
CS259 Winter 2008

Security Analysis of
Network Protocols

John Mitchell

Reference: http://www.stanford.edu/class/cs259/

Course organization

Lectures
• Tues, Thurs for approx first six weeks of quarter
• Project presentations in 3 stages
This is a project course
• There will be one or two short homeworks
• Most of your work will be project and presentation
• Typically done in teams of 2

Please enroll if you are here!

SCPD Students

Everything you need will be on the class website
Project presentations
• If you are in town, come and present
• If you are elsewhere, we will work something out

– Web-based presentation software
– Recorded video
– Send us info and we will present

• Plan: last two weeks of course

Today

Basics of formal analysis of security protocols
• What is protocol analysis?
• Needham Schroeder and the Murϕ model checker

CS259 Website
• Tools
• Past Projects, Project Suggestions

HW#1 will be out Thursday, due 24th Jan
• Take example Murϕ model and modify it
• Find project partner (including if you are SCPD)

Computer Security

Cryptography
• Encryption, signatures, cryptographic hash, …

Security mechanisms
• Access control policy
• Network protocols

Implementation
• Cryptographic library
• Code implementing mechanisms

– Reference monitor and TCB
– Protocol

• Runs under OS, uses program library, network protocol stack

Analyze protocols, assuming crypto, implementation, OS correct

Cryptographic Protocols

Two or more parties
Communication over insecure network
Cryptography used to achieve goal
• Exchange secret keys
• Verify identity (authentication)

Crypto (class poll):
Public-key encryption, symmetric-key encryption, CBC, hash,
signature, key generation, random-number generators

Many Protocols

Authentication
• Kerberos

Key Exchange
• SSL/TLS handshake, IKE, JFK, IKEv2,

Wireless and mobile computing
• Mobile IP, WEP, 802.11i

Electronic commerce
• Contract signing, SET, electronic cash,

See http://www.lsv.ens-cachan.fr/spore/, http://www.avispa-project.org/library

Mobile IPv6 Architecture

Mobile Node (MN)

•IPv
6

Corresponding Node (CN)

Direct connection via
binding update

Home Agent (HA) Authentication is required
Early proposals weak

802.11i Wireless Authentication

•Supplicant
•UnAuth/UnAssoc
•802.1X Blocked

•No Key

802.11 Association

MSK
EAP/802.1X/RADIUS Authentication

4-Way Handshake

Group Key Handshake

Data Communication

•Supplicant
•Auth/Assoc

•802.1X UnBlocked
•PTK/GTK

IKE subprotocol from IPSEC

A, (ga mod p)

B, (gb mod p)

Result: A and B share secret gab mod p

•A •B

m1

m2
, signB(m1,m2)

signA(m1,m2)

Analysis involves probability, modular exponentiation,
complexity, digital signatures, communication networks

Kerberos Protocol

Client

Client

Client

KAS

TGS

Server

AS-REQ
AS-REP

TGS-REQ
TGS-REP

AP-REQ
AP-REP

Used in Stanford WebAuth

Correctness vs Security

Program or System Correctness
• Program satisfies specification

– For reasonable input, get reasonable output

Program or System Security
• Program properties preserved in face of attack

– For unreasonable input, output is not completely disastrous

Main differences
• Active interference from adversary
• Refinement techniques may fail

– More functionality can be worse

Protocol Attacks

Kerberos [Scederov et. Al.]
• Public key version - lack of identity in message causes

authentication failure
WLAN 802.11i [He , Mitchell]
• Lack of authentication in msg causes dos vulnerability
• Proved correct using PCL [Datta , Derek, Sundararajan]

GDOI [meadows – Pavlovic]
• Authorization failure

SSL [Mitchell – Shmatikov]
• Version roll-back attack, authenticator confusion between main

and resumption protocol
Needham-Schroeder [Lowe]
• We will look at this today

Security Analysis

Model system
Model adversary
Identify security properties
See if properties are preserved under attack

Basic concept
• No “absolute security”
• Security means: under given assumptions about

system, no attack of a certain form will destroy
specified properties.

Important Modeling Decisions

How powerful is the adversary?
• Simple replay of previous messages
• Block messages; Decompose, reassemble and resend
• Statistical analysis, partial info from network traffic
• Timing attacks

How much detail in underlying data types?
• Plaintext, ciphertext and keys

– atomic data or bit sequences

• Encryption and hash functions
– “perfect” cryptography
– algebraic properties: encr(x*y) = encr(x) * encr(y) for

RSA encrypt(k,msg) = msgk mod N

Protocol analysis spectrum
H

ig
h

Lo
w

M
od

el
in

g
de

ta
il

MurϕFDR

NRL
Athena

Hand proofs

Paulson

Strand spaces
BAN logic

Spi-calculus

Poly-time calculus

Model checking

Multiset rewriting with ∃

Protocol logic

Low High
Protocol complexity

SRI, U Penn,
U Texas, Kiel,

INRIA, …Four “Stanford” approaches

Finite-state analysis
• Case studies: find errors, debug specifications

Symbolic execution model: Multiset rewriting
• Identify basic assumptions
• Study optimizations, prove correctness
• Complexity results

