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1 Introduction

Bilinear maps have been used in many revolutionary cryptographic schemes in the past
decade. In fact, ever since the emergence of Identity Based Encryption by Boneh and
Franklin [1], bilinear maps have been consistently used to construct shorter signatures [3],
more powerful encryption schemes, such as Attribute Based Encryption [6], and three-way
Diffie-Hellman key exchange [5]. In this paper, we describe how bilinear maps are used
to construct aggregate signatures. Aggregate signatures are of particular interest because
many times signatures on different messages are generated by different users. For example,
as stated by Boneh et al. [2] in a Public Key Infrastructure, a user is given a chain of
n certificates, which are signed by n Certificate Authorities. Having so many signatures
might be slow and expensive to transfer over a network. As a result, efficiency would be
improved if we could compress all these signatures into one single signature. In the paper,
we describe an aggregate signature scheme due to Boneh et al. [2], which is based on a
short signature scheme by Boneh, Lynn, and Shacham (BLS) [3]. For clarity, aggregate
signatures are different from multisignatures where many users sign the same message and
those signatures are compressed into a single signature. Similarly, batch RSA [4] can provide
signature compression but only if the signatures originate from the same person.

In the sections below, we will provide some definitions and terms used throughout the
paper, then describe the relevant BLS signature scheme, present the aggregate signature
scheme, and finally prove security.

2 Definitions

BeforeweI continue to the construction and the security of aggregate signatures. Let me
present some notations and definitions that we plan to use, which are also used in the
original paper of Boneh et al. [2].

Here is some notation that we will use:

1. G1 and G2 are two multiplicative cyclic groups of prime order p;
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2. g1 generates G1 and g2 generates G2;

3. ψ is a computable isomorphism from G2 to G1, with ψ(g2)=g1;

4. e is a computable bilinear map e: G1 × G2 → GT

For simplicity, assume the isomorphism ψ exists and is easily computable. If G1, G2 are
subgroups of the group of the points on the elliptic curve E/Fq, the isomorphism can be the
trace map on the curve.

Now, let me define the general Computational Diffie-Hellman and Decisional Diffie-Hellman
Problems:

Computational Co-Diffie-Hellman. Given g2,g
a
2 ∈ G2 and h ∈ G1, compute ha ∈ G1.

Decision Co-Diffie-Hellman. Given g2, g
a
2 ∈ G2 and h, hb ∈ G1 output yes if a = b and

no otherwise. If the answer is yes, (g2, g
a
2 , h, h

a) is a co-Diffie-Hellman tuple.

For completeness, it is important to note that if G1 = G2 and g1 = g2, the co-CDH and
co-DDH problems reduce down to the standard CDH and DDH problems. We now define
co-Gap Diffie-Hellman gap groups to be group pairs G1 and G2 on which co-DDH is easy
and co-CDH is hard.

Definition Two groups are (G1, G2) are a decision group pair for co-Diffie-Hellman if the
group on G1, the group action on G2 and the map ψ from G2 to G1 can be computed in one
time unit, and Decision co-Diffie-Hellman on (G1, G2) can be solved in one time unit.

Definition The advantage of an algorithmA in solving the Computational co-Diffie-Hellman
problem in groups G1 and G2 is

Adv co-CDHA = Pr[A(g2, g
a
2 , h) = ha : a

R← Zp, h
R← G1].

The probability is taken over the choice of a, h, and A’s coin tosses. An algorithm A
(t, ε)-breaks Computational co-Diffie-Hellman on G1 and G2 if A runs in time at most t,
and Adv co-CDHA is at least ε. Two groups (G1, G2) are a (t, ε)-co-GDH group pair if they
are a decision group pair for co-Diffie-Hellman and no algorithm (t, ε)-breaks Computational
co-Diffie-Hellman on them.

