,: A, + A, and  g,: A, -+ A, be  two 
continuous maps. A factor map  from (A,, gi) to (A,, g2) 
is a  continuous map  7~: A, + A2 such that Irg, = g2r. 
Usually we shall be  interested in the case g, = ui and  
g, = uj for some i and  j. When  we refer to a  factor map  
7~: A, -+ A,, we will assume that the maps involved are, in 
fact, g, = u  and  g, = u  unless otherwise specified. 

W h ile the definition of a  factor map  has an  abstract 
form, it is really a  very concrete idea: it is simply a  sliding 
block code (see [9], [l, p. 81). 

Example 3: Let A, be  the golden mean  system (isolated 
2’s), and  let A2 be  the even system (even b’s). Let ?T* be  
the map  

W e  briefly summarize the necessary background. For 
more details, we refer the reader to [l] and  the references 
therein. W e  now describe the types of sources of sequences 
(subshifts) that we use and codes to be  constructed (factor 
maps). 

A. Subshifts 

v*: (2 - blocks of A,} + {symbols of A,} 

defined by 

7r*(ll) = a  

~~(21) = b  

m*(12) = b. 

Let A be  a  finite set, with n  elements (thought of as a  set 
of symbols, or states, or as an  alphabet). The  full n-shift Z, 
is the set of bi-infinite sequences 

{ . . . x-2x-1x0x1x2 . . . : eachxi E A} 

with a  distinguished 0th coordinate. This is also known as 
the free source. 

The  shift map  is defined as 

u: 8, + Ix,, u(x) = y where each yj = xitl. 

u  is continuous with respect to the natural metric. This 
map  will be  important for coding purposes because it is a  
convenient way of expressing the stationarity of the coding 
schemes. 

Then define the factor map  1~: A, -+ A, by 

7r(. . * x-2x-1x0x1x2 * - *> 
= . . . 7r*(x-2x-1)77*(x-1xo)7r*(xox$r*(x1x2) * *. . _  

So, for example, 

?T( . . * 211211121211 m-e ) = .-- babbaabbbba --a . 

This is a  factor map  from A, onto A, (more properly, 
(A,,u) onto (A2, 0)). 

In this example, s is a  2-block map. In general, a  
k-block factor map  is a  sliding block code generated by a  
map  

By a  subshift, we mean  the restriction of u  to a  closed 
u-invariant subset, A, of Z,. This means that there is a  
collection (possibly infinite) C of finite words in the al- 
phabet  A such that (x belongs to A) * (each finite block 
of x belongs to C). Thus the set A will really represent a  

ties. They play a  very special role. If a  conjugacy from A, 

?T*: {k - blocksof Ai} + {symbolsof A2} 

So, for I 2  k, the expression a(xi * . . xr) makes sense: 

7(x1 *-- x,) = 7r*(x1 me* Xk) 

9*(x2 * * * xk+l) * * * Tr*(x[++1 * * * Xl). 

Factor maps which are l-l and  onto are called conjuga- 
collection of available messages. 
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to A2 exists, we say that A, and A2 are conjugate. The 
idea is that two conjugate subshifts are essentially the same 
even if they produce literally different sequences. Notice 
that the generating map r* of a conjugacy may not be l-l, 
although the conjugacy itself must be l-l (see Fig. 4 
following). 

Let A be a subshift, and let k be a positive integer. Let 
C, denote the set of all k-blocks of A. In (C,)z, there are 
two subshifts intimately related to A. 

ExamDIe 4: Define 

$1: A -+ (Cd” 
+,( *. . x-1x0x1 -. . > 

= . . . (x-1 **- xk-2)(xo **- X&l)(Xl **- x/J -.. . 

to j if and only if Aij = 1. Thus, the point x = ( . . . 
x-1x0x1x2 . . * ) corresponds to a walk that at time i is at 
state xi. The { A}-blocks correspond to the paths of this 
graph. For example, if A = : 

( 1 
i , then the graph is as 

shown in Fig. 1. This SSFT {A } is simply the golden mean 
system described before, because the only restriction that 
one encounters while walking on the graph is that two’s are 
isolated. 

Fig. 1. Golden mean system. 

Note that the blocks here overlap. The image of $i is a 
subshift, conjugate (via +i) to A (more properly, (A, a)). 

The higher block systems of SSFT’s are also represented 
b 

This subshift is called the higher block system (see [l, p. 71) 
y graphs in a very simple way. Namely, the 2-block 

for A and is one of many different and convenient ways 
system of {A } is represented by the edge graph of the 

that we can represent a subshift. 
original graph of {A }; the 3-block system is represented 

Example 5: Define 
by the edge graph of the edge graph, etc. For example, the 
2-block system of the golden mean system is generated by 

~2: A -, (Cd” 
the graph in Fig. 2, whose vertices represent the edges of 

G2( * * * x-1x0x1 . . . ) 
the original graph. 

The n x n matrix of all ones generates the full n-shift 
= . . . (x-k . . . x-1)(xo . . . xk-l)(xk . . . X2k-l) . . . . Z,, whichis, of course, an SSFT. 

Note that the blocks here do not overlap. The image of $2 
is a subshift, (+,(A), u), called the k th power, which is 
conjugate (via +2) to (A, a“). This is the standard way of 
representing a power of a subshift map as a subshift map 

a---------f12 

in its own right. 

C. Special Subshifts: SSFT and Sofic Systems 

We are mostly interested in subshifts of finite type and 
sofic systems. A subshift, A, is of finite type (SSFT) if 
there is a positive integer k and a collection of k-blocks C 
such that 

‘\c;‘: 
21 

Fig. 2. Edge graph of golden mean system. 

A = {x E A”: for all i, x~+~x~+~ a.. x~+~ E C}. 

In other words, A is the set of points all of whose k-blocks 
are prescribed by C. 

