366

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-31, NO. 3, MAY 1985

Sofic Systems and Encoding Data

BRIAN MARCUS

Abstract—Techniques of symbolic dynamics are applied to prove the
existence of codes suitable for certain input-restricted channels. This
generalizes the earlier work of Adler, Coppersmith, and Hassner on the
same problem.

INTRODUCTION

ECENTLY, Adler, Coppersmith, and Hassner [1] ad-

dressed the problem of encoding digital data from a
free (unconstrained) n-ary source to a constrained set of
available sequences. Their approach leads to codes of
roughly the same complexity as codes previously con-
structed and, in fact, shares some ideas with P. Franaszek’s
approach [2]-[5]. However, what is new in [1] is a proof of
the existence of codes (and an explicit algorithm for gener-
ating them), which guarantees several desirable properties
(in particular, state independence and limited error propa-
gation in decoding). The main assumption of [1] is that the
constrained set of available sequences is generated by some
discrete, noiseless, input-restricted channel with finite
memory (“subshifts of finite type”). We treat here the case
of possibly infinite memory (“sofic systems”). These sys-
tems are described by labeling the edges of a directed
graph. 1t is important to remember that any one of these
systems can be described by several different graphs. We
exploit this fact.

All of these codes are synchronous. That is, the asymp-
totic ratio of input (unconstrained) bits to output (con-
strained) symbols is a constant, p/g, independent of the
input sequence. The number

R = %1032 (n)

is called the rate of the code. Of course, given the con-
strained set of sequences, one desires to have codes of high
rate. But Shannon’s classical theorem [6] gives an upper
bound on the rate, namely R < C, where C is the capacity
of the channel that generates the constrained set of se-
quences. The point of [1] was to prove that, subject only to
the condition R < C, there exist codes that satisfy the
following.

1) They are synchronous.
2) They have limited look-ahead in encodmg

Manuscript received September 7, 1982; revised November 1, 1984,

This work was supported in part by the National Science Foundation
under Grants MCS-8001796 and MCS-8301246. The material in this
paper was presented at the AMS National Meeting, Cincinnati, OH,
January 1982.

The author was with the Mathematics Department, University of North
Carolina, Chapel Hill, NC 27514. He is now with the IBM Research
Laboratory, San Jose, CA 95193, USA.

3) They have limited look-ahead and look-back in de-
coding.

4) They are stationary (i.e., if R- = (p/q)log,(n), then
the coding rule is invariant under shifting the input
by p positions and shifting the output by ¢ positions).

It is impossible to guarantee, in general, limited look-back
in encoding, as well as the above. One can use eigenvectors
to make estimates on the amount of look-back, look-ahead
required, but we do not deal with that here.

Reference [1] was motivated by the problems of encod-
ing computer data on a magnetic medium. Channels of
finite memory arise naturally in attempting to control
intersymbol interference and clock drift. The coding prop-
erties listed above are all important in this context; in
particular, 3) guarantees that the very few hardware errors
made will not be propagated into many decoding errors.

In some products, it is also desirable to s$hape the
spectrum of read /write signals in some way. This generally
leads to channels with infinite memory. An example of this
type, described in Section I-D was the motlvatlon for our
study.

After providing some background information in Section
I, we prove in Section 1I that the results of [1] generalize to
the infinite memory case under the assumption R < C.
This is done by approximating any discrete, noiseless in-
put-restricted channel with infinite memory by such chan-
nels of finite memory, (i.e., throw away some bad blocks in
the channel so that what is left has finite memory but large
capacity), and then applying [1].

In the case R = C, there is no room to spare, so no
blocks can be thrown out. Nevertheless, under an ad-
ditional restriction, we do in principle get codes with
properties 1), 2), 3), and a weak version of the stationary
condition 4) mentionéd above. Namely, the coding rule is
invariant under shifting the input by kp positions and
shifting the output by kg positions for some k. (See
Section 1IV.)

While our proofs are constructive, a blind application of
the algorithms contained in them leads, in general, to codes
of unacceptable block length. Our main purpose is to prove
the existence of codes and to give a skeleton scheme for
finding reasonable codes.

The purely mathematical content of this work can be
summarized as follows (see Section I for background).

Theorems: Let S be a sofic system, and let #(S) denote
its entropy. Let n be a positive integer.

a) If A(S) > log(n), then § factors continuously onto
the full n-shift (Corollary 1, presented in Section II).

0018-9448 /85 /0500-0366$01.00 ©1985 IEEE

MARCUS: SOFIC SYSTEMS AND ENCODING DATA

b) If #(S) < log(n), then § factors continuously, finite-
to-one into the full n-shift (Theorem 1 (see Section
I1D)).

c) If h(S) = log(n) and S is almost of finite type (see
Definition 4), then some power of § factors continu-
ously, finite-to-one onto the same power of the full
n-shift (Theorem 2 (see Section IV)).

Note: We do not know if part c) can be improved.

The main idea for applications is that the set of allow-
able sequences to be recorded on a magnetic medium is
represented by a sofic system and the computer data is
represented by a full shift. The factor maps in the afore-
mentioned Theorems (a) and c)) provide the codes; b) is
used as a starting point for the proof of c).

The procedures here and in [1] were developed from
techniques used to study the classification problem for
smooth dynamical systems. The relationship is as follows.
The phase space of the dynamical system is partitioned
into a finite number of pieces, each piece labeled by a
symbol; then, by observing the itinerary of an orbit relative
to the pieces of the partition, the orbits are coded into
sequences of symbols. The motion of the dynamical system
is then reflected by the shift map on the space of se-
quences. The classification problem is, thus, turned into a
shift-invariant coding problem on these sequence spaces.
The connection between magnetic recording and dynami-
cal systems was discovered by Hassner [7].

I. BACKGROUND AND EXAMPLES

We briefly summarize the necessary background. For
more details, we refer the reader to [1] and the references
therein. We now describe the types of sources of sequences
(subshifts) that we use and codes to be constructed (factor
maps).

A. Subshifts

Let A be a finite set, with n elements (thought of as a set
of symbols, or states, or as an alphabet). The full n-shift Z,
is the set of bi-infinite sequences

{ -+ x_,x_yxgx1x, -+ teach x;, € 4}

with a distinguished Oth coordinate. This is also known as
the free source.
The shift map is defined as

0:2,> 32, o(x)=y whereeach y, = x,,;.

o is continuous with respect to the natural metric. This
map will be important for coding purposes because it is a
convenient way of expressing the stationarity of the coding
schemes.

By a subshift, we mean the restriction of o to a closed
o-invariant subset, A, of Z,. This means that there is a
collection (possibly infinite) C of finite words in the al-
phabet A such that (x belongs to A) < (each finite block
of x belongs to C). Thus the set A will really represent a
collection of available messages.

