CS259D: Data Mining for

> Cybersecurity

4
~ Polymorphic Blending Att

Slides by Jelena Mirkovic

"IN

Motivation

¢ Polymorphism is used by malicious coc
evade signature-based IDSs

— Anomaly-based IDSs detect polymorphic atf
because their byte frequency differs from the o
seen in the legitimate traffic

¢ Polymorphic blending attacks adjust their byt
frequency to match that of legitimate traffic

— Evade anomaly-based IDSs

e This paper investigates how polymorphic
blending attacks can be created and |
proposes countermeasures ﬂ

oly orphlc attacks

- o Defenses against polymorphl
’-] o Polymorphic blending attacks
» Case study with PAYL

|
| Conclusions

hlzolymorphic Attack:
? l

» Freely available tools for making code
polymorphic
— ADMutate, PHATBOT and CLET

e Transform assembly commands into other :
commands with the same semantics

® Use encryption to hide malicious code
® Insert garbage, shuffle registers

e Each instance of malicious code looks
different but does not resemble normal code
(CLET may come near)

I &iluwnorphic

¢ Three components:
1. Attack vector used for exploiting vulnerak
target

e Some parts can be modified but there is always a
invariant parts

e If invariant parts are small and exist in legitimate traffic
detection can be evaded

2. Attack body - malicious code for the attacker's
purpose; shell code

e Can be transformed or encrypted
3. Polymorphic decryptor

e Decrypts the shell code, can be transformed

| |» Byte frequency of malicious code should be
" anomalous

lymorphic attacks:
|P/TCP transformations

— Mutation exploits (Vigna et al.)

— Fragroute, Whisker, AGENT, Mistfall, tPE, EX
DINA, ADMutate, PHATBOT Jemp|Scodes -

— CLET

e Defenses against polymorphism
— Looking for executable code (Toth et al.)

-[n l E Lo;:klng for similar structure in multiple code instances !
| al |
- Looking for common substrings present in multiple code

(Polygraph) - defeated by noise ‘

Looking for any exploit of a known vulnerability (Shield
"

dWork

efenses against polymo ism
— Looking for instruction semantics, detec

transformations
(Cristodorescu et al.)

— Detect sequence of anomalous system

et al.) - can be defeated through mimicry att

e New approaches use stack information but they cal
defeated

— Payload-based anomaly detection: use Iength,?

character distribution, probabilistic grammar anc

tokens to model HTTP traffic (Kruegel et al.);

'
N S |

= I 1%
el

Polymorphic Blending

« Attack can blend in if it can mimic simp
statistics observed in legitimate traffic

— Average size and rate of packets, byte freque
distribution, range of tokens at different offsets

— To avoid PAYL the attack must carefully choose
encryption key and pad its payload to replicate
desired byte frequency

¢ There are more sophisticated approaches to
attack detection that cannot be evaded so
simply

— Simple approaches are used because they are
affordable at high packet speeds

acker compromises
st X that already
alks to target Y

U

‘which IDS is deployed
target

| '|th|n some error margin
| and bypasses IDS

. Attack boc

. Generating

Polymorphic Blending

¢ Desirable properties of an attack:
— Match legitimate traffic’'s byte frequencies
— Do not result in large attack size
— Economical (time and memory) blending proces

— Short learning time = small traffic sample

e Even a single packet may suffice to learn good traffic
pattern for traffic of this size

e If an attacker can sniff he can collect any amount of
traffic

¢ For encryption use a substitution cipher

— Each byte is transformed into a byte from a
legitimate traffic sample to match desired byte
frequency

— Possibly some padding is added
I — Use greedy algorithm to create mapping

12

Polymorphic Blending

¢ Decryption removes the padding and
reverses the substitution steps

— This code cannot be blended but can be
transformed into equivalent instructions

— Decoding table can be stored in a positional array,
thus code contains only legitimate characters
e Attack vector and decoding information
Influence the byte frequency distribution so
we may need several iterations to achieve
desired match

