

1

Polymorphic Blending Attacks

Slides by Jelena Mirkovic

2

Motivation

!  Polymorphism is used by malicious code to
evade signature-based IDSs
–  Anomaly-based IDSs detect polymorphic attacks

because their byte frequency differs from the one
seen in the legitimate traffic

!  Polymorphic blending attacks adjust their byte
frequency to match that of legitimate traffic
–  Evade anomaly-based IDSs

!  This paper investigates how polymorphic
blending attacks can be created and
proposes countermeasures

3

Outline

!  Polymorphic attacks
!  Defenses against polymorphism
!  Polymorphic blending attacks
!  Case study with PAYL
!  Conclusions

4

Polymorphic Attacks

!  Freely available tools for making code
polymorphic
–  ADMutate, PHATBOT and CLET

!  Transform assembly commands into other
commands with the same semantics

!  Use encryption to hide malicious code
!  Insert garbage, shuffle registers
!  Each instance of malicious code looks

different but does not resemble normal code
(CLET may come near)

5

Polymorphic Attacks

!  Three components:
1.  Attack vector used for exploiting vulnerability of the

target
!  Some parts can be modified but there is always a set of

invariant parts
!  If invariant parts are small and exist in legitimate traffic

detection can be evaded
2.  Attack body - malicious code for the attacker’s

purpose; shell code
!  Can be transformed or encrypted

3.  Polymorphic decryptor
!  Decrypts the shell code, can be transformed

!  Byte frequency of malicious code should be
anomalous

6

Related Work
!  Polymorphic attacks:

–  IP/TCP transformations
–  Mutation exploits (Vigna et al.)
–  Fragroute, Whisker, AGENT, Mistfall, tPE, EXPO,

DINA, ADMutate, PHATBOT, JempiScodes
–  CLET

!  Defenses against polymorphism
–  Looking for executable code (Toth et al.)
–  Looking for similar structure in multiple code instances (Kruegel et

al.)
–  Looking for common substrings present in multiple code instances

(Polygraph) - defeated by noise
–  Looking for any exploit of a known vulnerability (Shield)

7

Related Work
!  Defenses against polymorphism

–  Looking for instruction semantics, detect known code
transformations
(Cristodorescu et al.)

–  Detect sequence of anomalous system calls (Forest
et al.) - can be defeated through mimicry attacks.
! New approaches use stack information but they can also be

defeated
–  Payload-based anomaly detection: use length,

character distribution, probabilistic grammar and
tokens to model HTTP traffic (Kruegel et al.); record
byte frequency for each port’s traffic (PAYL)

8

Polymorphic Blending Attacks
!  Attack can blend in if it can mimic simple

statistics observed in legitimate traffic
–  Average size and rate of packets, byte frequency

distribution, range of tokens at different offsets
–  To avoid PAYL the attack must carefully choose

encryption key and pad its payload to replicate
desired byte frequency

!  There are more sophisticated approaches to
attack detection that cannot be evaded so
simply
–  Simple approaches are used because they are

affordable at high packet speeds

9

Attack Scenario

IDS

Attacker compromises
host X that already
talks to target Y

X

Y

10

Attack Scenario

IDS

Attacker sniffs on this
conversation and learns
legitimate byte frequencies
Attacker also knows
which IDS is deployed
at target

X

Y

11

Attack Scenario

IDS

Attacker adjusts attack byte
frequencies to match those
learned from legitimate traffic
within some error margin
and bypasses IDS

X

Y

1.  Learning
2.  Attack body encryption

with blending
3.  Generating decryption

code

12

Polymorphic Blending Attacks
!  Desirable properties of an attack:

–  Match legitimate traffic’s byte frequencies
–  Do not result in large attack size
–  Economical (time and memory) blending process
–  Short learning time " small traffic sample

! Even a single packet may suffice to learn good traffic
pattern for traffic of this size

!  If an attacker can sniff he can collect any amount of
traffic

!  For encryption use a substitution cipher
–  Each byte is transformed into a byte from a

legitimate traffic sample to match desired byte
frequency

–  Possibly some padding is added
–  Use greedy algorithm to create mapping

13

Polymorphic Blending Attacks
!  Decryption removes the padding and

reverses the substitution steps
–  This code cannot be blended but can be

transformed into equivalent instructions
–  Decoding table can be stored in a positional array,

thus code contains only legitimate characters
!  Attack vector and decoding information

influence the byte frequency distribution so
we may need several iterations to achieve
desired match

!  It may happen that the IDS has different
profiles for different packet lengths
–  In this case we must match the byte frequency for

a given length

14

Evaluation
!  Create polymorphic blending attacks to evade

PAYL
!  First create polymorphic attacks using CLET

and verify that they are all detected by PAYL
!  Next create polymorphic blending attacks and

demonstrate that they can evade detection
–  Evaluate easy of attack construction and cost

!  1-gram and 2-gram PAYL is used to evaluate
performance when IDS has more complex
models

15

PAYL
!  Measure frequency distribution of n-grams in

traffic payloads
!  Use sliding window of size n
!  Generate a separate model for each packet

length
–  Cluster models at the end to reduce memory cost

!  Packets with unusual length are also flagged as
anomalous

!  Model consists of frequency f(xi) and stdev !(xi)
!  Anomaly score is calculated as:

!

score(P) =
f
!