367

Example 1: A, is the space of sequences with alphabet
A = {1,2}, where 2’s are required to be isolated (called the
golden mean system).

Example 2: A, is the space of sequences with alphabet
{a, b}, where b’s are required to appear in blocks of even
length between two a’s (called the even system [8)).

By a A-block, we mean a block that appears in some
point of A. By a k-block, we mean a A-block of length k
(A being understood by context).

Since a subshift A is defined to be shift invariant, the
shift map o naturally restricts to a map : A — A.

Sometimes we use A to refer to either A or A together
with /A, the restriction of the map o to the set A.

B. Factor Maps

Let A, and A, be two subshifts with possibly different
alphabets. Let g;: A; > A, and g, A, - A, be two
continuous maps. A factor map from (A4, g,) to (A5, g5)
is a continuous map w: A; = A, such that =g, = g,7.
Usually we shall be interested in the case g, = ¢ and
g, = o/ for some i and j. When we refer to a factor map
m: Ay = A,, we will assume that the maps involved are, in
fact, g, = o and g, = ¢ unless otherwise specified.

While the definition of a factor map has an abstract
form, it is really a very concrete idea: it is simply a sliding
block code (see [9], [1, p. 8).

Example 3: Let A, be the golden mean system (isolated
2’s), and let A, be the even system (even b’s). Let 7* be
the map

w*: {2 — blocks of A,} — {symbols of A,}
defined by

7*(11) = a
7*(21) = b
7*(12) = b.

Then define the factor map =: A; —» A, by
(-

= o m*(xpx) mH(x_yxe) mH (xpxg) m*(xxg) o

X_pX_1XgX;Xy 0+)

So, for example,
a(---211211121211 - -+) = - - - babbaabbbba - - - .

This is a factor map from A; onto A, (more properly,
(A,,0) onto (A,,0)).

In this example, = is a 2-block map. In general, a
k-block factor map is a sliding block code generated by a
map

a*: {k — blocks of A;} = {symbolsof A,}

So, for / > k, the expression #(x; - -- x,) makes sense:

xk)
‘”*(xz ce xk+1) Tt ”*(xl—k+1 Tt xl)'

Factor maps which are 1-1 and onto are called conjuga-
cies. They play a very special role. If a conjugacy from A,

W(xl e x1)=77-*(x1 e

368

to A, exists, we say that A; and A, are conjugate. The
idea is that two conjugate subshifts are essentially the same
even if they produce literally different sequences. Notice
that the generating map #* of a conjugacy may not be 1-1,
although the conjugacy itself must be 1-1 (see Fig. 4
following).

Let A be a subshift, and let £ be a positive integer. Let
C, denote the set of all k-blocks of A. In (C,)%, there are
two subshifts intimately related to A.

Example 4: Define

¢1:A_’(Ck)z
$1(- x_1xexy)
e (kg X)) (%o X)Xy e x) e

Note that the blocks here overlap. The image of ¢, is a
subshift, conjugate (via ¢;) to A (more properly, (A, 0)).
This subshift is called the higher block system (see 1, p. 7])
for A and is one of many different and convenient ways
that we can represent a subshift.

Example 5: Define

$y0 A = (Ck)z
¢2(... x_lxoxl ...)
= (g) (g e Xy) e Xagpy) e

Note that the blocks here do not overlap. The image of ¢,
is a subshift, (¢,(A),0), called the kth power, which is
conjugate (via ¢,) to (A, o*). This is the standard way of
representing a power of a subshift map as a subshift map
in its own right.

C. Special Subshifts: SSFT and Sofic Systems

We are mostly interested in subshifts of finite type and
sofic systems. A subshift, A, is of finite type (SSFT) if
there is a positive integer k and a collection of k-blocks C
such that

A={xed foralli, x, . ,x;,, +* x;,, € C}.

In other words, A is the set of points all of whose k-blocks
are prescribed by C.

This really means that the A-blocks are determined by
finite memory in the following sense: Given a symbol s and
A-block w, in order to know whether the concatenated
block ws is a A-block, one need only know the last &
symbols of w.

If k = 2, then one constructs an # X n matrix

(1 ifijeC
a {0, if ij & C}'
(Here we are thinking of the state set A as {1,2,3,---,n}.)
In this case (k = 2), the SSFT is denoted { 4}. By a simple
recoding (via the higher k-block system), every SSFT may
be described as an {4} (with perhaps a much larger set of
states).

As is standard, one may represent an SSFT {4} as the
set of all bi-infinite walks on a directed graph as follows.
The states are the elements of A; one draws an edge from i

A

ij

1EEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1T-31, NO. 3, MAY 1985

to j if and only if 4,, = 1. Thus, the point x = (---
X_1XgX,X, -+) corresponds to a walk that at time i is at
state x;. The {4 }-blocks correspond to the paths of this

graph. For example, if 4 = (} 1), then the graph is as

shown in Fig. 1. This SSFT {4} is simply the golden mean
system described before, because the only restriction that
one encounters while walking on the graph is that two’s are

isolated.

Fig. 1. Golden mean system.

The higher block systems of SSFT’s are also represented
by graphs in a very simple way. Namely, the 2-block
system of {A4} is represented by the edge graph of the
original graph of {4}; the 3-block system is represented
by the edge graph of the edge graph, etc. For example, the
2-block system of the golden mean system is generated by
the graph in Fig. 2, whose vertices represent the edges of
the original graph.

The n X n matrix of all ones generates the full n-shift
3, which is, of course, an SSFT.

a

\

Fig. 2. Edge graph of golden mean system.

One typically assumes that all SSFT’s are given by
irreducible matrices (i.e., for all i, j there exists an n =
n(i, j) such that 47, > 0) or, perhaps even stronger, that
A is aperiodic (i.e., there exists an n such that for all
i, J,A};> 0). Any SSFT that is not aperiodic can be
studied in terms of its components [1, p. 10].

A subshift A is said to be sofic if there is an SSFT {4}
and a factor map # from {4} onto A. Of course, every
SSFT is sofic (let # = identity), but sofic systems are much
more general.

In the definition of sofic system, by replacing {4} by a
higher block system, one may assume that « is a 1-block
map or, equally well, a 2-block map. From this point of
view, a sofic system is a subshift obtained by labeling the
vertices if 1-block (or the edges if 2-block) of a directed
graph. For example, the edge labeling shown in Fig. 3
presents a sofic system (the even system) as a 2-block
factor of the golden mean system. The even system is not
an SSFT: in order to know whether an a can follow a
string of b’s, one has to know when an a previously
occurred; this, however, requires infinite memory. This

MARCUS: SOFIC SYSTEMS AND ENCODING DATA

OO

Fig. 3. Even system.

Fig. 4. Full 2-shift.

means that it can never be described by a discrete noiseless
channel of finite memory.

On the other hand, the edge labeling shown in Fig. 4
presents the full 2-shift that is an SSFT.