» It may happen that the IDS has different
profiles for different packet lengths

— |In this case we must match the byte frequency for
a given length

13

A
S

Evaluation
|

- Create polymorphic blending attacks
PAYL

e First create polymorphic attacks using
and verify that they are all detected by PA

e Next create polymorphic blending attacks a
demonstrate that they can evade detection
— Evaluate easy of attack construction and cost

¢ 1-gram and 2-gram PAYL is used to evaluate

performance when IDS has more complex
models

14

‘Measure frequency distribution
traffic payloads

e Use sliding window of size n

e Generate a separate model for each p
length

— Cluster models at the end to reduce memory co

e Packets with unusual length are also flagget
anomalous

® Model consists of frequency f(x;) and stdev G
® Anomaly score Is calculated as:

score(P) = E f(x) = f(x)

1-gram PAYL Evasion:

¢ Let @ and o' be the attack body befor
the padding, n is the number of distinct
normal traffic and A; denotes the number o
occurrences of character x; in padding

o It holds [o!=af+) 4,

e Let f(x) and f(x)be the frequencies of char * ih,
egitimate and in blended attack traffic, it holds:

& = ol £ G = @] f)
¢ There may be some characters for which

f(x) < f(x,) and the most frequent such character
need not be padded

T he the maximum overuse, then
i) - leo[(SF () = £(x,))

o Let §=max

16

1-gram PAYL Evasio

Substitution b
¢ To minimize padding we need to minimi
e Case 1: attack chars are less numerous t

legitimate chars '

— A greedy algorithm that generates one-to-many r
— Sort characters by frequency in attack and leg. Tra
— Match frequencies in decreasing order

-~ Remaining legitimate characters are assigned to attack
characters that have highest 9 to bring it down

- For example, we want to map attack string gpgppgpq
into chars a, b, ¢ with frequences 0.3, 0.4 and (53.3

e Choose b to replace p, a to replace q and because 0.5/0.3 =
1.66 then c will also replace g

17

1-gram PAYL Evasion
Substitution

@ Ca_s_e 2. attack chars are more numerous
legitimate chars

- A greedy algorithm that generates n-gram-to-on

mapping
— Construct a Huffman tree where leaves are charact
the attack traffic, and smallest two nodes are iterative
connected (thus most frequent characters have shortest
n-gram length)
- We must choose the labels for the links so to preserve
the original legitimate character frequency
e Sort vertices in the tree by weight
e Sort legitimate characters by their frequency

e Choose the highest frequency character for the highest weight
vertex

® Remove the vertex from the list and remove the given portion of
the character’s frequency from further consideration; then resort
the characters

characters a and
‘and attack characters P, q, I S he
15 0.25, 0.25 and 0.35 B

0.6, 0.4, 0.35, 0.25, 0.2

sl

| ng? .
characters a and t
d attack characters p, q, r, s hav
15, 0.25, 0.25 and 0.35

0.6, 0.4, 0.35, 0.25, 0.2
d b b b i a

2-gram PAYL Evasion

¢ Must match all 2-byte pairs
o Represent valid 2-grams as states in FSNM

» A simple approach will enumerate valid pat
FSM and map attack characters to paths ran
but this generates large code size

— Better mapping can be obtained by using entropy
Information, i.e., mapping frequent characters to
short paths

¢ Another approach will attempt to find single byte
mappings so that 2-grams are also matched

— Greedy algorithm sorts 2-grams by frequencies in
legitimate and attack traffic and matches them greedily
taking care not to violate any existing mappings

¢ Generate padding so to match the target
L distribution greedil |
21

L

- For 1-gram blending greedy algorit

» For 2-gram blending it is difficult to meet

Attack Complexity

proposed that generate small paddln
can closely match the target byte frequ

the goal of accurate frequency match and
small code size
— In general finding a good substitution is NP- hard

- Proposed heuristics can achieve good frequency \
match but at the expense of code size