This really means that the A-blocks are determined by 
finite memory in the following sense: G iven a symbol s and 
A-block w, in order to know whether the concatenated 
block ws is a A-block, one need only know the last k 
symbols of w. 

If k = 2, then one constructs an n X n matrix 

Aij = 1, 
0, 

(Here we are thinking of the state set A as { 1,2,3,. . . , n }.) 
In this case (k = 2), the SSFT is denoted {A}. By a simple 
recoding (via the higher k-block system), every SSFT may 
be described as an {A} (with perhaps a much larger set of 
states). 

As is standard, one may represent an SSFT {A} as the 
set of all b&infinite walks on a directed graph as follows. 
The states are the elements of A; one draws an edge from i 

One typically assumes that all SSFT’s are given by 
irreducible matrices (i.e., for all i, j there exists an n = 
n (i, j) such that Ayj > 0) or, perhaps even stronger, that 
A is aperiodic (i.e., there exists an n such that for all 
i, j, Ayj > 0). Any SSFT that is not aperiodic can be 
studied in terms of its components [l, p. lo]. 

A subshift A is said to be sofic if there is an SSFT {A} 
and a factor map rr from {A} onto A. O f course, every 
SSFT is sofic (let 7~ = identity), but sofic systems are much 
more general. 

In the definition of sofic system, by replacing {A} by a 
higher block system, one may assume that 7~ is a l-block 
map or, equally well, a 2-block map. From this point of 
view, a sofic system is a subshift obtained by labeling the 
vertices if l-block (or the edges if 2-block) of a directed 
graph. For example, the edge labeling shown in Fig. 3 
presents a sofic system (the even system) as a 2-block 
factor of the golden mean system. The even system is not 
an SSFT: in order to know whether an a can follow a 
string of b’s, one has to know when an a previously 
occurred; this, however, requires infinite memory. This 
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portant in magnetic recording [ll], [12]. W h ile the run- 
length lim its are SSFT in nature, the systems Ad, k, c are 

Fig. 3. Even system. 
sofic and  not SSFT (the latter because of the charge 
constraint). 

b 

Fig. 4. Full 2-shift. 

means that it can never be  described by a  discrete noiseless 
channel of finite memory. 

On  the other hand, the edge labeling shown in F ig. 4  
presents the full 2-shift that is an  SSFT. 

A given sofic system or SSFT may be  presented as 
labelings of a  graph (or different graphs) in many different 
ways (e.g., as in F ig. 4). This is good; we exploit this 
flexibility. 

A test for deciding whether a  sofic system is SSFT can 
be  found in [lo]. 

D. Motivating Example 

Let c be  a  positive integer. Let C be  the set of all blocks 
w1 0’ . wn with alphabet { + 1, - 1) such that 

In I 

I I cw, SC. 
i=l 

The subshift generated by these blocks is called a  charge- 
constrained system and is denoted by A,. This is simply 
the set of sequences whose running sums are bounded by c. 

ill-ll-ll-ll... -11 

The  graph shown in F ig. 5  presents A, as a  sofic system. 
A general  graph of the type above presents any A, as a  
sofic system. These systems are not SSFT’s since, for 
example, if c = 4  and  w is the block 

(i.e., 111  followed by arbitrarily many concatenations of 
-ll), then -1~1 is in A, but lwl is not. (So that the 
concatenability of the symbol 1  depends on  infinite mem- 
ory.> 

1 1  1 1 

w 
-1 -1 -1 -1 

Fig. 5. Charge-constrained system (charge s 4) 

If one  thinks of sequences in A, as generat ing square 
waveforms, then the sequences all have a  sharp null at dc. 
This is frequently desired in applications. 

One  can also add run-length lim its to the charge con- 
straints by requiring that the run lengths of both + l’s and 
-1’s are all bounded below by some positive integer D 
and above by some positive integer X. These systems are 
called charge-constrained run-length lim ited systems. They 
are denoted as hd,k,c, where d  = D - 1, k = K - 1, and  
c is the charge constraint above. These systems are im- 

E. Entropy 

The  entropy h(A) of a  subshift A is simply the asymp- 
totic growth rate of the number  of k-blocks of A (as 
k + 00). For an  irreducible SSFT { A }, 

ww = l%(Q, 
where X is the largest eigenvalue of A and the log is to 
base 2. From this, it follows that the entropy of the golden 
mean  system is the log of the largest eigenvalue (of 

( 1  
: i ), which happens to be  the golden mean  itself. 
The  following proposition is well known in symbolic 

dynamics. 
Proposition 1  [13, p. 91: If A, and  A, are subshifts and  

V: A, -+ A2 is an  onto factor map  that is either finite-to- 
one  or l-l almost everywhere, then h(A,) = h(A,). (In 
particular, entropy is conjugacy invariant.) 

Thus, one  can compute the entropy of a  sofic system by 
realizing it as a  finite-to-one image of an  SSFT. For 
example, the factor map  in Example 3  is at most 2  to 1  (in 
fact, all points have exactly one  preimage except . . . bbb  
. . . ), and  so the entropy of the even system is the log of 
the golden mean  as well. 

The  entropy we use here was called capacity by Shannon 
[6] and  is called topological entropy in dynamical systems. 

F  Special Factor Maps: Right Resolving Maps 

For a  subshift A with alphabet A and a  E A, we denote 

F*(a) = { a’ E A : aa’ is a  2-block of A } . 

This is the follower set of a. 
Definition I: Let A, and  A2 be  subshifts. A factor map  

V: A, + A, is called right resolving if g(ala2) = n(ala;) 
implies a2  = a; (i.e., knowledge of a, and  n(a,a,) de- 
termine az). O f course, this makes sense only if v is a  
l-block or 2-block factor map. (This is essentially [l, def. 
3.21 with parameters 1, 0,l.) 