(xi) " f (xi)
(xi) +$i

%

16

1-gram PAYL Evasion: Padding
!  Let and be the attack body before and after

the padding, n is the number of distinct chars in
normal traffic and denotes the number of
occurrences of character in padding

!  It holds
!  Let and be the frequencies of char in

legitimate and in blended attack traffic, it holds:

!  There may be some characters for which
 and the most frequent such character
need not be padded

!  Let be the maximum overuse, then

!

" ' = ˆ " + #i
i
$

!

"'

!

ˆ "

!

"i

!

xi

!

f (xi)

!

ˆ f (xi)

!

xi

!

"i = #' f (xi) $ ˆ # ˆ f (xi)

!

f (xi) < ˆ f (xi)

!

" = max
ˆ f (xi)
f (xi)

!

"i = #' ($f (xi) % ˆ f (xi))

17

1-gram PAYL Evasion:
Substitution

!  To minimize padding we need to minimize
!  Case 1: attack chars are less numerous than

legitimate chars
–  A greedy algorithm that generates one-to-many mapping
–  Sort characters by frequency in attack and leg. Traffic
–  Match frequencies in decreasing order
–  Remaining legitimate characters are assigned to attack

characters that have highest to bring it down
–  For example, we want to map attack string qpqppqpq

into chars a, b, c with frequences 0.3, 0.4 and 0.3
! Choose b to replace p, a to replace q and because 0.5/0.3 =

1.66 then c will also replace q

!

"

!

"

18

1-gram PAYL Evasion:
Substitution

!  Case 2: attack chars are more numerous than
legitimate chars
–  A greedy algorithm that generates n-gram-to-one

mapping
–  Construct a Huffman tree where leaves are characters in

the attack traffic, and smallest two nodes are iteratively
connected (thus most frequent characters have shortest
n-gram length)

–  We must choose the labels for the links so to preserve
the original legitimate character frequency
! Sort vertices in the tree by weight
! Sort legitimate characters by their frequency
! Choose the highest frequency character for the highest weight

vertex
! Remove the vertex from the list and remove the given portion of

the character’s frequency from further consideration; then resort
the characters

19

Example For Case 2
!  Legitimate characters a and b have frequency 0.5,

and attack characters p, q, r, s have frequency
0.15, 0.25, 0.25 and 0.35

0.15 0.25 0.25 0.35

0.4 0.6

1

p q r s

0.6, 0.4, 0.35, 0.25, 0.25, 0.15

0.5, 0.5
a b

20

Example For Case 2
!  Legitimate characters a and b have frequency 0.5,

and attack characters p, q, r, s have frequency
0.15, 0.25, 0.25 and 0.35

0.15 0.25 0.25 0.35

0.4 0.6

1

p q r s

0.6, 0.4, 0.35, 0.25, 0.25, 0.15

b a

a b b b a a

a a

a

b b

b

21

2-gram PAYL Evasion
!  Must match all 2-byte pairs
!  Represent valid 2-grams as states in FSM
!  A simple approach will enumerate valid paths in

FSM and map attack characters to paths randomly
but this generates large code size
–  Better mapping can be obtained by using entropy

information, i.e., mapping frequent characters to
short paths

!  Another approach will attempt to find single byte
mappings so that 2-grams are also matched
–  Greedy algorithm sorts 2-grams by frequencies in

legitimate and attack traffic and matches them greedily
taking care not to violate any existing mappings

!  Generate padding so to match the target
distribution greedily

2-gram PAYL Evasion

22

!  e0 = da
!  e1 = bc
!  Input: 01101010
!  Output:

bdabcbcbdabcbdab
cbda

23

Attack Complexity
!  For 1-gram blending greedy algorithms are

proposed that generate small padding and
can closely match the target byte frequency

!  For 2-gram blending it is difficult to meet both
the goal of accurate frequency match and of
small code size
–  In general finding a good substitution is NP-hard
–  Proposed heuristics can achieve good frequency

match but at the expense of code size

Topic 5

24

Evaluation
!  Attack on Windows Media Services

–  Exploits a vulnerability with logging of user requests
!  Attack vector is 99 bytes long and must be

present at the start of the HTTP request
!  For buffer overflow attack must send 10KB of

data
!  Attack body opens a TCP connection and sends

registry files
!  Size of attack body is 558B and contains 109

unique characters
!  Attack was divided into multiple packets and,

after blending, padded with legitimate traffic to
achieve required 10KB size

25

IDS Training
!  Captured 15 days of HTTP traffic and used 14

days’ traffic to train the IDS
–  Only TCP data packets are used that do not contain

known attacks
!  IDS builds profiles per packet length
!  Last day’s traffic is used by the attacker to learn

character distributions
!  Selected three frequent packet sizes for the

attack
–  Used packets of these lengths observed in the 15th

day to extract byte frequencies for blending

26

Packet Length Distributions

27

Unique 1-grams and 2-grams

28

Evaluation Results
!  PAYL training time increases with the size of the

training data because new packets carry more
unique n-grams

!  Tested CLET-generated polymorphic attacks
against PAYL
–  CLET only adds padding to match byte frequency
–  Other polymorphic engines perform worse than CLET

against PAYL
–  CLET attack sequence will avoid PAYL detection only

if all packets have an anomaly score above the
threshold

–  Both 1-gram and 2-gram PAYL detected all attacks
with chosen threshold setting