Next, we will define the properties of bilinear maps.
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2.1 Bilinear Maps

Let G1, G2 be the groups described above and GT be an additional group such that the size
of all the groups are the same. A bilinear map is a map e: G1×G2 → GT with the following
properties:

1. Bilinear: for all u ∈ G1, v ∈ G2, and a, b ∈ Z, e(ua, vb) = e(u, v)ab.

2. Non-degenerate: e(g1, g2) 6= 1.

The following properties follow from those above: for any u1, u2 ∈ G1, v ∈ G2, e(u1, u2, v) =
e(u1, v) · e(u2, v); and for any (u, v) ∈ G2, e(ψ(u), v) = e(ψ(v), u).

Definition Two groups (G1, G2) are a bilinear group pair if the group action on either can
be computed in one time unit, the map ψ from G2 to G1 can be computed in one time unit,
a bilinear map e: G1 ×G2 → GT exists, and e is computable in one time unit.

Definition Two groups (G1, G2) are a (t, ε)-bilinear group pair for co-Diffie-Hellman if they
are a bilinear group pair and no algorithm (t, ε)-breaks Computational co-Diffie-Hellman on
them.

In the next section, we will present the construction of the short BLS signatures from
bilinear maps.

3 Short Signatures from Bilinear Maps

We will present the general co-GDH signature scheme and then apply the scheme to co-
GDH signatures from elliptic curves. Both schemes are from the work of Boneh, Lynn, and
Shacham [3]. We will not provide proofs of security, but they can be found in the original
paper.

3.1 Co-GDH Signature Scheme

A signature scheme involves three algorithms: Key Generation, Signing, and Verification.
Assume a full-domain hash function H:{0, 1}∗ → G1, which we will treat as a random .

Key Generation. Pick random x
R← Zp, and compute v ← gx2 . The public key is v ∈ G2.

The secret key is x ∈ Zp.

Signing. Given a secret key x and a message M ∈ {0, 1}∗, compute h ← H(M), where
h ∈ G1, and σ ← hx. The signature is σ ∈ G1.
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Verification. Given a public key v, a message M , and a signature σ, compute h← H(M)
and verify that (g2, v, h, σ) is a valid co-Diffie-Hellman tuple.

This signature only requires a single element in G1, so under certain groups, specifically
on certain elliptic curves, these signatures are short. In the next section, we will show the
elliptic curve version of this signature scheme.

3.2 Co-GDH Signature Scheme on Elliptic Curves

We will adapt the scheme above to use points on an elliptic curve. G1, G2 are subgroups of
the elliptic curve E/Fq, and assume there is a mapping that can place the message M as a
point on the elliptic curve. In other words, just assume that M was mapped to a point on
the elliptic curve in G1. More details regarding how to translate M to a point on the elliptic
curve can be found in the original paper [3].

Key generation. Pick random x
R← Zp and compute V ← xQ where Q generates G2.

The public key is V ∈ G2. The secret key is x ∈ Zp.

Signing. Given a secret key x ∈ Zp, and a message M ∈ G1, compute σ ← xM ∈ E(Zq).
Output the x-coordinate of σ as the signature s on M , so s ∈ Fq.

Verification Given a public key V ∈ G2, a message M ∈ G1, and a signature s ∈ Fq, find
a y ∈ Fq such that σ = (s, y) is a point of order p in E(Fq). If no such y exists, output no.
Otherwise, test if e(σ,Q) = e(M,V ) or e(σ,Q)−1 = e(M,V ). If so, output yes. Otherwise,
output no.

This signature requires only one point on the elliptic curve, so it is about half the size of
DSA signatures. In fact, the signature length is about log2 q.

In the next section, we use similar ideas to construct aggregate signatures.

4 Aggregate Signatures

In this section, we will define aggregate signatures and then present an aggregate signature
scheme based on co-GDH signatures described above. The discussion will follow closely with
that of Boneh et al. [2].