Now suppose that {A } is an  SSFT, S is a  sofic system, 
and  VT: {A} -+ S is a  2-block map. Then, as before, v is 
simply a  labeling of the edges of the graph of A. To  say 
that rr is right resolving means that for each vertex, the 
outgoing edges are all labeled differently, i.e., the labeling 
is a  Shannon graph [14]. Every sofic system can be  realized 
in this way [lo], [14], [15]. This will be  used in the next 
section. 

An important use of right resolving maps is the construc- 
tion of codes. Consider an  SSFT {A }, where A has row 
sum n  for some positive integer n; this means that coming 
out of each vertex of the graph of A there are exactly n  
edges. For each vertex, one  labels the n  edges 1,. * . , n: this 
defines a  right resolving map  ‘II: {A } --) 2,. Now one 
codes the free n-ary source into {A} by starting at some 
arbitrary state in the graph of A and following the labels. 
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Fig. 6. Simple Code 

Fig. 7. Example of encoding (Fig. 6). 

In Fig. 6 we have exactly this situation (with n = 2). The 
encoder (starting at state a) derived from this factor map 
would, for example, encode as shown in Fig. 7. The de- 
coder is given by the factor map. In this type of coding, the 
encoder has no look-ahead (but possibly infinite look-back) 
and the decoder looks ahead one position and does not 
look back at all. 

The idea of [l, Theorem 6.11 was to code the free n-ary 
source into any SSFT { A } with h ({ A }) 2 log (n) in much 
the same way. Namely, first, they construct an SSFT {B}, 
conjugate to {A}, with all rows sums of B at least n (see 
Section III). So, in the graph of B, coming out of each 
vertex there are at least n edges, and one labels n of them 
by the distinct numbers 1,. . . , n; this yields a right resolv- 
ing factor map from an SSFT sitting in {B} onto Z,. One 
codes X, into this SSFT as described above-namely, 
starting at an arbitrary vertex, one follows the labels. Then 
use the conjugacy from {B } to {A} to code into {A}. 
Such a code has all of the desired properties and has rate 
R = (l/l) log, (n). 

We will make use of the following. 
Proposition 2: Right resolving maps are finite-to-one. 

II. APPROXIMATION 

Definition 2: Let A, and A2 be subshifts, and let rr: 
A, + A, be a l-block factor map. A resolving block is a 
AZ-block s = si . . * s, for which there exists an i E [l, t] 
such that if u = ui . . . U, and v = vi * *. v, are A,-words 
with m(u) = s = a(v), then ui = vi. 

If rr is right resolving and has a resolving block, then the 
i above can be chosen to be t. Also, a finite-to-one factor 
map is l-l almost everywhere if and only if it has a 
resolving block (see [13, Theorem 3.331). 

Proposition 3: Let S be a sofic system. Then there are 
SSFT’s {B,}, { B2}, { B3}, . . . such that 

1) each { B, } L S; 
2) swrh({B,l) = h(S). 
Remark: Here we are approximating a sofic system from 

the inside in terms of entropy. This cannot be done in 
general for arbitrary subshifts. 

Proof: By definition, there is an SSFT {A} and a 
factor map rr from {A} onto S. By [15], [lo] we may 
assume that {A} is irreducible, that r is a right resolving 

l-block factor map, and that rr has a resolving block 
s=s1 **- s,. Thus, if 

u = 241 **. u, and v=vr-..v, (2.1) 
are { A}-words with T(U) = s = rr(v) then U, = v,. 

Claim: Let {A,} denote the SSFT determined by all 
{ A }-words u = ui . * a uI of length I such that T(U) is a 
resolving block. We claim that IT] (A,J is l-l. 

Proof of Claim: Let x, y E {A,} with r(x) = r(y). 
Sb, for each i, a(~~+~ *a. xi+,) = ~(y~+~ ... yi+,) is a 
resolving block. Thus, by (2.1) for each i, xi+[ = yi+,. So 
x = y and thus v](~,) is l-l. 

Let { BI} = ?T({ A,}). By the claim, {B,} is conjugate to 
{A,} (via m) and is therefore an SSFT inside S. 

Next we show that sup,h({B,}) = h(S). This rests on 
the observation that any block with a resolving subblock in 
it is itself a resolving block. Thus, intuitively, most long 
S-blocks will be resolving. We make this precise. 

Fix an { A}-word u = u1 . . . uk such that V(U) is a 
resolving block. Let 

pi = (Ai)uk, ul. 
So pi is the number of A-admissible (i + l)-blocks begin- 
ning with uk and ending with ui. It is well known [13, 
Theorem 3.101 that since A is irreducible, 

j& lOg(Pi) - = h(A). ; (2.4 
i+cc ‘ 

Now let r and I be positive integers, and assume that I 
is even and 

r > 1> 2k. 
Let U, , = { { A}-words v = vi . . . v, that have u appear- 
ing periodically with period l/2}: 

241 * * - Uk 241 *** Uk Ul *** Uk. 

l/2 l/2 
Then 

#q., 2 ( p,,2-J2r’? (2.3) 
Moreover, if v E Ur,,, then every subblock z of T(V) with 
length 1 contains V(U) as a subblock; whence v is an 
{ A,}-block. So the number of { A,}-blocks of length r is at 
least #U,, [. 

Thus, by (2.3) 

h({ A,}) 2 lim  l%(P(,,,,-d 
w/4 - = l%P(,,,,-k 

r r-+00 l/2 . 

Thus, since {B,} is conjugate to {A,} 

suph((B,)) 2 sup 1ogpU’2)-k 2 h({A}) = h(S), 
I I l/2 

the latter inequality because of (2.2), and the latter equality 
because ?r is a finite-to-one map from {A} onto S (see 
Propositions 1 and 2). 