Process calculus with probability and complexity
• More realistic intruder model
• Interaction between protocol and cryptography
• Equational specification and reasoning methods

Protocol logic
• Axiomatic system for modular proofs of protocol properties

Some other projects and tools

Exhaustive finite-state analysis
• FDR, based on CSP [Lowe, Roscoe, Schneider, …]

Search using symbolic representation of states
• Meadows: NRL Analyzer, Millen: Interrogator

Prove protocol correct
• Paulson’s “Inductive method”, others in HOL, PVS, …
• MITRE -- Strand spaces
• Process calculus approach: Abadi-Gordon spi-

calculus, applied pi-calculus, …
• Type-checking method: Gordon and Jeffreys, …

Many more – this is just a small sample

Example: Needham-Schroeder

Famous simple example
• Protocol published and known for 10 years
• Gavin Lowe discovered unintended property while

preparing formal analysis using FDR system

Background: Public-key cryptography
• Every agent A has

– Public encryption key Ka
– Private decryption key Ka-1

• Main properties
– Everyone can encrypt message to A
– Only A can decrypt these messages

Needham-Schroeder Key Exchange

{ A, NonceA }

{ NonceA, NonceB }

{ NonceB}

Ka

Kb

A B
Kb

Result: A and B share two private numbers
not known to any observer without Ka-1, Kb -1

Needham Schroeder properties

Responder correctly authenticated
• If initiator A completes the protocol, believes Honest

B is responder, then B must think he responded to A.
Initiator correctly authenticated
• If responder B completes the protocol, believes

Honest A was initiator, then A must thinks she
initiated the protocol with B.

Nonce secrecy
• When honest initiator completes the protocol with

honest peer, attacker does not know either nonce.

Honest: follows steps of the protocol (only)

[Lowe]

Anomaly in Needham-Schroeder

A E

B

{ A, NA }

{ A, NA }{ NA, NB }

{ NA, NB }

{ NB }

Ke

KbKa

Ka

Ke

Evil agent E tricks
honest A into revealing
private key NB from B

Evil E can then fool B

Explicit Intruder Method

Intruder
Model

Analysis
Tool

Formal
Protocol

Informal
Protocol

Description

Find error

Run of protocol

A
B

Initiate

Respond

C

D

Attacker

Correct if no security violation in any run

Automated Finite-State Analysis

Define finite-state system
• Bound on number of steps
• Finite number of participants
• Nondeterministic adversary with finite options

Pose correctness condition
• Can be simple: authentication and secrecy
• Can be complex: contract signing

Exhaustive search using “verification” tool
• Error in finite approximation ⇒ Error in protocol
• No error in finite approximation ⇒ ???

Finite-state methods

Two sources of infinite behavior
• Many instances of participants, multiple runs
• Message space or data space may be infinite

Finite approximation
• Assume finite participants

– Example: 2 clients, 2 servers

• Assume finite message space
– Represent random numbers by r1, r2, r3, …
– Do not allow unbounded encrypt(encrypt(encrypt(…)))

Murϕ [Dill et al.]

Describe finite-state system
• State variables with initial values
• Transition rules
• Communication by shared variables

Scalable: choose system size parameters
Automatic exhaustive state enumeration
• Space limit: hash table to avoid repeating states

Research and industrial protocol verification

Applying Murϕ to security protocols

Formulate protocol
Add adversary
• Control over “network” (shared variables)
• Possible actions

– Intercept any message
– Remember parts of messages
– Generate new messages, using observed data and initial

knowledge (e.g. public keys)

Needham-Schroeder in Murϕ (1)

const
NumInitiators: 1; -- number of initiators
NumResponders: 1; -- number of responders
NumIntruders: 1; -- number of intruders
NetworkSize: 1; -- max. outstanding msgs in network
MaxKnowledge: 10; -- number msgs intruder can remember

type
InitiatorId: scalarset (NumInitiators);
ResponderId: scalarset (NumResponders);
IntruderId: scalarset (NumIntruders);

AgentId: union {InitiatorId, ResponderId, IntruderId};

N-S message format in Murϕ

MessageType : enum { -- types of messages
M_NonceAddress, -- {Na, A}Kb nonce and addr
M_NonceNonce, -- {Na,Nb}Ka two nonces
M_Nonce -- {Nb}Kb one nonce

};

Message : record
source: AgentId; -- source of message
dest: AgentId; -- intended destination of msg
key: AgentId; -- key used for encryption
mType: MessageType; -- type of message
nonce1: AgentId; -- nonce1
nonce2: AgentId; -- nonce2 OR sender id OR empty

end;

N-S protocol action in Murϕ

ruleset i: InitiatorId do
ruleset j: AgentId do
rule "initiator starts protocol"
ini[i].state = I_SLEEP &

multisetcount (l:net, true) < NetworkSize ==>
var
outM: Message; -- outgoing message

begin
undefine outM;
outM.source := i; outM.dest := j;
outM.key := j; outM.mType := M_NonceAddress;
outM.nonce1 := i; outM.nonce2 := i;
multisetadd (outM,net); ini[i].state :=I_WAIT;
ini[i].responder := j;

end; end; end;