4.1 Definition

Consider a set of users U with each user u having a signing public key-private key pair
(PKu, SKu). To aggregate signatures on a subset of users in U , each user in that subset
produces a signature σu on any message Mu. These signatures are aggregated by an aggre-
gating party into a single signature σ, which is the same length as a single signature σu.
The aggregating party has access to all the public keys, the messages, and signatures on

4



those message, but it does not have access to any private keys. For the verifier, given a
signature σ and the identities of the users who had signatures in the message, the verifier
can be convinced that those users signed the message.

4.2 Bilinear Aggregate Signatures

Since the final aggregate signature is the same as the length of a single signature, we will
present an aggregate signature scheme based on BLS signatures [3] described in Section 3.1.
It is important to note that this scheme can produce short signatures if specific elliptic curves
are used, and a summary of this adaptation on elliptic curves to produce short signatures is
also presented above.

The aggregation scheme has five algorithms: Key Generation, Signing, Verification, Ag-
gregation, and Aggregate verification. All the parameters are the same as that described in
the co-GDH signature scheme above. In fact, the key generation, signing, and verification
are exactly the same as the scheme above. We will state them again below for completeness,
and then we will provide two additional algorithms that allow us to aggregate signatures and
verify these aggregate signatures.

Key Generation. Pick random x
R← Zp, and compute v ← gx2 . The public key is v ∈ G2.

The secret key is x ∈ Zp.

Signing. Given a secret key x and a message M ∈ {0, 1}∗, compute h ← H(M), where
h ∈ G1, and σ ← hx. The signature is σ ∈ G1.

Verification. Given a public key v, a message M , and a signature σ, compute h← H(M)
and verify that e(σ, g2) = e(h, v) holds.

Aggregation. For the aggregating subset of users, assign to each user an index i, ranging
from 1 to k. Each user ui provides a signature σi ∈ G1 on a message Mi ∈ {0, 1}∗ of his or
her choice. The messages Mi must all be distinct. Compute σ ←

∏k
i=1 σi. The aggregate

signature is σ.

Aggregate Verification. Given an aggregate signature σ ∈ G1 for an aggregating subset
of users, indexed as before, the original messages Mi ∈ {0, 1}∗ and public keys vi ∈ G2 for
all users ui. To verify the aggregate signature σ:

1. ensure all messages Mi are distinct, and reject otherwise.

2. compute hi ← H(Mi) for 1 ≤ i ≤ k, and accept if e(σ, g2) =
∏k

i=1 e(hi, vi) holds.

Like the co-GDH signature, the bilinear aggregate signature requires only a single ele-
ment of G1 and has the same length as any individual signature. Therefore, if we use BLS
signatures for the individual signatures, we can get a short aggregate signature.

We will briefly show correctness for the aggregate signature scheme. Given, that σ =∏
i σi =

∏
i h

xi
i where hi is the hashed message Mi for user i and the public key for each
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user i is vi = gxi
2 . Using the bilinear properties, the left-side of the aggregation verification

becomes:

e(σ, g2) = e(
∏

i h
xi
i , g2) =

∏
i e(hi, g2)

xi =
∏

i e(hi, g
xi
2 ) =

∏
i e(hi, vi),

which is equal to the right hand side. In the next section, we will prove security of this
scheme.

4.3 Security Proof

We present the aggregate chosen-key security model from Boneh et al [2]. The adversary A
is given a single public key to create an existential forgery of an aggregate signature. The
adversary can choose all public keys except the challenge public key and has access to a
signing oracle on the challenge key. More formally, we define the adversary’s advantage Adv
AggSigA as the probability of success for the following game.

Setup. The aggregate forger A is provided with a public key PK1, generated at random.

Queries. Proceeding adaptively, A requests signatures with PK1 on messages of his
choice.

Response. Finally, A outputs k - 1 additional public keys PK2, ..., PKk. Here k is at
most N , a game parameter. These keys, along with initial key PK1, will be included in A’s
forged aggregate. A also outputs messages M1, ...,Mk; and, finally, an aggregate signature σ
by the k users, each on his corresponding message.