Example 6: We give a very simple example of Proposi- 
tion 3. Let S be the sofic system given by Fig. 8. Intrin- 
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2 

b  
b  

a 

* 

4 w 

Fig. 8. Example of approximation. 

sically, S is the set of sequences on  symbols a, b, c, d  such 
that b’s, c’s, and  d’s appear  only in blocks of even length. 
It is easily checked that h(S) > log2. (To see this, let A be  
the matrix of the SSFT defined by F ig. 8, and  observe that 
the vector x1 = 2, x2 = xj = xq = 1  satisfies Ax 2  2x 
and equality does not hold in the first component;  this 
means that h  (S ) = h  ({ A }) > log 2  (see [ 16]).) So Proposi- 
tion 3  guarantees that there is an  SSFT {B} inside S with 
h( { B }) > log 2  as well. One  can then apply [l, Theorem 
6.11, as roughly described in our Section I-F, to encode the 
free binary source into { B}-hence into S. In Section IV, 
we give another way of constructing such a  code. 

Proof: By Proposition 3  we get an  SSFT {i } c S 
with h({B}) > log(n). Then  [l, Theorem 6.11 provides a  
factor map  rr from an  SSFT {C} c {B} onto Z,. Since 7~ 
is a  sliding k-block code, one  can simply extend rr to all of 
S by making arbitrary assignments on  those k-blocks of S, 
which are not k-blocks of { C }, to symbols of { 1, * . *, n  }. 
(Here it is important that the range is a  full (uncon- 
strained) shift-so that the arbitrary assignments will stay 
within the range-see 1171 for more on  this.) 

Now the SSFT {B} cannot be  obtained by simply 
eliminating some edges of the F ig. 8  graph (any SSFT 
obtained in that way will have zero entropy). However, one  
can get { B } by eliminating some edges in the 2-block 
system. W e  indicate this as follows. 

The  2-block system is represented by Table I. The  states 
are the 2-blocks of the original SSFT {A}: 11, 21, 31, 41, 
12, 13, and  14; the arrows indicate the edges, and  the 
letters in parentheses indicate the labels of states that 
define the factor map  onto S. 

TABLE I 

11 (a) + 11,12,13,14 
21 (b) -+ 11,12,13,14 
31 (c) + 11,12,13,14 

41 (d) --t 11,12,13,14 
12 (b) -+ 21 
13 (c) + 31 
14 (d) + 41 

Now, eliminating the edges (from Table I), 
21  --f 12  
31  -+ I3 
41  + 14, 

Propositidn 4  ([l, Theorem 6.11): Let (A} be  an  irre- 
ducible SSFT with h( { A }) 2  log n, n  E Z+. Then  there is 
a  matrix B such that {B} is conjugate to {A} and  each 
row sum of B is at least n. 

Now we prove the following. 
Proposition 5: Let {A } be  an  irreducible SSFT with 

h( { A}) < log (n). Then  there is a  matrix B such that { B } 
is conjugate to {A} and  each row sum of B is at most n. 

Remark: In all of these results, the set of column sums is 
not changed.  So one can get conjugate representations with 
the correct row and column sums simultaneously. W e  
conjecture that,’ given A with log(n) < h({A}) < log(n 
+ l), there is a  conjugate representative B with all row 
(and column) sums in the set {n, n  + l} (i.e., that Proposi- 
tions 4  and  5  can be  done simultaneously!). 

Before proving Proposition 5, we need to establish the 
following notion. 

it can be  seen that the SSFT {A’} defined by the remain- 
ing table (not the labels) has entropy > log2 (the vector 
Xl1 = x21 = x31 = x41 = 2, x*2 = 1, xi3 = 1, xi4 = 1  
satisfies A’x 2  2x, and  equality does not hold in the 11  
component)  [16]. Moreover, the labelings restricted to {A’} 
define a  l-l map  and therefore an  SSFT {B} inside the 
sofic system S. (Intrinsically, {B} is the set of sequences 
such that b’s, c’s, and  d’s appear  only in blocks of 2.) One  
actually encodes the free binary source (using [l]) into 
{A’} and  then composes with the conjugacy defined by the ‘This was proved by Joel Friedman in a paper to appear in the 

labeling. 
Proceedings of the American Math Society entitled “A Note on State 
Splitting.” 

Now let S be  an  arbitrary sofic system. Let n, p, and  4  
be  positive integers such that h(S) > (p/q) log(n), equiv- 
alently 

qh(S) > log(nJ’). (2.4) 
The  left side of (2.4) is the entropy of the subshift (S, (iq), 
which is a  sofic system in its own right called T. One  can 
then apply Proposition 3  to T  to get an  SSFT { B } c T  
with h({B}) > log(nJ’). Applying [l] to {B} (as in Sec- 
tion I-F) one  gets a  code from the free nJ’-ary source into 
the system defined by T. If one  interprets T  as (S, ~4) and  
2,, as (Z,, UP) (via Example 5) one  gets a  code from the 
free n-ary source into the system S that is invariant under  
shifting by p  positions in the free source and q  positions in 
S. 

W e  now use these ideas to prove a  general  factor theo- 
rem. 

Corollary I: Let S be  a  sofic system with h(S) > Iog(n). 
Then  there is a  factor map  from S onto the full n-shift, 2,. 

III. STATE SPLITTING 

To construct codes from fairly arbitrary systems to full 
shifts, we need a  good standard form. Let {A} be  an  
irreducible SSFT. In [18], we proved that if h({ A}) = log n, 
n  E Z+ there is a  matrix B such that { B } is conjugate to 
{A } and  each row sum of B is n. Adler et al. proved the 
analogous result for h({ A}) 2  log n; this is presented in 
the following proposition. 
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State Splitting [18], [19], [20]: Let {A} be an SSFT 
defined by states A and matrix A. Fix v E A and a 
partition of the follower set F,(u) = E, U E, into two 
pieces. We construct a new directed graph by replacing the 
vertex v by two new vertices, vi and v2. Each edge that 
terminated at v is replaced by two edges: one terminating 
at v1 and the other at u2. Each edge that emanated from v 
and terminated at a vertex p E Ei (i = 1,2) is replaced by 
an edge that emanates from ui and terminates at p. If 
p = u (and say i = l), then there was a loop at u that is 
replaced in the new graph by a loop at ur and an edge 
from vi to v2. The new vertex set is A’ = (A - { v }) U 

{ ui, v2} and the new matrix denoted A’. 
For example, if in the graph shown in Fig. 9 E, = { u, w } 

and E, = {u}, then the new graph is as shown in Fig. 10. 