29

Evaluation Results
!  Training of the artificial profile is stopped when

there is no significant improvement over existing
profile (measured using Manhattan distance)
within two packets

!  Number of packets required for convergence

30

Anomaly Score of the
Artificial Profile vs Training Length

Well under the PAYL threshold

31

1-gram and 2-gram Attacks
!  For 1-gram attacks used one-to-one substitution

cipher
!  For 2-gram attacks used single byte encoding

scheme
!  Two types of transformations were tested

–  Substitution table is constructed for entire attack body -
global substitution

–  Substitution table is constructed for each packet
separately - local substitution

–  If attack characters are more numerous than those in
legitimate traffic, non-existing characters were used

32

Byte Frequencies

33

Local Substitution

34

Global Substitution

35

Effect of False Positive Setting
!  Higher false positives make IDS more sensitive

so more packets are needed to successfully
blend the attack

36

Other Observations
!  2-gram IDS had consistently higher anomaly

scores for attacks but it also had higher
thresholds to avoid false positives
–  Overall similar performance as 1-gram IDS
–  More costly for IDS

!  Local substitution always outperformed global
substitution

37

Countermeasures
!  More complex models are needed

–  Observe additional traffic features in addition to
statistical ones, e.g., syntactic and semantic
information

–  Key direction to explore is a more sophisticated (e.g.,
semantic IDS) that can perform at high speed

!  Use multiple simple IDSs that model different
features

!  Introduce randomness into the IDS model
–  Model byte pairs that are v characters apart
–  Choose v at random and fix it for a given IDS
–  Combine several such systems

38

My Opinion
!  The idea is neat and the proposed blending

techniques are easy to understand
–  The attack is realistic

!  Paper had a lot of repetitive text
–  Organization was poor too

!  A lot of greedy heuristics without proof of their
performance
–  Explanations of the proposed heuristics are also poor,

but examples were helpful
!  There is no firm evidence that statistical detection

using legitimate traffic profile is much cheaper than
detection using sintactic and semantic information

39

Conclusions
!  There are many defenses against polymorphic

attacks, but such defenses are simplistic
–  They can be tricked by a polymorphic blending attack,

i.e. an attack that actively attempts to evade detection
!  Polymorphic blending attacks are easily

constructed and can evade PAYL in multiple
scenarios

!  A few countermeasures are proposed against
polymorphic blending attacks
–  Left as future work

!  Format:
 [NOP][DECODER][ENCPAYLOAD]
[RETADDR]

! Polymorphism applied to decoding
routine

!  String-based signatures
!  Example: Snort
!  Identification of NOP sled

!  Statistical measures of packet content

! Given n bytes, there exist 256n possible
strings

! x86 code of length n is a subspace
! How difficult is it to model this subspace?

!  Spectral image
! Minimum Euclidian distance
! Variation strength
! Propagation strength
! Overall strength

! D decoders of length N
! Compile into D!N matrix
! Display matrix as image

!  String x as point in n-dim Euclidian space
!  Example: “ab” -> (97,98)

! Minimum Euclidian Distance: minimum
normalized distance between two points
under arbitrary byte-level rotations

!  Intuition: Decoders can shift order of
operations !

"(x,y) =min
1#r#n

|| x $ rot(y,r) ||
|| x ||+ || y ||

%
&
'

(
)
*

! Magnitude of the space covered by span
of points in n-space corresponding to
detectors

! Decoders x1, x2, …, xN in n-space

! λ1, λ2, …, λn eigenvalues of covariance
matrix

! Variation strength:

!

" =
1
n

#i
i=1

n

$

! Efficacy in making sample pairs different
! Consider fully connected graph with

decoders as nodes
! Edge weight = minimum Euclidian distance
! Propagation strength = average edge

weight
! η = number of salient bytes in samples
! p(.) = prior (default: p(.) = 1)

!  For a polymorphic engine:

!

"(engine) =#(engine) $%(engine)

!  CLET: byte distribution
blending

!  ADMutate: Polymorphism
!  Random looking decoder,

recursive NOP sled
!  Combine CLET and

ADMutate
!  Blend in with normal traffic
!  Blending bytes can be

randomly permuted
!  RETADDR can be added

with a random offset
!  4-byte salient artifact too

small to use as a signature
!  Essentially impossible to

model

!  “Polymorphic Blending Attacks”, Fogla et
al, 2006

!  “On the Infeasibility of Modeling
Polymorphic Shellcode”, Song et al, 2007