A given sofic system or SSFT may be presented as
labelings of a graph (or different graphs) in many different
ways (e.g., as in Fig. 4). This is good; we exploit this
flexibility.

A test for deciding whether a sofic system is SSFT can
be found in [10].

D. Motivating Example

Let ¢ be a positive integer. Let C be the set of all blocks
wy -+ - w, with alphabet { +1, —1} such that

n
Z w;
i=1

The subshift generated by these blocks is called a charge-
constrained system and is denoted by A . This is simply
the set of sequences whose running sums are bounded by c.

The graph shown in Fig. 5 presents A, as a sofic system.
A general graph of the type above presents any A, as a
sofic system. These systems are not SSFT’s since, for
example, if ¢ = 4 and w is the block

11M1-1-11-11._ -11

<cC.

(i.e., 111 followed by arbitrarily many concatenations of
—11), then —1wl is in A, but 1wl is not. (So that the
concatenability of the symbol 1 depends on infinite mem-

ory.)

Fig. 5. Charge-constrained system (charge < 4).

If one thinks of sequences in A, as generating square
waveforms, then the sequences all have a sharp null at dc.
This is frequently desired in applications.

One can also add run-length limits to the charge con-
straints by requiring that the run lengths of both +1’s and
~1’s are all bounded below by some positive integer D
and above by some positive integer K. These systems are
called charge-constrained run-length limited systems. They
are denoted as A, , ., whered=D -1, k=K -1, and
¢ is the charge constraint above. These systems are im-

369

portant in magnetic recording [11], [12]. While the run-
length limits are SSFT in nature, the systems A, , . are
sofic and not SSFT (the latter because of the charge
constraint).

E. Entropy

The entropy h(A) of a subshift A is simply the asymp-
totic growth rate of the number of k-blocks of A (as
k — o0). For an irreducible SSFT {4},

h({4}) =log (M),
where A is the largest eigenvaiue of 4 and the log is to

base 2. From this, it follows that the entropy of the golden
mean system is the log of the largest eigenvalue (of

(i (1)))’ which happens to be the golden mean itself.

The following proposition is well known in symbolic
dynamics.

Proposition 1 [13, p. 9]: If A, and A, are subshifts and
7: A, — A, is an onto factor map that is either finite-to-
one or 1-1 almost everywhere, then A(A;) = h(A,). (In
particular, entropy is conjugacy invariant.)

Thus, one can compute the entropy of a sofic system by
realizing it as a finite-to-one image of an SSFT. For
example, the factor map in Example 3 is at most 2 to 1 (in
fact, all points have exactly one preimage except - -- bbb
--+), and so the entropy of the even system is the log of
the golden mean as well.

The entropy we use here was called capacity by Shannon
[6] and is called topological entropy in dynamical systems.

F. Special Factor Maps: Right Resolving Maps
For a subshift A with alphabet 4 and a € 4, we denote
F(a)= {a’ € A: aa’ is a 2-block of A }.

This is the follower set of a.

Definition 1: Let A, and A, be subshifts. A factor map
a: Ay - A, is called right resolving if w(a,a,) = n(a,a5)
implies a, = a} (i.e., knowledge of @, and 7(a,a,) de-
termine a,). Of course, this makes sense only if 7 is a
1-block or 2-block factor map. (This is essentially [1, def.
3.2} with parameters 1,0,1.)

Now suppose that {4} is an SSFT, S is a sofic system,
and 7: {4} — § is a 2-block map. Then, as before, 7 is
simply a labeling of the edges of the graph of 4. To say
that « is right resolving means that for each vertex, the
outgoing edges are all labeled differently, i.e., the labeling
is a Shannon graph [14]. Every sofic system can be realized
in this way [10], [14], [15]. This will be used in the next
section.

An important use of right resolving maps is the construc-
tion of codes. Consider an SSFT {4}, where A4 has row
sum n for some positive integer »n; this means that coming
out of each vertex of the graph of A there are exactly n
edges. For each vertex, one labels the n edges 1,- - -, n: this
defines a right resolving map #: {4} — Z,. Now one
codes the free n-ary source into {4} by starting at some
arbitrary state in the graph of 4 and following the labels.

370

Fig. 6. Simple Code.

wen e (DOOOOOOO

Fig. 7. Example of encoding (Fig. 6).

In Fig. 6 we have exactly this situation (with n = 2). The
encoder (starting at state a) derived from this factor map
would, for example, encode as shown in Fig. 7. The de-
coder is given by the factor map. In this type of coding, the
encoder has no look-ahead (but possibly infinite look-back)
and the decoder looks ahead one position and does not
look back at all.

The idea of [1, Theorem 6.1] was to code the free n-ary
source into any SSFT {4} with A({4}) = log(n) in much
the same way. Namely, first, they construct an SSFT { B},
conjugate to {4}, with all rows sums of B at least n (see
Section III). So, in the graph of B, coming out of each
vertex there are at least n edges, and one labels # of them
by the distinct numbers 1, - -, n; this yields a right resolv-
ing factor map from an SSFT sitting in { B} onto Z,. One
codes X, into this SSFT as described above—namely,
starting at an arbitrary vertex, one follows the labels. Then
use the conjugacy from {B7} to {4} to code into {A4}.
Such a code has all of the desired properties and has rate
R = (1/1)log, (n).

We will make use of the following.

Proposition 2: Right resolving maps are finite-to-one.

II. APPROXIMATION

Definition 2: Let A, and A, be subshifts, and let =:
A, = A, be a 1-block factor map. A resolving block is a
Aj-block s =5 --- s, for which there exists an i € {1, 1]
such thatif u =, -+ u, and v = v, - -+ v, are A;-words
with w(u) = s = 7(v), then u;, = v,.

If = is right resolving and has a resolving block, then the
i above can be chosen to be ¢, Also, a finite-to-one factor
map is 1-1 almost everywhere if and only if it has a
resolving block (see [13, Theorem 3.33]).

Proposition 3: Let § be a sofic system. Then there are
SSFT’s {B,}, {B,}, {B;}, - -+ such that

1) each {B,} C §;
2) suph({ B;}) = h(S).

Remark: Here we are approximating a sofic system from
the inside in terms of entropy. This cannot be done in
general for arbitrary subshifts.

Proof: By definition, there is an SSFT {4} and a
factor map = from {4} onto §. By [15], [10] we may
assume that {4} is irreducible, that = is a right resolving

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-31, NO. 3, MAY 1985

1-block factor map, and that = has a resolving block
s =5, -+ 5, Thus, if

u=u1...

u, and v=v, - -y, (2.1)

are { A }-words with m(u) = s = 7(v) then u, = v,.

Claim: Let {A4,} denote the SSFT determined by all
{A)}-words u = u;, -+ u, of length / such that #(u) is a
resolving block. We claim that =|,, is 1-1.