Fig. 9. Before splitting. 

"1 W 

c3 @------~ " 

Fig. 10. After splitting 

Proposition 6: Let A’ be a matrix obtained from A by 
splitting the state u. Then {A} and (A’} are conjugate. 

Proof of Proposition 6: This is well known; just define 

W, if wEA- 
r*(w) = u, if w = ut 

0, if w = u2. 

Then ?r* generates a conjugacy 7~. 

Lemma 1 ([18, Lemma 41: Let n be a positive integer, 
and for each i = 1; . ., n let si be a positive integer. Then 
there exists an E G  [l, n] such that n divides CjEEsj. 

Proof of Lemma 1: Either { sr, s1 + sZ; * ., s1 + s2 
. . . +sn} are all distinct mod n or two of them are con- 
gruent mod n. In the former case, one of those sums must 
be divisible by n. In the latter case, the difference between 
two of the sums must be divisible by n. 

We may now proceed to the proof of Proposition 5. 

Proof of Proposition 5: Let ,$ be a positive eigenvector 
of A (corresponding to the positive eigenvalue of largest 
modulus A). By virtue of the entropy assumption, X I n. 
Thus, by approximating [ by a rational vector and clearing 
denominators, one gets a positive integral vector r such 

that 
Ar I nr. 

(Note: If h({ A}) = log n, then ,$ may already be assumed 
to be positive integral.) We call such an r a positive 
integral approximate eigenvector. 

Fix v E A with #I;a(v) > n. (If v does not exist, we are 
finished already.) Let U be any subset of F,(u) with 
exactly n elements. By Lemma 1, there is a subset E c U 
such that 

n divides c 5. 
jcE 

Do state splitting, as described previously, with 
E, = E 
E,=F,(u)-E. 

Since E G  U s FA(u), E, must be nonempty. Define a 
vector r’ as 

r:, = r, - r ’ VI 
andforiEA- {v} 

rj’ = r,. 

Then, one easily sees that r’ is a positive integral ap- 
proximate eigenvector for A’. Clearly r and r’ satisfy 

Cr,= C r/. 
ieA isA’ 

Thus, since #A’ > #A, the state splitting process can only 
be repeated a finite number of times, and so eventually we 
must obtain a matrix B with {B} conjugate (by Proposi- 
tion 6) to {A} and for each state u of {B}, #F,(v) < n, 
as desired. 

Remarks: 

1) The end result of this gives a conjugacy between {A} 
and { B }. It would be good to know the best possible 
estimate on the size of the block length of the conjugacy in 
general and also in various special cases that arise in 
practice. The important point in the above proof is that 
one can find a state v and a proper subset E s FA( v) such 
that C. , E Eq is divisible by n. One can split any vertex v 
with this property and thereby obtain shortcuts in the 
method. 

2) The proof of Proposition 4 follows similar lines ex- 
cept that r& > 0 is not automatic unless one splits a vertex 
u with maximal r-component and such that FA (v) has an 
element whose r-component is not maximal. This will force 
the existence of the set E above and will also force r:, > 0. 

The problem with the notion of a right resolving map is 
that it is not invariant under conjugacy. The following 
notion is invariant. 

Definition 3: Let w be a factor map from A, to A,. We 
say that s is right closing if it never identifies a pair of 
negatively asymptotic points, as shown in Fig. 11. More 
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: 
Y 

Fig. 11. Right closing. 

precisely, if x, y E A,, x #  y, and  there exists n  such that 
for all i I n  xi = yj, then r(x) #  r(y). Similarly, one  has 
the notion of left ,closing. 

The  following facts are easy to verify. 
Fact 1: A k-block map  7~: A, + A, is right closing if 

and  only if whenever n(x) = r(y) and  there exists an  n  
such that xi = yi for all i E [n - k + 1, n], then x, = yj 
for all i > n  as well. 

Fact 2: Any right closing map  is finite-to-one. 
Fact 3: Any right resolving map  is right closing. 
Fact 4: The  composit ion of a  right resolving map  and a  

conjugacy is right closing. 
W h ile, strictly speaking, right closing is a  (literally) more 

general  notion than right resolving, in a  certain sense it 
really is not. W e  need the following form of this statement. 

Proposition 7  1211: Let {A}, {B}, and  {C} be  SSFT’s 
with {B} c {A}. Let TIT: {B} -+ {C} be  a  right closing 
factor map. Then there are SSFT’s {B’} c {A’} and  a  
conjugacy 9: {A’} + {A} such that +({B’}) = {B} and  
the factor map  r 0  +: {B’} + {C} is right resolving. 

The  point here is that we can think of factor maps 7~ and 
7~ 0  + as representing essentially the same map. 

The  following will be  the starting point for the construc- 
tion of codes where the rate is maximal (in Section IV). 

Theorem I: Let S be  a  sofic system with h(S) < log(n). 
Then  there is a  right closing factor map  from S into Z,. 

Proof: It is well-known and easy to see that any 
subshift can be  approximated by SSFT’s from the outside 
in entropy, i.e., if S is a  subshift and  e  > 0, then there is an  
SSFT {A} such that 

SC (4 
and  

h({A}) < h(S) + C. 

IV. ENTROPY = log(n) 

Suppose that S is a  sofic system with h(S) = 
(p/q)log(n), where p, q, and  n  are integers. To  code Z, 
into S at rate (p/q) log(n), we need to use all of S, so we 
cannot use the approximation idea of Section II. So, instead 
of throwing out blocks, we must use blocks carefully. The  
idea, when p/q = 1, is that if S is presented as a  factor of 
an  SSFT { A }, one  finds a  right resolving factor map  
{A } -+ Z, such that any two points of {A } that present 
the same point of S are mapped  to the same point of Z,. 
This defines a  right closing map  S + Z, that can be  used 
to construct codes. When  p/q #  1, one  applies the same 
sort of scheme replacing S by (S, u  4) and  Z, by Z,,. 