Adversary Model

Formalize “knowledge”
• initial data
• observed message fields
• results of simple computations

Optimization
• only generate messages that others read
• time-consuming to hand simplify

Possibility: automatic generation

N-S attacker action in Murϕ

-- intruder i sends recorded message
ruleset i: IntruderId do -- arbitrary choice of
choose j: int[i].messages do -- recorded message
ruleset k: AgentId do -- destination
rule "intruder sends recorded message"
!ismember(k, IntruderId) & -- not to intruders
multisetcount (l:net, true) < NetworkSize

==>
var outM: Message;
begin

outM := int[i].messages[j];
outM.source := i;
outM.dest := k;
multisetadd (outM,net);

end; end; end; end;

Modeling Properties

invariant "responder correctly authenticated"
forall i: InitiatorId do

ini[i].state = I_COMMIT &
ismember(ini[i].responder, ResponderId)
->
res[ini[i].responder].initiator = i &
(res[ini[i].responder].state = R_WAIT |

res[ini[i].responder].state = R_COMMIT)
end;

Run of Needham-Schroeder

Find error after 1.7 seconds exploration
Output: trace leading to error state
Murϕ times after correcting error:

number of sizeof
ini. res. int. network states time
1 1 1 1 1706 3.1s
1 1 1 2 40207 82.2s
2 1 1 1 17277 43.1s
2 2 1 1 514550 5761.1s

Limitations

System size with current methods
• 2-6 participants

Kerberos: 2 clients, 2 servers, 1 KDC, 1 TGS

• 3-6 steps in protocol
• May need to optimize adversary

Adversary model
• Cannot model randomized attack
• Do not model adversary running time

State Reduction on N-S Protocol

1706

17277

514550

980

6981

155709

58
222

3263

1

10

100

1000

10000

100000

1000000

1 init
1 resp

2 init
1 resp

2 init
2 resp

Base: hand
optimization
of model

CSFW:
eliminate
net, max
knowledge
Merge
intrud send,
princ reply

Plan for this course

Protocols
• Authentication, key establishment, assembling

protocols together, fair exchange, wireless …

Tools
• Finite-state and probabilistic model checking,

constraint-solving, process calculus, temporal logic,
proof systems, game theory, poly-time computability…

Projects (You do this later on your own!)
• Choose a protocol or other security mechanism
• Choose a tool or method and carry out analysis
• Hard part: formulating security requirements

CS259 Term Projects - 2006

Security Analysis of
OTRv2

Formalization of
HIPAA

Security analysis of
SIP

Onion Routing Analysis of ZRTP
MOBIKE - IKEv2
Mobility and
Multihoming Protocol

802.16e Multicast-
Broadcast Key
Distribution Protocols

Short-Password Key
Exchange Protocol

Analysis of the IEEE
802.16e 3-way
handshake

Analysis of Octopus
and Related Protocols

http://www.stanford.edu/class/cs259/

CS259 Term Projects - 2004

iKP protocol family Electronic voting XML Security

IEEE 802.11i wireless
handshake protocol Onion Routing Electronic Voting

Secure Ad-Hoc
Distance Vector
Routing

An Anonymous Fair
Exchange
E-commerce Protocol Key Infrastructure

Secure Internet Live
Conferencing

Windows file-sharing
protocols

http://www.stanford.edu/class/cs259/

Reference Material (CS259 web site)

Protocols
• Clarke-Jacob survey
• Use Google; learn to read an RFC

Tools
• Murphi

– Finite-state tool developed by David Dill’s group at Stanford
• PRISM

– Probabilistic model checker, University of Birmingham
• MOCHA

– Alur and Henzinger; now consortium
• Constraint solver using prolog

– Shmatikov and Millen
• Isabelle

– Theorem prover developed by Larry Paulson in Cambridge, UK
– A number of case studies available on line

Will consider additional systems, tools (e.g. Prolog)

	Security Analysis of Network Protocols
	Course organization
	SCPD Students
	Today
	Computer Security
	Cryptographic Protocols
	Many Protocols
	Mobile IPv6 Architecture
	802.11i Wireless Authentication
	IKE subprotocol from IPSEC
	Kerberos Protocol
	Correctness vs Security
	Protocol Attacks
	Security Analysis
	Important Modeling Decisions
	Protocol analysis spectrum
	Four “Stanford” approaches
	Some other projects and tools
	Example: Needham-Schroeder
	Needham-Schroeder Key Exchange
	Needham Schroeder properties
	Anomaly in Needham-Schroeder
	Explicit Intruder Method
	Run of protocol
	Automated Finite-State Analysis
	Finite-state methods
	Murj [Dill et al.]
	Applying Murj to security protocols
	Needham-Schroeder in Murj (1)
	N-S message format in Murj
	N-S protocol action in Murj
	Adversary Model
	N-S attacker action in Murj
	Modeling Properties
	Run of Needham-Schroeder
	
	Limitations
	State Reduction on N-S Protocol
	Plan for this course
	CS259 Term Projects - 2006
	CS259 Term Projects - 2004
	Reference Material (CS259 web site)