Proof of Claim: Let x,y € {A,} with 7(x) = 7w(y).
So, for each i, w(X;y; *** X0) = W(Yipy * Yy 15 2
resolving block. Thus, by (2.1) for each i, x,, ;= y,,,. So
x = y and thus 7|, is 1-1.

Let { B,} = w({ 4,}). By the claim, { B,} is conjugate to
{A,} (via 7) and is therefore an SSFT inside §.

Next we show that sup,s({ B;}) = £(S). This rests on
the observation that any block with a resolving subblock in
it is itself a resolving block. Thus, intuitively, most long
S-blocks will be resolving. We make this precise.

Fix an {A4}-word u = u; --- u, such that #(u) is a
resolving block. Let

pi=(A)uy,u,.
So p; is the number of A-admissible (i + 1)-blocks begin-
ning with u, and ending with ;. It is well known [13,
Theorem 3.10] that since A is irreducible,
1 .
= oggp,)

i—o0

= h(4). (2.2)

Now let r and !/ be positive integers, and assume that /
is even and

r>1>2k.

Let U, ;= {{A}-words v = vy ---
ing periodically with period //2}:

v, that have u appear-

ul . .. uk ul .. uk u10-- uk'
12 12
Then
[2r/N
#U, ;= (Pl/z—k) . (2.3)

Moreover, if v € U, , then every subblock z of #(v) with
length [/ contains «(u) as a subblock; whence v is an
{ A,}-block. So the number of { A, }-blocks of length r is at
least #U, ,.

Thus, by (2.3),

2r/0
IOg(P(l/z)—k) _ log Pusy—«

h({Al})Z —h—lﬁ r 1/2

Thus, since { B,} is conjugate to {4,}
log Pusy—«
172
the latter inequality because of (2.2), and the latter equality

because 7 is a finite-to-one map from {4} onto § (see
Propositions 1 and 2).

sgph({Bz})ZSgp > h({4}) = h(S),

Example 6: We give a very simple example of Proposi-
tion 3. Let S be the sofic system given by Fig. 8. Intrin-

MARCUS: SOFIC SYSTEMS AND ENCODING DATA

Fig. 8. Example of approximation.

sically, § is the set of sequences on symbols a, b, ¢, d such
that b’s, ¢’s, and d’s appear only in blocks of even length.
It is easily checked that 2(S) > log2. (To see this, let A4 be
the matrix of the SSFT defined by Fig. 8, and observe that
the vector x, =2, x,=x;=x,=1 satisfies 4x > 2x
and equality does not hold in the first component; this
means that h(S) = h({4}) > log?2 (see [16]).) So Proposi-
tion 3 guarantees that there is an SSFT { B} inside S with
h({B}) > log2 as well. One can then apply [1, Theorem
6.1], as roughly described in our Section I-F, to ericode the
free binary source into { B }—hence into S. In Section IV,
we give another way of constructing such a code.

Now the SSFT {B} cannot be obtained by simply
eliminating some edges of the Fig. 8 graph (any SSFT
obtained in that way will have zero entropy). However, one
can get {B} by eliminating some edges in the 2-block
system. We indicate this as follows.

The 2-block system is represented by Table 1. The states
_ are the 2-blocks of the original SSFT {4}: 11, 21, 31, 41,
12, 13, and 14; the arrows indicate the edges, and the
letters in parentheses indicate the labels of states that
define the factor map onto §.

TABLEI

11 (a) — 11,12,13,14
21 () — 11,12,13,14
31 (c) — 11,12,13,14
41(d) - 11,12,13,14
12(b) — 21
13 (¢) > 31
14 (d) - 41

Now, eliminating the edges (from Table I),

21 - 12
31 ->13
41 - 14,

it can be seen that the SSFT {4’} defined by the remain-
ing table (not the labels) has entropy > log2 (the vector
Xjp =Xy =X5n=Xg =2 xp=1 x3=1, x,=1
satisfies 4’x. > 2x, and equality does not hold in the 11
component) [16]. Moreover, the labelings restricted to { 4"}
define a 1-1 map and therefore an SSFT { B} inside the
sofic system S. (Intrinsically, { B} is the set of sequences
such that b’s, ¢’s, and d’s appear only in blocks of 2.) One
actually encodes the free binary source (using [1]) into
{ A4’} and then composes with the conjugacy defined by the
labeling,

371

Now let S be an arbitrary sofic system. Let n, p, and ¢
be positive integers such that A(S) > (p/q)log(n), equiv-
alently

gh(S) > log(n?). (2.4)

The left side of (2.4) is the entropy of the subshift (S, ¢7),
which is a sofic system in its own right called 7. One can
then apply Proposition 3 to T to get an SSFT {B}C T
with A({ B}) > log(n?). Applying [1] to {B} (as in Sec-
tion I-F) one gets a code from the free n”-ary source into
the system defined by T. If one interprets T as (S, 07) and
2,» as (2,,07) (via Example 5), one gets a code from the
free n-ary source into the system § that is invariant under
shifting by p positions in the free source and ¢ positions in
S.

We now use these ideas to prove a general factor theo-
rem.

Corollary I: Let S be a sofic system with 2(.S) > log(n).
Then there is a factor map from § onto the full n-shift, =,.

Proof: By Proposition 3 we get an SSFT (B} C S
with A({ B}) > log(n). Then [1, Theorem 6.1] provides a
factor map « from an SSFT {C} c { B} onto Z,. Since =
is a sliding k-block code, one can simply extend « to all of
§ by making arbitrary assignments on those k-blocks of S,
which are not k-blocks of {C}, to symbols of {1,---,n}.
(Here it is important that the range is a full (uncon-
strained) shift—so that the arbitrary assignments will stay
within the range—see [17] for more on this.)

III. STATE SPLITTING

To construct codes from fairly arbitrary systems to full
shifts, we need a good standard form. Let {4} be an
irreducible SSFT. In [18], we proved that if A({ A}) = logn,
n € Z* there is a matrix B such that { B} is conjugate to
{4} and each row sum of B is n. Adler ef al. proved the
analogous result for A({A}) > logn; this is presented in
the following proposition.

Proposition 4 ({1, Theorem 6.1]): Let {A} be an irre-
ducible SSFT with h({A4}) > logn, n € Z™. Then there is
a matrix B such that { B} is conjugate to {4} and each
row sum of B is at least n.

Now we prove the following. _

Proposition 5: Let {A} be an irreducible SSFT with
h({A4}) < log(n). Then there is a matrix B such that { B}
is conjugate to { A} and each row sum of B is at most n,

Remark: In all of these results, the set of column sums is
not changed. So one can get conjugate representations with
the correct row and column sums simultaneously. We
conjecture that,! given 4 with log(n) < h({4}) < log(n
+ 1), there is a conjugate representative B with all row
(and column) sums in the set {n, n + 1} (i.e., that Proposi-
tions 4 and 5 can be done simultaneously!).