W e  first illustrate the rough idea with a  very simple 
example. Let S be  the sofic system shown in F ig. 12. S is a  
subset of Example 6. Also h(S) = log(2). 

Fig. 12. Simple sofic system. 

S is presented as the image of a  2-block factor map  IT 
from an SSFT {A}. There are two points x and  y in S 
that are bad  in the sense that they have more than one 
r-inverse image (or, equivalently, they are each represented 
by more than one path on  the graph). Namely, 

x = . . . bbb  . . . 

for if 

then 

Y = * . . ccc * * * T  

Ul = . . . 1212 . . . 

u* = * .a2121 ..*, 

B(q) = 7r(u*) = x, 

andif 
Ul = . . . 1313 . . . 

v* = ... 3131 *** ) 

(Just look at the SSFT determined by blocks of large fixed then 
length in S.) Thus there is a  SSFT {A} such that 77(q) = r( v2) = y. 

and  
SC (4 

h(P)) < log(n). 

The  points x and  y are the only bad  points, because once 
you see a, bc, or cb in a  sequence, then you know where 
you are on  the graph. A general  procedure for finding the 
bad points is in [lo]. Let H = r-l (Bad set) = 
{ Ul, u2, Vl, u2 >. 

By Proposition 5, {A } is conjugate to SSFT { B } and  each Now, we want to construct an  SSFT { B }, which con- 
row sum of B is at most n. Then  one easily defines (by tains H, and  an  (into) right resolving factor map: +: { B } 
labeling edges) a  2-block right resolving factor map  from + Z, such that +(ui) = +(u2) and  +(vt) = +(v2). This is 
{ B } into Z,. Composing this with the conjugacy, one  gets as shown in F ig. 13, ({ B } is the SSFT generated by 
a  right closing factor map  from {A} into 2, (by Fact 4). throwing out the loop at state 1; the zeros and ones in 
Now one just restricts this factor map  to S. parentheses indicate the map  +.) 
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Fig. 13. Map on bad set. 

Now we do state splitting on the graph (as in the proof 
of Proposition 5). The eigenvector is (211)‘r. So we split 
state 1 (see Fig. 14). Here we have partitioned the succes- 
sors of state 1 into two groups E, = (1) and E2 = {2,3}. 
(The idea is to partition the successors into groups such 
that, for each each group, the sum of the eigenvector 
components is divisible by n, in this case divisible by 2.) 

Fig. 14. State splitting. 

Now, the SSFT {B} is represented by the four edges 
connecting states l,, 2, and 3. On these four edges, the 
map + is forced (since it was already defined). Now extend 
+ to all of { A } by labeling the remaining edges (the arcs 
outside of {B}) with zeros and ones in a right resolving 
way. Any such extension will automatically define a factor 
map from {A} onto Z,. It also defines a factor map from 
S onto Z, since the only points of ambiguity were in the 
bad set (by definition) and these were already taken care of 
(see Fig. 15). This now defines a code from the free binary 
source into the sofic system S: one fixes an arbitrary state 
(say 3) and encodes O-l sequences by walking along the 
unique path defined by the sequence and then reading off 

Fig. 15. Extension of factor map. 

the corresponding a, b, c labels. For example, 0110101100 
encodes to caaaccaaab. One decodes an a, b, c sequence 
by walking along any path corresponding to the sequence 
and then reading off the O-l labels. By construction, encod- 
ing has no look-ahead and decoding has limited look-ahead 
and no look-back. 

Intuitively, what we did here was the following. We first 
made a (partial) right resolving O-l labeling (cp) on the 
original graph; this labeling was consistent with the origi- 
nal a-b-c labeling (n) and was defined only on the paths 
where consistency could possibly be a problem. Then, by 
state splitting, we represented the original sofic system in a 
new way, where the defining graph had two outgoing edges 
at each vertex; this new split graph naturally inherited an 
a-b-c labeling as well as O-l labeling (but again the O-l 
labeling was defined only on the paths where consistency 
could be a problem). Finally, the O-l labeling on the split 
graph was extended to a right resolving O-l labeling on the 
entire split graph. 

The general sofic system presents many more difficulties. 
For instance, it is possible that in the newly created split 
graph, there is a state for which the O-l labels of both 
outgoing edges are forced to be identical. This would mean 
that the final O-l labeling on the split graph could not be 
right resolving. However, this will not happen if one can 
split states so that all of the bad outgoing edges (i.e., edges 
that are a-b-c labeled by symbols that are represented by 
more than one edge) can be put in one group of the state 
splitting partition, {E,, E2}. While this may not be possi- 
ble for the original graph, it may (and in fact will for a 
large class of systems) work for some power of the original 
graph (the k th power of a labeled graph is the graph whose 
edges represent paths of length k in the original graph-this 
represents the k th power of the original system (see Exam- 
ple 5)). 

Definition 4: A sofic system S is almost of finite type 
(AFT) if there is an irreducible SSFT {A} and an onto 
factor map 7~: {A } + S that is 1-l on an open set. 

Remark: All sofic systems are 1-l “almost-everywhere” 
images of SSFT’s [lo]. However, M. Boyle showed us an 
example of a transitive sofic system that is not AFT. A test 
for AFT is contained in [22]. 

The following gives a more concrete notion of the AFT 
idea. 

Proposition 8: Let 7~: {A } -+ S be an onto factor map 
from an irreducible SSFT to a sofic system. The following 
are equivalent : 

1) ?r is l-l on an open set; 
2) ?T is 1-l on an open dense set of full measure; 
3) n is left closing, right closing, and has a resolving 

block. 

Proof: 1) and 2) are equivalent by irreducibility. Given 
2), then by the proof of [13, theorem 3.331, 7~ has a 
resolving block; ?T must also be left and right closing since 
otherwise the non-l-l set would be dense. Thus 2) implies 
3). Given 3), one easily sees that since r is left and right 
closing, r must be l-l on the resolving block (an open set) 
(See Fact 1 and assume that 7~ is a l-block map.) Thus 1) 
holds. 

All of the examples in this paper, as well as [5, Example 
21 are AFT. The definition of AFT is motivated by the 
charge-constrained run-length limited sofic systems 
A (4 kc). 
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Proposition 9: A(d,k,c) is AFT. Remarks: 

Proof: W e  first prove Proposition 9  for the charge- 
constrained systems A, (without the run-length con- 
straints). These sofic systems are presented by the labelings 
shown in F ig. 16. The  factor maps represented by the 
labelings are right and  left resolving, since at each vertex 
all outgoing edges are labeled distinctly and  all incoming 
edges are labeled distinctly. Moreover, any block of l’s of 
sufficient length is a  resolving block. Thus, by Proposition 
8, the systems A, are AFT. 

-1 -1 -1 

Fig. 16. General charge-constrained system. 

For the general  case, one  can “jazz up” the preceding 
argument directly. Alternatively, one  realizes that since the 
run-length constraints are SSFT, each A,,, k, c) is the inter- 
section of an  SSFT with A,. But we just proved above that 
A, is AFT. So Proposition 9  will follow from the following 
lemma. 

Lemma 2: The  intersection of an  SSFT with an  AFT 
sofic system is again an  AFT sofic system. 

Proof: Let { B } be  the SSFT, and  let S be  the AFT 
sofic system with VK {A} + S l-l on  an  open set. The  
reader can easily verify that IT- ‘(S n { B }) is an  SSFT. 
Moreover, the restriction of r to this SSFT, 

inherits the right and  left closing properties that 7~ has 
(Proposition 8). W h ile this restriction does not necessarily 
inherit a  resolving block from T, the construction in [lo, 
3.41 will present S n  { B } as the image of an  SSFT by a  
map  that is right closing, left closing, and  has a  resolving 
block. 

1) W e  do  not know if the theorem can be  strengthened 
(i.e., can the AFT condition be  dropped? Can I be  reduced 
to l?) In our proof, 1  depends on  the entropy of the bad set 
(i.e., the set of points with more than 1  inverse image via a  
map  ~7: {A} + S that is l-l on  an  open set). Also, if the 
bad set is finite, then 1  can be  made  to be  1. 

2) If S is m ixing, then the factor map  of Theorem 2  can 
be  chosen to have a  resolving block and therefore l-l 
“almost everywhere.” However, we remark without proof 
that it cannot, in general, be  chosen to be  l-l on  an  open 
set. 

Proof of Theorem 2: Let r: {A} -+ S be  an  onto 
factor map  that is l-l on-m open set. Let H = {x E {A}: 
#Y’(vx) > 1). Then  H 5  {A} (in fact, H is closed, but 
this is irrelevant to the proof). Thus H is a  proper subshift 
of {A}. Since any subshift is an  intersection of the SSFT’s 
that contain it, there must be  an  SSFT {B} such that 

ifc {B} s {A}. 

Now, since { B } is proper, we have h({ B }) < h({ A}) 
[23, Theorem 3.31. This, together with the facts that v is 
finite-to-one (Proposition 8  and  Fact 2) and  finite-to-one 
maps preserve entropy, (Proposition 1) yields 

h(d{B))) = h(W ) < h&I}) 
= h(r({A})) = h(S). 

Thus, by Theorem 1  there is a  right closing factor map  I/J: 
r( { B }) + Z,. Since v is right closing (Proposition 8) it 
follows that cp = J, 0  rlcBl is a  right closing factor map. By 
Proposition 7  we may assume (by possibly conjugating 
{B } and  {A} to another form) that $I is right resolving. 
Now, since v is l-l off of {B}, any factor map  that is an  
extension of cp to all of {A} will automatically yield a  
well-defined factor map  from S into 2,. If, moreover, the 
extension is right closing, it will be  finite-to-one (Fact 2) 

Remark: D. Lind [24] in fact showed us that the inter- whence the image of S will have full entropy (log(n)) in 

section of two AFT sofic systems is again an  AFT sofic Z,. But, then again, by [23, Theorem 3.31 this means that 

system. the map  is onto. So it suffices to prove the following. 

It can happen that h(A(d,k,c)) is the log of a  rational Theorem 3  (Extension Theorem): Let { B } C {A} be  two 
root of a  positive integer, e.g., h( Ao3,3)) = log(a) = l/2 SSFT’s with h({A}) = log(n). Let +: {B} -+ Z, be  a  
(see Ill]). Thus, the highest possible rate for a  code of the right resolving factor map. Then there exists an  integer I 
free binary source into A(1,3,3) is l/2. The  following theo- such that + can be  extended to a  right resolving factor map  
rem shows that, in principle, one  can find such a  code with from ({A}, a’) onto (X,, a’). 
a  weaker version of the stationary property 4) (see Intro- 
duction); namely, we produce a  code that is invariant by Proof Since { B } is a  proper subshift, we may assume 

shifting by I in the domain and 21  in the range for some 1. by going to a  higher block system (Example 4) that the 

(Pate1 [ll] found a  nice simple stationary code but with state set of {B} is a  proper subset of the state set of {A}. 

rate slightly lower than l/2.) Now, if A had row sum n, then it would be  easy to extend 

The  purpose of this section is to prove the following as a  right resolving factor map. O f course, {A} is con- 

Theorem. jugate to an  SSFT defined by a  matrix with row sum n, but 
this conjugacy would in general  represent { B } in a  form 

Theorem 2: Let S be  an  AFT sofic system with h(S) = that makes + right closing, not right resolving. The  idea is 
log(n). Then  there exists a  positive integer I and  a  right (as in Section III) to split states and reduce the compo- 
closing (thus finite-to-one) factor map  from (S, a’) onto nents of an  eigenvector while keeping the map  r#~ true to its 
P,, a’). original definition. 
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We need the following two propositions. 
Proposition 10: Let A* be an irreducible O-l matrix with 

{A’} to {z}, which carries {B’} to {B} such that 

states A* and h({A*}) = log(p), p E Zf. Let B* be a 1) &f: {B’} -+ z, is a right-resolving factor map; 
O-l matrix with B* I: A* (i.e., entry by entry) and B,T < 2) for all a’ E B’ with y,, = M, m < #(&(a’) - 
At for some i, j. Let x be a positive integral eigenvector ~W(O> 
for A* and assume that not all of the components of x are 3) #{&GA’: y,,= M} < #{&A: xn=M}. 

the same. Then, for any u E A* with x, maximal, there Proof: Let V E Awith xu = M. We want to split U, as 
exists I such that in Section III. By Lemma 1 and Proposition 11, there exists 

P’ < c ((A*):, -@*kx). 
a set 

LIEA* E s Q(U) - Fe(U) 

Proof: Without loss of generality, we may assume that with C aGE~a a multiple of m. Do state splitting with 
A* is aperiodic (otherwise replace A* by an appropriate 
power) [13, Theorem 3.61. Thus, there exists a constant 

E, = E 

C > 0 such that for sufficiently large I and for all i, j E A* E,=FA’C)-E. 

CP’ < (A*):, 
(4 l) Let A’ = (A- { 6)) U { ui, ut}, and let A’ be the transi- 

tion matrix defined by the description of state splitting in 
Also, h({ B }) < h({ A}) = log p, and so for all E > 0 there Section III. Also 
exists k, such that for all I 2 k, and for all i, j E B ifi?GB 

(B*)ij < CP’. (4.2) B’= ;i?-{fi)) “(u2), i if.?EB 1 
Now fix u E A* with x, maximal. Since x is an eigen- and B’ is defined by transitions among B’. Also f is 

vector, we have defined (see Proposition 6) as the factor map generated by 
*. 

x”P’= c (A*):, .x, 
f . 

CIEA* f *],.+{U,,U2J = identity 

f*(u,) = f*(u,) = v. 
To prove 1) above, let a’d, a’& be 2-blocks of {B’} with 

Thus, dividing by x,, 

P’ + 1 c <A*>:, 5 c (A*):,. 
” [ 1 aSA* aEA* 

X,<X” 

$0 f(u’d) = & f(a’a”). 
Since 6 is right resolving, it follows that f (a’) = f (a”). 
But f lB, is l-l and so a’ = a”. 

Observe that the vector 
This together with (4.1) and the assumption that not all the 
components of x are the same shows 

p’+ ;p’< c (A*):,. 

I 

Xn’, if a’ # ui, u2 

; c X,?, if a’ = v 1 

(4.3) Yd = CY‘EE 

c X,J, if a’= u 2 
a’eF*<B)-E 

” LYEA* 

Now, apply (4.2) with z = C/(x,(#A*)) to get 

p’ + c (B”);, -c p’ + $p’. 
CTcA* ” 

This, together with (4.3) yields the following proposition. 
Proposition 11: Let B < Abe O-l matrices. Let 3 and x 

be the states of {B } and (z} (so naturally B c x). 
Assume that A is irreducible, has entropy log(m) (m E 
Z’), and assume that x is a positive integral eigenvector 
for z with not all of its components the same. Let M be 
the maximal component of x. If 

- - 
1) 4: {B) +m is a right resolving factor map, and 
2) for all 5 E B with x,- = M, m < #(FAZ) - F!(Z)), 

then there exist O-1 matrices B’ I, A’ with states B’ c A’, 
a positive integral eigenvector y for A’, with maximal 
component not exceeding M, and a conjugacy (f) from 

is an eigenvector for A’. Thus, since x is an eigenvector, 
yUl, yU2 -=z M and so 3) holds. To see 2), observe that for all 
a’ E B’ with a’ # uz, 

#(&(a’) - Fga’)) I #(FA/(d) -F&q), 

and if a’ = v2, then yU2 < M. 

Proof of Theorem 3: Let x be a positive integral eigen- 
vector for A (with eigenvalue n). If all the components of x 
were the same, then A would have row sum n and the map 
$I would be easy to extend. O therwise, apply Proposition 10 
to A* = A, B * = B, and p = n. This yields an integer I,. 
Now apply Proposition 11 to L = the matrix of 0’1 relative 
to x = the iA }-allowable /,-blocks, B = the matrix of u’l 
relative to B = the { B}-allowable Ii-blocks and m = nh. 
(Here, we are identifying @ ,,a) with (Z,,oh) as in 
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Example 5  and  we choose an  eigenvector x,~ ak = x+.) 
Now we apply Proposition 11  iteratively until we arrive at 
a  matrix of A’ with a  positive integral eigenvector whose 
largest component  is less than M . Now apply Proposition 
10  to A* = A’, B * = Bt and p = m  = n’l. This produces 
a  new integer I,, and  then one applies Proposition 11  again 
to the matrix of u/z relative to the { A*}-allowable I,- 
blocks, etc. Repeating this application of Propositions 10  
and 11  we eventually obtain matrices A’, B’ with states 
B’ c A’ and an  integer 1  such that 

1) ({A’},a) is conjugate to ({A}, a’) via a  conjugacy 
(f) that carries ({B’}, a) to ({B}), cd), 

2) + 0  f: ({B’}, a) --) (Z,, a’) is right resolving, and  
3) A’ has row sum n’. 

One  easily extends $I 0  f to a  right resolving factor map  
4’ from ({A’}, a) onto (X,,u’). Then,  +‘o f-’ is the 
desired factor map  from ({A}, a’) onto (Z,, a’). 
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