CS259D: Data Mining for

> Cybersecurity

Problem

e Diverse network environments
e Dynamic attack landscape
e Adversarial environment

* IDS performance strongly depends on
chosen classifier
> Perform differently in different environments

> No Free Lunch Theorem

Solution: Multiple Classifier Systems

* Combine outputs of several IDSs
> Example: Majority voting

e Adapt to dynamic adversarial
environments

Adaptive Intrusion Detection
System

» Base classifiers:
> NaiveBayes
> BayesNetwork
> Decision Stump
> RBFNetwork
e Supervised Framework:
> Combine results of base IDSs
> Receive the true label of the current sample
> Measure losses between IDS outputs and true label
> Maintain weights for base IDSs

* Fusion steps:

° Loss update
> Mixing update

Adaptive Intrusion Detection

System
e T: number of time instances

e n: number of base IDSs
e At time |<t<T;
> IDS outputs: X, = (X, s X5+ s X¢)

X.; = 0 (normal) or | (attack) (|Si2:l)
> Ensemble’s prediction: pred(t)
° True label:y, (0 or I)
° Loss of i-th IDS: L ; = (y, — X,;)?
° Weight vector: vt = (V. |, Vo, -1y Ve p
Weights are non-negative, sum up to |

Adaptive Intrusion Detection
System

e Parameters: 7 > 0,0 o < |
e Initialization: v, = vy™ = (l/n, ..., I/n)
e Attime ISt =<T:

° Prediction:
Compute inner product: z, = (v,X,)
Pred(t) = 0,if0 =z < 0.5
Pred(t) = 1,if 0.5 < z,
> Loss update:
Scale weight of each IDS i by exp(- 77 L)
Compute v," by normalizing scaled weights
> Mixing update:
Compute av, as average of past vectors v."
Compute v, = & *av, + (I-a) *vm

Adaptive Intrusion Detection

System

* Loss update keeps ensemble competitive

with the best base IDS
° |ssue: Hard to recover if an IDS temporarily
performs poorly and then performs well

Slow adaptation to changes in IDS performances

Vulnerable to adversarial changes in the attack
pattern

* Mixing update
> Keeps once-good IDSs around for quick
recovery

Experiment: Data Sets

e Dataset |:
> Web queries
> 50,000 samples, 20% attacks

o Attacks: XSS, SQL Injection, Path Traversal,
Command Execution, etc.

e Dataset 2:

o Traffic targeted to a realistic e-commerce web

app
> 61K requests; 36K normal, 25K abnormal
Attacks: SQL Injection, buffer overflow, XSS, etc.

Experiment: Features

e 30 features

* Length of the request, path, headers
> Example: buffer overflow
* Four types of characters:
o Letters
> Digits
o Special characters: non-alphanumeric characters
with special meanings in programming languages
> Others
e Entropy of the bytes in the request

* Programming language keywords

Experiment: Features

Feature Name

Feature Name

Length of the request

Length of the arguments

Length of the header “Accept-Encoding”
Length of the header “Accept-Language”
Length of the header “Content-Length”
Length of the Host

Length of the header “User-Agent”
Number of arguments

Number of digits in the arguments
Number of other char in the arguments
Number of digits in the path

Number of other char in path

Minimum byte value in the request
Number of distinct bytes

Number of keywords in the path

Length of the path

Length of the header “Accept”

Length of the header “Accept-Charset”
Length of the header “Cookie”

Length of the header “Content-Type”
Length of the header “Referer”
Method identifier

Number of letters in the arguments
Number of ’special’ char in the arguments
Number of letters char in the path
Number of ’special’ char in the path
Number of cookies

Maximum byte value in the request
Entropy

Number of keywords in the arguments

Experiment: Expert Setting

* NaiveBayes

» BayesNetwork

 Decision Stump o | ﬂ ﬂm ﬂ
» RBFNetwork

e |O-fold cross- :
validation gosl f}

it
=

?
<

Experiment: Loss Update

e 1=0.1

* No Mixing Update |
0 Vt+|,i - vt,im .

* Performs like the
best base IDS ‘L

Q
©c 08

> Does not adapt to
varying IDS
performances

0.65

Q
g 075

0.7

Experiment: Mixing Update

e Simulate adversarial environment

> Randomly permute data |0 times

e Run each base IDS & Adaptive IDS on
each permutation

o n=0.1, =0.001
e Use |0-fold cross-validation

Experiment: Mixing Update

Accuracies in Partitions

1

0.9 V!
0.8}
0.7t
0.6}
0.5}
0.4}
0.3}
0.2t

01

0

i

BayesNetwork |

RBFNetwork

MixingUpdate | |

NaiveBayes

DecisionStump
|

1|

0

2

3 4
Instances Over Time

5

6

x 10

7
4

Experiment: Mixing Update

Partitions

. Af
i

ol

’

N

= =

==
=

W

/
!

\/\\ |
\n

%n

w

m

it

Experiment: Accuracies

Algorithm

NaiveBayes
BayesNetwork
Decision Stump
RBFNetwork
Majority Voting
Hedge/Boosting
Adaptive IDS

85.12+ 0.03
86.95+ 0.025
84.27+ 0.07
87.69% 0.04
83

86.3+ 0.05
91.27% 0.01

Datasetl Dataset?2

72.78+ 0.01
82.79% 0.03
74.73% 0.05
72.46% 0.01
81

82.1+ 0.04
90.52% 0.06

Administrativia

* HW2: Due Wed. | I/5

e Mid-quarter feedback survey

* Invited talk tomorrow: Union Bank
e Guest lecture on Tue: Google

ML for security: Adversarial

challenge
* Adversaries adapt

> ML assumptions do not necessarily hold

|.1.D, stationary distributions, linear separability, etc.

e ML algorithm itself can be an attack target

ML for security: Reactive vs
Proactive

Adversary Classifier designer Classifier designer Classifier designer

1. Analyze classifier 4. Develop countermeasure

1. Model adversary

4. Develop countermeasure
(if the attack has a relevant impact)

L (e.g., add features, retraining)

2. Devise attack 3. Analyze attack

3. Evaluate attack’s impact

2. Simulate attack

Adversarial machine learning

“If you know the enemy and
know yourself, you need not
fear the result of a hundred
battles. If you know yourself
but not the enemy, for every
victory gained you will also
suffer a defeat. If you know
neither the enemy nor
yourself, you will succumb in
every battle.”

— Sun Tzu, The Art of War

Taxonomy of attacks against ML

Causative Integrity Targeted

Exploratory Availability Indiscriminate

21

Causative integrity attack: The spam foretold

* Send non-spam resembling the desired
spam
> “What watch do you want? Really, buy it
now!”

> “Watch what you buy now! Do you really
want it?”’

e Learner mistrained

> misses eventual spam(s)

Causative integrity attack technique: Red
herring

* Introduce spurious features into all
malicious instances used by defender for
training

e Defender learns spurious features as
necessary elements of malicious behavior

o At attack time, malicious instances lack
the spurious features and bypass the filter

Causative availability attack example: The rogue filter

* Send spam resembling benign messages

° Include both spam words and benign words

* Learner associates benign words with
spam

Causative availability attack technique: Correlated outlier

e Add spurious features to malicious
Instances

* Filter blocks benign traffic with those
features

Causative availability attack technique:Allergy

» Autograph: worm signature generation

______ Defense ___Attack ___

Phase | |dentify infected An attack node
nodes based on convinces defense
behavioral of its infection by
(scanning) patterns scanning

Phase |l Observe traffic Attack node sends
from infected crafted packets,
nodes, infer causes ML to learn
blocking rules rules blocking

based on observed benign traffic
patterns (DoS)

Exploratory integrity example: The shifty
spammer

* Craft spam so as to evade classifier
without direct influence over the classifier
itself

> Exchange common spam words with less
common synonyms

> Add benign words to sanitize spam

Exploratory integrity attack technique: Polymorphic
blending

* Encrypt attack traffic so it appears
statistically identical to normal traffic

Exploratory integrity attack technique: Mimicry

* Example: attacking sequence-based IDS

> Shortest malicious subsequence longer than
IDS window size

Exploratory integrity attack technique: Feature drop

FDROP Adversary
ﬁ

confuse with "three"

FDROP Adversary
ﬁ

confuse with "five"

FDROP Adversary
ﬁ

confuse with "seven"

Exploratory integrity attack technique: Reverse engineering

» Attacker seeks the highest cost instance
that passes the classifier

Exploratory availability example: The mistaken identity

* Interfere with legitimate operation
without influence over training

o Launch spam campaign with target’s email
address as the From: address of spams

> Flood of message bounces, vacation replies,
angry responses, etc. fill target’s inbox

Exploratory availability attack technique:
Spoofing

e Example:

o IPS trained on intrusion traffic blocks hosts
that originate intrusions

> Attack node spoofs legitimate host’s |P
address

Exploratory availability attack technique:
Algorithmic complexity

e Example: sending spams embedded in
Images

Defense: Exploratory attacks without
probing

* Training data
o Limit information accessible to attacker
e Feature selection

> Example: use inexact string matching in feature
selection to defeat obfuscation of words in spams

> Avoid spurious features

> Regularization: smooth weights, defend against
feature deletion

* Hypothesis space/learning procedurs

> Complex space harder to decode, but also harder
to learn

> Regularization: balance complexity and overfitting

Defense: Exploratory attacks with
probing
e Randomization

> Random decision instead of binary decision

e Limiting/misleading feedback

> Example: eliminating bounce emails

Defense: Causative attacks

e Data sanitization
> Example: Reject On Negative Impact (RONI)

* Robust learning

o Robust statistics

Example: Median instead of Mean

e Multi-classifier systems
> Online prediction with experts

Example: Causative availability attack

on Naive Bayes spam filter
* Method:

> Send attack emails with legitimate words

> Legitimate words receive higher spam scores

° Future legitimate emails more likely filtered
* Types:

° Indiscriminate: Dictionary attack

> Targeted: Focused attack

o Goals:

> Get target to disable spam filter
> DoS against a bidding competitor

Performance

Token score before attack

|4~ Optimal = Usenet —o- Aspell|
AT

A

10

4 6 8

Percent Control of Training Set

2

PSLJISSB[OSIIA] WEH 1S9, JO JUdId]

1.0

0.8
|

0.4 0.6

0.2

0.0

01 80 90 ¥0 0 00

Joelje I9lje 3I0JS U0,

RONI

Before the RONI defense After the RONI defense
Predicted Label Predicted Label
ham spam unsure ham spam unsure
True Label ham 97% 0.0% 2.5% True Label ham 95% 0.3% 4.6%
spam 26% 80% 18% spam 20% 87% 11%

RONI

Dictionary Attacks (Before the RONI defense)

Dictionary Attacks (After the RONI defense)

Predicted Label Predicted Label
ham spam unsure ham spam unsure
Optimal Optimal
True Label ham 4.6% 83% 12% True Label ham 95% 0.3% 4.6%
spam 0.0% 100% 0.0% spam 20% 87% 11%
Aspell Aspell
True Label ham 66% 12% 23% True Label ham 95% 0.3% 4.6%
spam 0.0% 98% 1.6% spam 20% 87% 11%
Usenet Usenet
True Label ham 47% 24% 29% True Label ham 95% 0.3% 4.6%
spam 0.0% 99% 0.9% spam 20% 87% 11%

Poisoning: Boiling frog attack

o

Boiling frog defense: Robust statistics

Variance: Median Absolute Deviation:

a2 MAD= Median{lr. -1}

43

Conclusion

e This is a game!
* Anticipate the adversary

e Constant arms race

References

* Adaptive Intrusion Detection System via
Online Learning, 2012

* The security of machine learning, 2010