Before proving Proposition 5, we need to establish the
following notion.

!This was proved by Joel Friedman in a paper to appear in the
Proceedings of the American Math. Society entitled “A Note on State
Splitting,.”

372

State Splitting [18], [19], [20]: Let {A} be an SSFT
defined by states 4 and matrix 4. Fix v€ A4 and a
partition of the follower set F,(v)= E, U E, into two
pieces. We construct a new directed graph by replacing the
vertex v by two new vertices, v; and v,. Each edge that
terminated at v is replaced by two edges: one terminating
at v, and the other at v,. Each edge that emanated from v
and terminated at a vertex p € E, (i = 1,2) is replaced by
an edge that emanates from v; and terminates at p. If
p = v (and say i = 1), then there was a loop at v that is
replaced in the new graph by a loop at v; and an edge
from v, to v,. The new vertex set is A’ = (4 — {v}) U
{v,,v,} and the new matrix denoted 4’.

For example, if in the graph shown in Fig. 9 E; = {v,w}
and E, = {u}, then the new graph is as shown in Fig. 10.

Fig. 9. Before splitting.

(D=

Fig. 10. After splitting.

Proposition 6: Let A’ be a matrix obtained from A by
splitting the state v. Then {4} and {4’} are conjugate.

Proof of Proposition 6: This is well known; just define

w, ifwed—{v}
a*(w) = {v, ifw=u,
v, if w=nu,.

Then 7* generates a conjugacy .

Lemma 1 ([18, Lemma 4]: Let n be a positive integer,
and for each i = 1,---, n let s, be a positive integer. Then
there exists an E C [1, #} such that n divides T, . gs,.

Proof of Lemma 1: Either {si,5; + 55,--°,8, + 5,
-+« +s5,) are all distinct mod n or two of them are con-
gruent mod ». In the former case, one of those sums must
be divisible by n. In the latter case, the difference between
two of the sums must be divisible by n.

We may now proceed to the proof of Proposition 5.

Proof of Proposition 5: Let £ be a positive eigenvector
of A (corresponding to the positive eigenvalue of largest
modulus A). By virtue of the entropy assumption, A < n.
Thus, by approximating £ by a rational vector and clearing
denominators, one gets a positive integral vector r such

1EEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-31, NO. 3, MAY 1985

that

Ar < nr.
(Note: If h({A}) = logn, then ¢ may already be assumed
to be positive integral.) We call such an r a positive
integral approximate eigenvector.

Fix v € A with #F,(v) > n. (If v does not exist, we are
finished already.) Let U be any subset of F,(v) with
exactly n elements. By Lemma 1, there is a subset E C U
such that

n divides Y, ;.
JEE
Do state splitting, as described previously, with
E,=E
E,=F,(v)~E.
Since E C U g F,(v), E, must be nonempty. Define a
vector r’ as

1
LA
vl—_n Erj
JEE
=,
and fori€ 4 — {v}
r'=r

Then, one easily sees that r’ is a positive integral ap-
proximate eigenvector for 4’. Clearly r and r’ satisfy

Z r,= Z r/.

ied ied’
Thus, since #A4’ > #A, the state splitting process can only
be repeated a finite number of times, and so eventually we
must obtain a matrix B with { B} conjugate (by Proposi-
tion 6) to {4} and for each state v of (B}, #Fz(v) < n,
as desired.

Remarks:

1) The end result of this gives a conjugacy between { 4 }
and {B}. It would be good to know the best possible
estimate on the size of the block length of the conjugacy in
general and also in various special cases that arise in
practice. The important point in the above proof is that
one can find a state v and a proper subset E ¢ F,(v) such
that 2, gr; is divisible by n. One can split any vertex v
with this property and thereby obtain shortcuts in the
method.

2) The proof of Proposition 4 follows similar lines ex-
cept that ;. > 0 is not automatic unless one splits a vertex
v with maximal r-component and such that F,(v) has an
element whose r-component is not maximal. This will force
the existence of the set E above and will also force 7, > 0.

The problem with the notion of a right resolving map is
that it is not invariant under conjugacy. The following
notion is invariant.

Definition 3: Let « be a factor map from A, to A,. We
say that o is right closing if it never identifies a pair of
negatively asymptotic points, as shown in Fig. 11. More

MARCUS: SOFIC SYSTEMS AND ENCODING DATA

Fig. 11. Right closing.

precisely, if x, ¥ € A,, x # y, and there exists n such that
for all i < n x; =y,, then w(x) # «(y). Similarly, one has
the notion of left closing.

The following facts are easy to verify.

Fact 1: A k-block map #: A; — A, is right closing if
and only if whenever #(x) = #(y) and there exists an n
such that x, =y, for all i € [n ~ k + 1,n], then x, =y,
for all i > n as well.

Fact 2: Any right closing map is finite-to-one.

Fact 3: Any right resolving map is right closing.

Fact 4: The composition of a right resolving map and a
conjugacy is right closing. ,

While, strictly speaking, right closing is a (literally) more
general notion than right resolving, in a certain sense it
really is not. We need the following form of this statement.

Proposition 7 [21]: Let {4}, {B}, and {C} be SSFT’s
with {B} C {A4}. Let «: {B} — {C} be a right closing
factor map. Then there are SSFT’s {B’} C {A’} and a
conjugacy ¢: {A’} — {4} such that ¢({B’})= {B} and
the factor map 7 ° ¢: { B’} - {C} is right resolving.

The point here is that we can think of factor maps = and
a o ¢ as representing essentially the same map.

The following will be the starting point for the construc-
tion of codes where the rate is maximal (in Section IV).

Theorem 1: Let S be a sofic system with h(S) < log(n).
Then there is a right closing factor map from § into X .

Proof: It is well-known and easy to see that any
subshift can be approximated by SSFT’s from the outside
in entropy; i.e., if S is a subshift and € > 0, then there is an
SSFT {4} such that

Sc {4}
and
h({4}) <h(S) +e.

(Just look at the SSFT determined by blocks of large fixed
length in S.) Thus there is a SSFT {4} such that

Sc{4}
and
h({A4}) < log(n).

By Proposition 5, { A} is conjugate to SSFT { B} and each
row sum of B is at most n. Then one easily defines (by
labeling edges) a 2-block right resolving factor map from
{B} into £,. Composing this with the conjugacy, one gets
a right closing factor map from {4} into X, (by Fact 4).
Now one just restricts this factor map to §.