The forger wins if the aggregate signature σ is a valid aggregate on message M1, ...,Mk

under keys PK1, ..., PKk, and σ is nontrivial, meaning A did not request a signature on M1

under PK1. The probability is over the coin tosses of the key-generation algorithm and of
A.

We will now define what it means for an aggregate forger to break an aggregate signature
scheme in the security model described above.

Definition An aggregate forgerA(t, qH , qS, N, ε)-breaks anN -user aggregate signature scheme
in the aggregate chose-key model if: A runs in time at most t; A makes at most qH queries
to the hash function and at most qS queries to the signing oracle; AdvAggSigA is at least ε;
and the forged aggregate signature is by at most N users. An aggregate signature scheme
is (t, qH , qS, N, ε)-secure against existential forgery in the aggregate chosen-key model if no
forger (t, qH , qS, N, ε)-breaks it.

Now, we will provide a security proof for the aggregate signature scheme under the aggre-
gate chosen-key security model that follows closely from the original paper. More precisely,
consider the following theorem:
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Theorem 4.1 Let (G1, G2) be a (t′, ε′)-bilinear group pair for co-Diffie-Hellman, with each
group of order p, with respective generators g1 and g2, with an isomorphism ψ computable
from G2 to G1, and with a bilinear map e: G1×G2 → GT . Then the bilinear aggregate signa-
ture scheme on (G1, G2) is (t, qH , qS, N, ε)-secure against existential forgery in the aggregate
chosen-key model for all t and ε satisfying

ε ≥ e(qS +N) · ε′ and t ≤ t′ − cG1(qH + 2qS +N + 4)− (N + 1),

where e is the base of natural logarithms and exponentiation and inversion on G1 take time
cG1.

Proof We will prove the contrapositive. Suppose A is a forger algorithm that (t, qS, qH , N, ε)-
breaks the signature scheme. We will construct a t′-time algorithm C that breaks co-CDH
in (G1, G2) with probability at least ε′.

Let g2 be a generator of G2. Algorithm C is given g2, u ∈ G2 and h ∈ G1, where u = ga2
and wants to output ha ∈ G1. Algorithm C simulates the challenger and interacts with
forger A.

Setup. Algorithm C starts by giving A the generator g2 and the public key v1 = u · gr2 ∈
G2, where r is random in Zp.

Hash Queries. C maintains a list of tuples (M (i), w(i), b(i), c(i)). We call this list the
H-list. The list is initially empty. When A queries H, which we model as a random oracle,
at a point M ∈ {0, 1}∗, algorithm C responds as follows:

1. If the query M is already on the H-list in some tuple (M,w, b, c) the algorithm C
responds with H(M) = w ∈ G1.

2. Otherwise, C generates a random coin c ∈ {0, 1} so that Pr[c = 0] = 1/(qS +N).

3. Algorithm C picks a random b ∈ Zp. If c = 0 holds, C computes w ← h · ψ(g2)
b ∈ G1.

If c = 1 holds, C computes w ← ψ(g2)
b ∈ G1.

4. Algorithm C adds the tuple (M,w, b, c) to the H-list and responds to A as H(M) = w.

It is important to note that w is uniform in G1 and independent of A’s current view.

Signature Queries. Algorithm A requests a signature on some message M under the
challenge key v1. Algorithm C responds:

1. Algorithm C runs the above algorithm for responding to H-queries on M , obtaining
the corresponding tuple (M,w, b, c) on the H-list. If c = 0 holds then, C stops and
outputs no.
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2. We know that c = 1 holds and hence w = ψ(g2)
b ∈ G1. Let σ = ψ(u)b · ψ(g2)

rb ∈ G1.
Therefore, σ = wa+r and a valid signature on M under the public key v1 = u·gr2 = ga+r

2 .
Algorithm C gives σ to A.

Output. Finally, A halts. It either fails or outputs a value k, k−1 public keys v2, ..., vk ∈
G2, k messages M1, ...,Mk, and a forged aggregate signature σ ∈ G1. All messages Mi have
to be distinct, and A must not have requested a signature on M1 as described earlier.
Algorithm C runs its hash algorithm at each Mi, 1≤ i ≤ k, obtaining the k corresponding
tuples (Mi, wi, bi, ci) on the H-list.

