

Overview

- Global Passive Attacker
- With Some Compromised Nodes
- Want a measure of how much anonymity the network provides

Entropy (as a measure of anonymity)

An effective (anonymous) set size S of an r anonymity probability distribution U is equal to the entropy of the distribution:

$$
S=-\sum_{u \in \Psi} p_{u} \log _{2}\left(p_{u}\right) \quad 0 \leq S \leq \log _{2}|\Psi|
$$

where $p_{u}=U(u, r)$
-S could be thought of as the number of additional bits of information needed by the attacker to completely identify the user u with role r for a message M

- if $S=0$, the communication channel is completely compromised
- if $S=\log _{2}|\Psi|$, the communication channel provides perfect R anonymity

PRISM

- Condition \rightarrow Action
- Condition \rightarrow
prob : Action
prob : Action
Arrays/Data Structures
- Each rule can only have a constant number of transitions
- Sometimes difficult to parameterize

Extend PRISM language

- Added array indexing
- Added For Loops to create many rules
- Created PRISM files with tens of thousands of lines of code

Our First Model

- Fully connected network
- Messages entering good nodes could be sent to every other node with equal probability
- Messages entering bad nodes are sent to a single next node

Parameters

- Probability a node is compromised
- Total \# messages (paths) in network
- Minimum length of a path
- Maximum length of a path
- Total \# users
- Total \# mix-nodes
- Random seed

Extending the Model

- Calculate entropy of the system given a maximum and minimum length for all message paths.
- Improved our modeled attacker's knowledge
- Could not improve as much as we wanted to using PRISM

Limitations

- Tried to minimize the number of reachable states in PRISM for our model
- PRISM could only handle up to around 100 nodes with 100 messages