373

IV. EnTROPY = log(n)

Suppose that § is a sofic system with A(S) =
(p/q)log(n), where p, g, and n are integers. To code X,
into S at rate (p/q)log(n), we need to use all of §, so we
cannot use the approximation idea of Section II. So, instead
of throwing out blocks, we must use blocks carefully. The
idea, when p/q = 1, is that if S is presented as a factor of
an SSFT {4}, one finds a right resolving factor map
{A} — X, such that any two points of {4} that present
the same point of .§' are mapped to the same point of X,.
This defines a right closing map § — 2, that can be used
to construct codes. When p/g # 1, one applies the same
sort of scheme replacing S by (S,67) and =, by = ,.

We first illustrate the rough idea with a very simple
example. Let .S be the sofic system shown in Fig. 12. S is a
subset of Example 6. Also £(.S) = log(2).

Fig. 12. Simple sofic system.

S is presented as the image of a 2-block factor map =
from an SSFT {A4)}. There are two points x and y in §
that are bad in the sense that they have more than one
sr-inverse image (or, equivalently, they are each represented
by more than one path on the graph). Namely,

x= .-+ bbb -

y= ---ccc,
for if

U= ---1212 - -+

Uy = ---2121---,
then

m(u) = w(u,) = x,
and if

v, = ---1313--.

vy = ---3131---,
then

7(0,) = 7(0;) = y.

The points x and y are the only bad points, because once
you see a, bc, or ¢b in a sequence, then you know where
you are on the graph. A general procedure for finding the
bad points is in {10]. Let H = #7' (Bad set) =
{uy, up, 01,05}

Now, we want to construct an SSFT { B}, which con-
tains H, and an (into) right resolving factor map: ¢:{ B}
— =, such that ¢(u,) = ¢(u,) and ¢(v,) = ¢(v,). This is
as shown in Fig. 13, ({B} is the SSFT generated by
throwing out the loop at state 1; the zeros and ones in
parentheses indicate the map ¢.)

374

Fig. 13. Map on bad set.

Now we do state splitting on the graph (as in the proof
of Proposition 5). The eigenvector is (211)". So we split
state 1 (see Fig. 14). Here we have partitioned the succes-
sors of state 1 into two groups E; = {1} and E, = {2,3}.
(The idea is to partition the successors into groups such
that, for each each group, the sum of the eigenvector
components is divisible by n, in this case divisible by 2.)

Fig. 14. State splitting.

Now, the SSFT {B} is represented by the four edges
connecting states 1,, 2, and 3. On these four edges, the
map ¢ is forced (since it was already defined). Now extend
¢ to all of { A} by labeling the remaining edges (the arcs
outside of { B}) with zeros and ones in a right resolving
way. Any such extension will automatically define a factor
map from {4} onto 2,. It also defines a factor map from
S onto =, since the only points of ambiguity were in the
bad set (by definition) and these were already taken care of
(see Fig. 15). This now defines a code from the free binary
source into the sofic system S: one fixes an arbitrary state
(say 3) and encodes 0-1 sequences by walking along the
unique path defined by the sequence and then reading off

a(1)

€(1)

)
Fig. 15. Extension of factor map.

the corresponding a, b, ¢ labels. For example, 0110101100
encodes to caaaccaaab. One decodes an a, b, ¢ sequence
by walking along any path corresponding to the sequence
and then reading off the 0-1 labels. By construction, encod-
ing has no look-ahead and decoding has limited look-ahead
and no look-back.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-31, NO. 3, MAY 1985

Intuitively, what we did here was the following. We first
made a (partial) right resolving 0-1 labeling (¢) on the
original graph; this labeling was consistent with the origi-
nal a-b-c labeling (7) and was defined only on the paths
where consistency could possibly be a problem. Then, by
state splitting, we represented the original sofic system in a
new way, where the defining graph had two outgoing edges
at each vertex; this new split graph naturally inherited an
a-b-c labeling as well as 0-1 labeling (but again the 0-1
labeling was defined only on the paths where consistency
could be a problem). Finally, the 0-1 labeling on the split
graph was extended to a right resolving 0-1 labeling on the
entire split graph.

The general sofic system presents many more difficulties.
For instance, it is possible that in the newly created split
graph, there is a state for which the 0-1 labels of both
outgoing edges are forced to be identical. This would mean
that the final 0-1 labeling on the split graph could not be
right resolving. However, this will not happen if one can
split states so that all of the bad outgoing edges (i.c., edges
that are a-b-c labeled by symbols that are represented by
more than one edge) can be put in one group of the state
splitting partition, { E;, E,}. While this may not be possi-
ble for the original graph, it may (and in fact will for a
large class of systems) work for some power of the original
graph (the kth power of a labeled graph is the graph whose
edges represent paths of length k in the original graph— this
represents the kth power of the original system (see Exam-
ple 5)).

Definition 4: A sofic system § is almost of finite type
(AFT) if there is an irreducible SSFT {4} and an onto
factor map 7: {4} — § thatis 1-1 on an open set.

Remark: All sofic systems are 1-1 “almost-everywhere”
images of SSFT’s [10]. However, M. Boyle showed us an
example of a transitive sofic system that is not AFT. A test
for AFT is contained in [22].

The following gives a more concrete notion of the AFT
idea.

Proposition 8: Let 7w {A} — § be an onto factor map
from an irreducible SSFT to a sofic system. The following
are equivalent:

1) « is 1-1 on an open set;

2) o is 1-1 on an open dense set of full measure;

3) = is left closing, right closing, and has a resolving
block.

Proof: 1) and 2) are equivalent by irreducibility. Given
2), then by the proof of [13, theorem 3.33], # has a
resolving block; = must also be left and right closing since
otherwise the non-1-1 set would be dense. Thus 2) implies
3). Given 3), one easily sees that since # is left and right
closing, # must be 1-1 on the resolving block (an open set)
(See Fact 1 and assume that 7 is a 1-block map.) Thus 1)
holds.

All of the examples in this paper, as well as [5, Example
2] are AFT. The definition of AFT is motivated by the
charge-constrained run-length limited sofic systems

A (d,k,c).

MARCUS: SOFIC SYSTEMS AND ENCODING DATA

Proposition 9: A, i . is AFT.

Proof: We first prove Proposition 9 for the charge-
constrained systems A, (without the run-length con-
straints). These sofic systems are presented by the labelings
shown in Fig. 16. The factor maps represented by the
labelings are right and left resolving, since at each vertex
all outgoing edges are labeled distinctly and all incoming
edges are labeled distinctly. Moreover, any block of 1’s of
sufficient length is a resolving block. Thus, by Proposition
8, the systems A _ are AFT.

Fig. 16. General charge-constrained system.

For the general case, one can “jazz up” the preceding
argument directly. Alternatively, one realizes that since the
run-length constraints are SSFT, each A, ; ., is the inter-
section of an SSFT with A . But we just proved above that
A is AFT. So Proposition 9 will follow from the following
lemma.

Lemma 2: The intersection of an SSFT with an AFT
sofic system is again an AFT sofic system.

