Overview

m What is SILC?
Analysis of the SILC Protocol with m Stands for Secure Internet Live Conferencing.
Murphl m Designed as a secure replacement for IRC (Internet
Relay Chat).
= Also has some features of instant messaging.
u Stable implementations for clients and servers are
available. (http://www.silcnet.org)

Project objectives Results

m Examine the security of SILC, and hopefully m Used rational reconstruction to verify the
find attacks with Murphi. necessity of key part of the chat protocol.

m Mote specifically, we wanted to sec if a Found a possible non-trivial attack.

P na ma 0@ ol :
malicious client can “cavesdrop” on a Bad news: Murphi didn't find it; we thought it
up while fine-tuning our invariants. (It turned
out that the invariant broke because of a bug in
our code and not because of the exploit.)

conversation in a channel to which he does not
belong,

Good news: Murphi verifies the exploit.

Presentation outline Terminology

m The SIL.C channel prOtOCOI A server ha dles ch'tmnel maintenance and accepts
connections from clients.

® Our model of the protocol . "
P A client connects to a server to join and part channels.

= Rational teconstruction of the model m A channel is a group of clients that ate in the same
= The exploit conversation.
= Problems 7 ed No one outside a channel is supposed to be able to
170) 21 (=671 WS CEORTIETEE listen in on the conversation.
m Future work It is assumed that each client has already established a
session key with each server to which it talks.




Protocol description (Client) Protocol description (Server)

If entity A sends somethi C,itis crypted with rver, when it receives a join request for a channel from a
the > key betw client, adds that client to the channel roster if it is not already
A client initially cof -
A conn i g o = -

o il r, when it receives a part request for a channel from a
A channet key client, removes that client from the channel roster if it is there.

; e If the channel roster changes, a new session key is created and
buted amo remaini e distributed to all remaining clients in the channel roster.

Each channel me ins vi > sessi i ted I a channel is received from a client of
which it is 2 membet, it is broadcast to all clients in the channel
rostet. (Only the header is reencrypted.)

the source

o that it may update the

Protocol example

Join #silctalk

Simplifications

Connect Connect

generated-silctal We assume no packet lo

We assume lag-free connectio:

oinjrisiicnll In othet words, as soon as a client joins ot patts a

channel, the new key is instantly distributed to all other
clients (unless intercepted by an intruder).

generated-silctalk-key(2)

{C2 Mess up C1.”

In practice, clients keep around old keys so that they
may still dectypt messages that have been delayed, but
we don’t model that.

Part #silctalk
generated-silctalk-key(3)

Part #silctalk .
Petfect ctyptography and key exchange.

Murphi implementation

Intruder model (Command)

Intruder can intercept packets and store them. Command : record
source: AgentId;

. dest: AgentId;
Intruder may have a partner client and/or a partner server. irtDest: AgentT

Intruder can then forward packets it has stored.

— irtended destination
If a client/s s a partner of an intruder it is malicio — (source, irtDest) isthe key
Intruder cannot directly decrypt packets, but it can pass it on to
. . - - . cTyp CommandType;
its partner(s), which may be able to decrypt it. i
e ’ ’ — C Jain, C_Part, C_Msg, C_NewCha:
channel: Channelld; — all msg types
channelKey: /Id; — NewKey, Msg
message: Msgld; — Msg only
end;




Murphi Implementation (Client)

Client : record
partnerServer: Serverld;
numMsgs: MsglId;
lastSeenMsg: Command;
wtjChannels: multiset[NumChannels]
Channelld;
channelRecards: multiset[NumChannels]
Channel Record;
— recard contains channel ID, janed bodlean and
— channel key

messagesSent: multiset[NumMessages]
Command;

partnerIntruder: IntruderId;

end;

Murphi Implementation
(intruder)

Intruder: recard

partnerClient: ClientId;

partnerServer: Serverld;

messages: multiset [NumIntruderMessages] o Command;
End;

Rational Reconstruction

ving the part of the SILC proto
a new channel key is generated every time a client joins
ot parts a channel from our Murphi model.

ks, as it should.
Malicious client joins, gets the key for the channel, and
patts.
Malicious client can read any future message sent on
that channel that is intercep:fcd by its partner intruder.
Mutphi finds it within 19 states, 20 rules (DES).

Murphi Implementation (Server)

Server : recard
channels: array[Channelld of
Channel Roster;

end;

Channel Roster : recard
channelKey: ChannelKeyId;
clients: amay[AgentId of bodlean;
— should be ClientTd, but Murphi
— complains
end;

Invariants

If the client thinks that it is joined to a channel, the setver also

ticular client is not joined to a
channel, then that ¢ also thinks that it is not joi to that
channel.

source of the message must

If the client re: ge that it has the channel key for,
the client must b ntly in to that chan J
was sent while the

Connect Connect

Join #silctalk

generated-s k-key(1)

Part #silctalk

“‘Hello”} (1)

-




The exploit (as found by Murphi)

in channel #f
Mutphy joins #foo, and key K1 is sent to Bob and

key K2 to

ge. Bob sends a message
with K1, intruder intercepts and passes it to Murphy,
who can read it.
Murphi finds it within 344 states, 543 rules (0.60s).

Practical?

m Bob may not have seen Murphi leave, so mig
still keep silent.

m Even if Bob saw Murphi leave, he could realize
that he didn’t receive a new key from the server
yet, so may keep silent.

Why does the exploit e

No timestamping or numberi

No mention of tin

so haven't yet contacted SILC

Join #foo

generated-silctalk-key(1) generated-silctal

Part #foo

generated-silctalk

N )

ge: “Hello™} (1)

A more practical exploit

Murphy joi 8
and Bob but intrud

2 and K1 to Alice and Bob in that order.

nly think K1 is the most recent key

s and forward to Murphy to de

saw Murphy join and part, and they both receive:

they think ythir

Difficulties

Most of our difficulties arose from the fact that ver could have multiple clients.

Had to s instead of multi: (which causes the numbx

ates to explode)

Di; t to model network—mor to model the sequenti: arantees of TCP.

Forced to serialize everyth
Murphi doesn't find exploits with BES! (Etror on our part?)
Ran into possible Murphi bu;

Modeling in Murphi forced us to adapt to its idi

doc
ser will model a system in a different manner—sem:

cfficient for the verification tool—than an expert user would.

tically equivalent, but less




Future work

m Explore other possible models—strand space

(Lecture 12), PRISM (Lecture 7).

m Either seems to lead to a2 mote intuitive model.

m However, whether either can model multiple

clients/single setver is uncleat.

Conclusion

m Murphi confirms the necessity of channel key
generation part of the examined protocol.

m However, Murphi finds a new (?) attack anyway.

® Murphi was not the ideal tool for this protocol;
however, whether a better tool exists is uncleat.