-

23

Evaluation

« Attack on Windows Media Services
— Exploits a vulnerability with logging of user |

o Attack vector is 99 bytes long and must b
present at the start of the HTTP request

e For buffer overflow attack must send 10KB o
data

e Attack body opens a TCP connection and sends
registry files

e Size of attack body is 558B and contains 109
unique characters

o Attack was divided into multiple packets and,
after blending, padded with legitimate traffic to
achieve required 10KB size

24

‘4 S Training

ap tured 15 days of HTTP traffic
days traffic to train the IDS

— Only TCP data packets are used that do n'
known attacks

¢ IDS builds profiles per packet length |
e Last day’s traffic is used by the attacker to le
character distributions

e Selected three frequent packet sizes for the
attack

— Used packets of these lengths observed in the 15th
day to extract byte frequencies for blending

25

e

!

)

bl A .’...‘“‘/f’ By

y

N

e 1

L.l

0
0

200 400 600 800 1000

Packet length

1400 1600

i
g
:
-
£
3

S00 1000 1500 2000 2500 3000 3500
Number of packets (in thousands)

! Evaluation Results

© PAYL training time increases with t
training data because new packets ca
unigue n-grams

against PAYL

— CLET only adds padding to match byte frequency,

— Other polymorphic engines perform worse than CL
against PAYL |

— CLET attack sequence will avoid PAYL detection only'_

If all packets have an anomaly score above the
threshold

-~ Both 1-gram and 2-gram PAYL detected all attacks
with chosen threshold setting rrgeems T > gram

418 872 1,399

T30 632 1,313
. 1460 355 9T7
e 28

no significant improvem
profile (measured using Manhatta
within two packets :

® Number of packets required for cony

" Packet Len& I-Eam
418 8

730
1460

bt

+ F oAl e T gy nl
1 1 Wﬁ 1 1 1 1 |’WW'

15 20 25 30 35 40 45 90 10 15 20 25 30 235 40 45 50
Number of attack training packets Number of attack training packets

(a) 1-gram (b) 2-gram

under the PAYL threshold

1-gram and 2-gram A

r i

« For 1-gram attacks used one-to-one
cipher

e For 2-gram attacks used single byte en
scheme
e Two types of transformations were tested

— Substitution table is constructed for entire attack b
global substitution

— Substitution table is constructed for each packet
separately - local substitution

— |f attack characters are more numerous than those in
legitimate traffic, non-existing characters were used

31

Relative Frecuency

:
£
£
:

Character

(a) Original attack packet (b) 1-gram Blending Packet for packet length 1460

CmO+ -+

1
ATT-1460
IDS-1460

ATT-730
IDS-730
ATT-418
IDS-418

1
ATT-1460
IDS-1460
ATT-730

IDS-730
ATT-418
IDS-418

shu L

Ise positives mak
| ore packets are needed to
blend the attack

[False Positive 418 730 1460
1-gram 2-gram 1-gram 2-gram 1-gram 2-gram
0.1 61.07 (17.-) 373.4(-,12) | 63.70(5.7) | 467.6(5.5) | 74.50(3.3) | 447.7 (2.2)
0.001 125.5(5.7) 561.8(7.6) 164.6 (2.3) | 6/0.5(3.3) | 239.2(1.1) | 931.9(L.1)
0.0001 166.8 (5.5) 582.6(75) | 244522 | 805.0(22) | 243.4(1.1) | 935.0(1.1)

| S had consistently
cores for attacks but it also had h
thresholds to avoid false positives
— Overall similar performance as 1-gran
— More costly for IDS

.:.1 e Local substitution always outperforme
~ substitution

' Cou ntermeasures

° More complex models are needed |

— Observe additional traffic features in additi
statistical ones, e.g., syntactic and semant
information

— Key direction to explore is a more sophisticate
semantic IDS) that can perform at high speed

e Use multiple simple IDSs that model different
features

¢ Introduce randomness into the IDS model

— Model byte pairs that are v characters apart
— Choose v at random and fix it for a given IDS
— Combine several such systems

37

¢ The idea is neat and the proposed ble
techniques are easy to understand

— The attack is realistic

e Paper had a lot of repetitive text
— Organization was poor too

® A lot of greedy heuristics without proof of their
performance ;
— Explanations of the proposed heuristics are also poor,
but examples were helpful
e There is no firm evidence that statistical detectloﬁ
using legitimate traffic profile is much cheaper than
detection using sintactic and semantic informatiol

38

i‘on‘clusions e
« There are many defenses against pol

attacks, but such defenses are simplist

— They can be tricked by a polymorphic blen
l.e. an attack that actively attempts to evade

¢ Polymorphic blending attacks are easily
constructed and can evade PAYL in multiple
scenarios

¢ A few countermeasures are proposed against
polymorphic blending attacks |
— Left as future work

39

Infeasibility of Modeling

> Polymorphic Shellcode

Shell code background

e Format:

[NOP][DECODER][ENCPAYLOAD]
[RETADDR]

* Polymorphism applied to decoding
routine

Signature matching

* String-based signatures

> Example: Snort
o |dentification of NOP sled

e Statistical measures of packet content

Problem definition

* Given n bytes, there exist 256" possible
strings

» x86 code of length n is a subspace

* How difficult is it to model this subspace!?

Measures

» Spectral image

e Minimum Euclidian distance
* Variation strength

* Propagation strength

* Overall strength

Spectral image

* D decoders of length N
e Compile into DXN matrix

 Display matrix as image

Spectral image

" h l‘l”l-ll L-- . 1 | u l‘ '.

L e

f—t

- S Py TS

Minimum Euclidian distance

e String x as point in n-dim Euclidian space
o Example:“ab” -> (97,98)

e Minimum Euclidian Distance: minimum
normalized distance between two points
under arbitrary byte-level rotations

5(x.y) = min{” x —rot(y,r) II}

tzren| x4+ I

e Intuition: Decoders can shift order of
operations

Variation strength

* Magnitude of the space covered by span
of points in n-space corresponding to
detectors

e Decoders x,, X5, ..., X\ in N-space

e A, A, ..., A eigenvalues of covariance
matrix

e Variation strength:

RS
n i=1

Propagation strength

e Efficacy in making sample pairs different

» Consider fully connected graph with
decoders as nodes

e Edge weight = minimum Euclidian distance

* Propagation strength = average edge
weight

* 77 = number of salient bytes in samples

* p(.) = prior (default: p(.) = 1)

®(engine) = (1) / / p(8(x,y)))8(x,y) dx dy

Overall strength

* For a polymorphic engine:

[l(engine) =(engine) x plengine)

Engine Prop. St. Var. St. Overall St. | p-score
Shikata 0.14 53.24 7.24 0.62
Jcadd 0.11 44.62 4.87 0.42
C4d 0.06 14.62 0.83 0.07
Fnstenv 0.07 15.70 1.05 0.09
Clet 0.14 53.00 7.37 0.63
Admmutate 0.15 68.76 10.59 0.91
randias 0.16 36.90 5.83 0.50
randase 0.16 73.74 11.61 1.00

Hybrid engine: Full spectrum
polymorphism and blending

o CLET: byte distribution
blending

e ADMutate: Polymorphism

(¢]

Random looking decoder,
recursive NOP sled

e Combine CLET and
ADMutate

(¢]

(¢]

Blend in with normal traffic

Blending bytes can be
randomly permuted

RETADDR can be added
with a random offset

4-byte salient artifact too
small to use as a signature

Essentially impossible to
model

(a)

HERHHE R R R G

%3§§§§§§§Eiiii!§§§§§ii%ii%ﬁiﬁiiiﬁﬁiii}ﬁ}ﬁ%’

R

i $E ST
i R

ey

wm
e
S
e
i3

i

..

i

tit R

P
s

it

i1

i

-F %gmummmm;mmmuumumgggl
AR

Hybrid en

gine: Full spectrum

polymorphism and blending

3.5 T T T

0.5

0 50 100 150

-
[
=3

200 250 300

300

References

* “Polymorphic Blending Attacks”, Fogla et
al, 2006

* “On the Infeasibility of Modeling
Polymorphic Shellcode”, Song et al, 2007