Proof: Let { B} be the SSFT, and let § be the AFT
sofic system with #: {4} — § 1-1 on an open set. The
reader can easily verify that #71(S N {B}) is an SSFT.
Moreover, the restriction of = to this SSFT,

7o (SN{B}) > SN{B}

inherits the right and left closing properties that = has
(Proposition 8). While this restriction does not necessarily
inherit a resolving block from =, the construction in [10,
3.4] will present S N { B} as the image of an SSFT by a
map that is right closing, left closing, and has a resolving
block.

Remark: D. Lind [24] in fact showed us that the inter-
section of two AFT sofic systems is again an AFT sofic
system.

It can happen that h(A ;) is the log of a rational
root of a positive integer, €.g., #(A 5 3) = log W2)=1,2
(see [11]). Thus, the highest possible rate for a code of the
free binary source into A ; 3 3y is 1/2. The following theo-
rem shows that, in principle, one can find such a code with
a weaker version of the stationary property 4) (see Intro-
duction); namely, we produce a code that is invariant by
shifting by / in the domain and 2/ in the range for some /.
(Patel [11] found a nice simple stationary code but with
rate slightly lower than 1/2.)

The purpose of this section is to prove the following
Theorem.

Theorem 2: Let S be an AFT sofic system with A(S) =
log (n). Then there exists a positive integer / and a right
closing (thus finite-to-one) factor map from (S, c’) onto
(Z,,0").

375

Remarks:

1) We do not know if the theorem can be strengthened
(i.e., can the AFT condition be dropped? Can [/ be reduced
to 1?) In our proof, ! depends on the entropy of the bad set
(i.e., the set of points with more than 1 inverse image via a
map 7: {4} — S that is 1-1 on an open set). Also, if the
bad set is finite, then / can be made to be 1.

2) If § is mixing, then the factor map of Theorem 2 can
be chosen to have a resolving block and therefore 1-1
“almost everywhere.” However, we remark without proof
that it cannot, in general, be chosen to be 1-1 on an open
set.

Proof of Theorem 2: Let m: {A} —> 8 be an onto
factor map that is 1-1 on an open set. Let H = {x € {4 }:
#a (wx) > 1}. Then H g {4} (in fact, H is closed, but
this is irrelevant to the proof). Thus H is a proper subshift
of { 4}. Since any subshift is an intersection of the SSFT’s
that contain it, there must be an SSFT { B} such that

Hc (B} g {4).

Now, since { B} is proper, we have A{{B}) < h({4})
[23, Theorem 3.3]. This, together with the facts that # is
finite-to-one (Proposition 8 and Fact 2) and finite-to-one
maps preserve entropy, (Proposition 1) yields

h(z({B})) =h({B}) <h({4})
= h(r({4})) = h(S).

Thus, by Theorem 1 there is a right closing factor map :
7({B}) —» Z,. Since 7 is right closing (Proposition 8) it
follows that ¢ = ¢ o 7| p, is a right closing factor map. By
Proposition 7 we may assume (by possibly conjugating
{B} and {4} to another form) that ¢ is right resolving.
Now, since « is 1-1 off of { B}, any factor map that is an
extension of ¢ to all of {4} will automatically yield a
well-defined factor map from § into Z,. If, moreover, the
extension is right closing, it will be finite-to-one (Fact 2)
whence the image of S will have full entropy (log(n)) in
3. But, then again, by {23, Theorem 3.3] this means that
the map is onto. So it suffices to prove the following.

Theorem 3 (Extension Theorem): Let {B} C { A} betwo
SSFT’s with A({A}) = log(n). Let ¢: {B} > X, be a
right resolving factor map. Then there exists an integer /
such that ¢ can be extended to a right resolving factor map
from ({4}, 0') onto (Z,,0").

Proof: Since { B} is a proper subshift, we may assume
by going to a higher block system (Example 4) that the
state set of { B} is a proper subset of the state set of {4}.
Now, if 4 had row sum n, then it would be easy to extend
as a right resolving factor map. Of course, {4} is con-
jugate to an SSFT defined by a matrix with row sum #, but
this conjugacy would in general represent { B} in a form
that makes ¢ right closing, not right resolving. The idea is
(as in Section III) to split states and reduce the compo-
nents of an eigenvector while keeping the map ¢ true to its
original definition.

376

We need the following two propositions.

Proposition 10: Let A* be an irreducible 0-1 matrix with
states A* and h({A4*}) =log(p), pE Z"*. Let B* be a
0-1 matrix with B* < A* (i.e., entry by entry) and B*
A% for some i, j. Let x be a positive integral eigenvector
for A* and assume that not all of the components of x are
the same. Then, for any v € A*¥ with x, maximal, there
exists / such that

pl < Z ((A*)llm —(B*)zlm)'

Proof: Without loss of generality, we may assume that
A* is aperiodic (otherwise replace A* by an appropriate
power) [13, Theorem 3.6]. Thus, there exists a constant
C > 0 such that for sufficiently large / and for all i, j € A4*

Cp' < (4%)}; (4.1)

Also, h({ B}) < h({A}) = log p, and so for all € > 0 there
exists k, such that for all / > k, and forall i, j € B

(B*);; <ep'. (4.2)

Now fix v € A* with x, maximal. Since x is an eigen-
vector, we have

)
xupl = Z (A*)va T Xy

acA*
!
< Z (A*)rl)a (xv_ 1) + Z (A*)vm Xye
g e

Thus, dividing by x,,

Y (4%,

acA*

1
el Tl <
V]l acA*

Xg <X

] v

This together with (4.1) and the assumption that not all the
components of x are the same shows
P+

X Z (A*)va
v acA*

Now, apply (4.2) with e = C/(x (#4%*)) to get

(4.3)

c
P+ Y (B*) <P +—p

acA*

This, together with (4.3) yields the following proposition.

Proposition 11: Let B < A be 0-1 matrices. Let B and 4
be the states of {B)} and {A} (so naturally B C A).
Assume that A is irreducible, has entropy log(m) (m &
Z™), and assume that x is a positive integral eigenvector
for A with not all of its components the same. Let M be
the maximal component of x. If

1) ¢: {B} > 2,
2) for all @ € B with x; =

is a right resolving factor map, and
M, m < #(Fga) — Fg(a)),

then there exist 0-1 matrices B’ < A’ with states B’ C 4/,
a positive integral eigenvector y for A4’, with maximal
component not exceeding M, and a conjugacy (f) from

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1T-31, NO. 3, MAY 1985

{4’} to { A}, which carries { B’} to { B} such that
1) ¢of: (B} >3,
2) for all a’€ B’ with y,

Fy(a’)), _
) #{a'€ed: y,=M)< #{ac A x,=M)}.
Proof: Let b € A with x, = M. We want to split 7, as

in Section II1. By Lemma 1 and Proposition 11, there exists
a set

is a right-resolving factor map;
=M, m< #(Fy(a’) -

E g F4(7) — F3(v)
with X . zx, a multiple of m. Do state splitting with
E =E
E,=Fi(0) - E.
Let A’ = (A4 —{9}) U {v,,0,}, and let 4’ be the transi-

tion matrix defined by the description of state splitting in
Section III. Also
p B if 5 ¢ B
T (B -{5})U{v,}, ifveB
and B’ is defined by tramsitions among B’. Also f is
defined (see Proposition 6) as the factor map generated by

f*:

¥~ (0,,0,) = 1dentity

f*(v) =f*(v,) = 0.
To prove 1) above, let a'a’, a’a’” be 2-blocks of { B’}
with
;5 Of(a’a’) — 5 of(ala//)‘
Since ¢ is right resolving, it follows that f(a’) = f(a”).
But f|z is 1-1 and so &’ = a”’.
Observe that the vector

X,y ifa’ #v,,0,
1 .