Algorithm C now proceeds only if c1 = 0 and, for 2 ≤ i ≤ k, ci = 1; otherwise C outputs
no. Since c1 = 0, w1 = h · ψ(g2)

b1 . For i > 1, wi = ψ(g2)
bi since ci = 1. Now, we need to

form an aggregate signature that satisfies e(σ, g2) =
∏k

i=1 e(wi, vi). For each i > 1, C sets
σi ← ψ(vi)

bi . Then, for i > 1, using bilinear properties,

e(σi, g2) = e(ψ(vi)
bi , g2) = e(ψ(vi), g2)

bi = e(ψ(g2), vi)
bi = e(ψ(g2)

bi , vi) = e(wi, vi)

For a given message Mi, wi would be the hash and σi would be a valid signature for a
public vi. Since we could not query a signature for M1, C needs to construct a value for σ1.
Take σ from above and calculate σ1 ← σ · (

∏k
i=2 σi)

−1. Then

e(σ1, g2)= e(σ, g2) ·
∏k

i=2 e(σi, g2)
−1 =

∏k
i=1 e(wi, vi) ·

∏k
i=1 e(wi, vi)

−1 = e(w1, v1)

C calculates and outputs ha ← σ1 · (ψ(u)b1 · hr · ψ(g2)
rb1)−1 as the co-CDH answer.

Now, we need to show that this algorithm can solve the co-CDH problem in (G1, G2) with
probability at least ε′.

In order for the C described above these three events need to happen: E1: C does not
terminate because of A’s queries. E2: A generates a valid and nontrivial aggregate signature
forgery. E3: E2 occurs and in addition, c1 = 0, and for 2 ≤ i ≤ k, ci = 1, where ci is from
the H-list tuple.

Since E3 encompasses E2, we want Pr[E1 ∧ E3], which decomposes to Pr[E1]·Pr[E2|E1] ·
Pr[E3|E1 ∧ E2].

For these three terms, we will provide lower bounds below, but we will not prove the
claims. The proof for the claims can be found in the original paper.

Claim 4.2 The probability that algorithm C does not abort as a result of A’s aggregate
signature queries is at least (1− 1/(qS +N))qS . Hence, Pr[E1] ≥ (1− 1/(qS +N))qS .

Claim 4.3 If algorithm C does not abort as a result of A’s queries, then algorithm A’s view
is identical to its view in the real attack. Hence, Pr[E2|E1] ≥ ε.
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Claim 4.4 The probability that algorithm C does not abort after A outputs a valid and
nontrivial forgery is at least (1 − 1/(qS + N))N−1 · 1/(qS + N). Hence Pr[E3|E1 ∧ E2] ≥
(1− 1/(qS +N))N−1 · 1/(qS +N).

We combine all the claims and we get the Algorithm C will produce the right answer with
probability at least

(1- 1/(qS +N))qS+N−1· 1/(qS +N) ·ε ≥ ε/(e(qS +N)) ≥ ε′

For completeness, the running time of C is dependent on responding to (qH + qS) hash
queries, qS signature queries, and translating the final output into a co-CDH solution. Each
query takes one exponentiation in G1, and the output takes N hash computations, two
inversions, two exponentiations, and N + 1 multiplications, so the running time is at most
t+ cG1(qH + 2qS +N + 4) +N + 1 ≤ t′. QED.

5 Conclusion

In this paper, we discuss the importance of bilinear maps in cryptography. They have had
important applications for key exchange, encryption, and signatures. We discuss the use of
bilinear maps to construct short signatures on elliptic curves, which is used as a foundation
for the construction of compressed and aggregated signatures. From aggregation, we can
also construct verifiably encrypted signatures as well as ring signatures. Bilinear maps are
a very powerful tool, which might have many more undiscovered uses in cryptography.
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