= Y x,, ifa"=uv;

m

Var = o cE

1 .

— [

” Y x. ifa =v,

o' € Fy(3)—E

is an eigenvector for A’. Thus, since x is an eigenvector,
Yo, Yo, < M and so 3) holds. To see 2), observe that for all
a’ € B’ with a’ # v,,

#(FI(‘I) — Fg(a’))

and if a’ = v,, then y, <M.

(FA (a’) — Fp(a’))

Proof of Theorem 3: Let x be a positive integral eigen-
vector for A (with eigenvalue »). If all the components of x
were the same, then 4 would have row sum » and the map
¢ would be easy to extend. Otherwise, apply Proposition 10
to A¥ = A4, B* = B, and p = n. This yields an integer /,.
Now apply Proposition 11 to 4 = the matrix of o relative
to A = the {4 }-allowable /;-blocks, B = the matrix of ¢"
relative to B = the { B }-allowable /;-blocks and m = n",
(Here, we are identifying (£,,0) with (2,,0%) as in

MARCUS: SOFIC SYSTEMS AND ENCODING DATA

Example 5 and we choose an eigenvector x, .., = X, .
Now we apply Proposition 11 iteratively until we arrive at
a matrix of 4’ with a positive integral eigenvector whose
largest component is less than M. Now apply Proposition
10 to 4* = A’, B* = B’ and p = m = n". This produces
a new integer /,, and then one applies Proposition 11 again
to the matrix of o2 relative to the {A*}-allowable I,-
blocks, etc. Repeating this application of Propositions 10
and 11 we eventually obtain matrices 4/, B’ with states
B’ C A’ and an integer / such that

1) ({4’},0) is conjugate to ({A4},0') via a conjugacy
(f) that carries ({ B’},0) to ({ B}), o),

2) ¢of: ({B’},0) - (Z,,0') is right resolving, and

3) A’ has row sum »n’.

One easily extends ¢ o f to a right resolving factor map
¢ from ({4’},0) onto (=,,6'). Then, ¢'of! is the
desired factor map from ({4}, ¢’) onto (2,,0").

ACKNOWLEDGMENT

We are indebted to many people for useful discussions:
E. Coven, M. Hassner, N. Hunau, B. Kitchens, M. Paul, K.
Petersen, P. Siegel, and especiaily R. Adler.

REFERENCES

[1] R. Adler, D. Coppersmith, and M. Hassner, “Algorithms for sliding
block codes,” IEEE Trans. Inform. Theory, vol. IT-29, pp. 5-22,
1983.

[2] P. A. Franaszek, “A general method for channel coding,” IBM J.
Res. Dev., vol. 24, pp. 638-691, 1980.

[3] ——, “Construction of bounded delay codes for discrete channels,”
IBM J. Res. Dev., vol. 26, pp. 506~514, 1982.

(4]
5]

6]
{7
18]
{91
(10]
fi1]

(12]

f13]
{14
[15]
{16]

[17]
(18]

{191
{20

1)
2]
23]
24

377

——, “On future-dependent block coding for input-restricted chan-
nels,” IBM J. Res. Dev., vol. 23, pp. 75-81, 1979.

A. Lempel and M. Cohn, “Look ahead coding for input restricted
channels,” TEEE Trans. Inform. Theory, vol. IT-28, pp. 933-937,
1982.

C. Shannon, “Mathematical theory of communication,” Bell Syst.
Tech. J. vol. 27, pp. 379-423, 623-656, 1948.

M. Hassner, “A nonprobablistic source and channel coding theory,”
Ph.D. thesis, Univ. California, Los Angeles, 1980

B. Weiss, “Subshifts of finite type and sofic systems,” Monats.
Marh., vol. 77, pp. 462-474, 1973.

R. M. Gray, “Sliding block source coding,” TEEE Trans. Inform.
Theory, vol. IT-21, pp. 357-368, 1975.

E. Coven and M. Paul, “Finite procedures for sofic systems,”
Monats. Math., vol. 83, pp. 265-278, 1977.

A. M. Patel,“ Zero modulation in magnetic recording,” IBM J. Res.
Dev., vol. 19, no. 4, pp. 366-378, 1975.

K. Norris and D. S. Bloomberg, “Channel capacity of charge
constrained run-length limited codes,” TEEE Trans. Magn., vol.
MAG17, pp. 3452-3455, 1981.

R. Adler and B. Marcus, “Topological entropy and equivalence of
dynamical systems,” Mem. AMS, vol. 219, 1979.

R. Fischer, “Graphs and symbolic dynamics,” Collog. Math. Soc.
Janos Bolyai. Topics in Inform. Theory, 1975.

E. Coven and M. Paul, “Sofic systems,” Israel J. Math., vol. 20, pp.
165-177, 1975.

R. S. Varga, Matrix Iterative Analysis.
Prentice-Hall, 1962, Ch. 2.

M. Boyle, “Factors of sofic systems,” Trans. AMS, to appear.

B. Marcus, “Factors and extensions of full shifts,” Monats. Math.,
vol. 88, pp. 239-247, 1979.

R. F. Williams, “ Classification of shifts of finite type,” Ann. Math.,
vol. 98, pp. 120~-153, 1973; Errata, Ann. Math., vol. 99, pp.
380-381, 1974.

W. Parry and R. Williams, “Block coding and a Zeta function for
finite Markov chains,” Bull. London Math. Soc., vol. 35, pp.
483-495, 1977. .

B. Kitchens, “Continuity properties of factor maps in ergodic
theory,” Ph.D. Thesis, Univ. North Carolina, Chapel Hill, 1981.
M. Boyle, B. Kitchens, and B. Marcus, “A note on minimal covers
for sofic systems,” Proc. AMS, to appear.

E. Coven and M. Paul, “Endomorphisms of irreducible SSFT,”
Math. Syst. Theory, vol. 8, pp. 167-175, 1974.

D. Lind, personal communication.

Englewood Ciiffs, NIJ:

