

Malicious uses of domain names

- Bots: locate C&C
- Spam/Phishing: URLs linking to scam servers

Detecting malicious domains via DNS: EXPOSURE (2011)

- Goal: detect malicious domains
- Build features using traffic from authoritative DNS servers to recursive DNS servers
 - Queried domain name, query issue time, TTL, list of IP addresses associated with domain

Features

FI:Time-based features

- Short life
- Daily similarity
- Repeating patterns
- Access ratio

F2: DNS answerbased features

- # of distinct IP addresses
- # of distinct countries
- # of domains IP shared with
- Reverse DNS query results

F3:TTL value-based features

- Average TTL
- Standard deviation of TTL
- # of distinct TTL values
- # of TTL changes
- % usage of specific TTL ranges

F4: Domain namebased features

- % of numerical characters
- % of the length of the LMS

Time-based features

- Global scope: Short-lived
- Local scope:
 - Daily similarity
 - an increase or decrease of request count at same intervals everyday
 - Regularly repeating patterns
 - Instance of change point detection (CPD)
 - Access ratio
 - Idle vs popular

Detecting abrupt changes

- Time series for each domain
 - P(t)= Request count at hour t, normalized by max count
 - P(t) = Average of past 8 time intervals
 - $P^+(t)$ = Average of next 8 time intervals
 - $d(t) = |P^+(t) P^-(t)|$
- Apply Cumulative Sum (CUSUM) algorithm to d(t)
 - Detect times t, when d(t) is large & is a local maximum
 - CUSUM(t) = $Max\{0, CUSUM(t-1) + d(t) local_max\}$
 - Report t as change point if: CUSUM(t) > cusum_max
- Repeating patterns:
 - Number of changes
 - Standard deviation of the durations of detected changes

Detecting similar daily behavior

- Compute distances of all pairs of daily time series
 - Normalized each time series by its mean and stdv
 - Use Euclidian distance
- d_{ij} = Euclidian distance between ith & jth days
- D = Average of all d_{ij} values

DNS answer-based features

- # of distinct IPs
 - Resolved for a domain during the experiment
- # of different countries for those IPs
- Reverse DNS query results of those IPs
- # of domains that share those IPs
 - Can be large for web hosting providers as well
 - Reduce false positives by looking for reverse DNS query results on Google top 3 search results

TTL value-based features

- TTL: Length of time to cache a DNS response
 - Recommended between 1-5 days
- Average TTL value
 - High availability systems
 - Low TTL values
 - Round Robin DNS
 - Example: CDNs, Fast Flux botnets
- Standard deviation of TTL
 - Compromised home computers (dynamic IP) assigned much shorter TTL than compromised servers (static IP)
- # of TTL changes, Total # of different TTL values
 - Higher in malicious domains
- % usage of specific TTL ranges
 - Considered ranges: [0,1), [1,10), [10,100), [100,300), [300,900), >900
 - Malicious domains peak at [0, 100) ranges

Domain name-based features

- Easy-to-remember names
 - Important for benign services
 - Main purpose of DNS
 - Unimportant for attackers (e.g., DGA-generated)
- Features:
 - Ratio of numerical characters to name length
 - Ratio of length of the longest meaningful substring (i.e., a dictionary word) to length of domain name
 - Query name on Google & check # of hits vs a threshold
- Features applied to only second-level domains
 - Example: server.com for x.y.server.com
- Other possible feature: entropy of the domain name
 - DGA-generated names more random than humangenerated

Training

- DNS traffic from the Security Information Exchange (SIE)
 - Response data from authoritative name servers in North America & Europe
 - 2.5 months
 - >100 billion DNS queries (1 million queries/ minute on average)
 - 4.8 million distinct domain names
 - Filtering
 - Alexa top 1000 (20% reduction)
 - Domains older than I year (50% more reduction)

Training

- Malicious domains
 - 3500 domains
 - Types:
 - Botnet C&C, drive-by-download sites, phishing/scam pages
 - Example Sources:
 - malwaredomains.com, Zeus Block List
- Benign domains
 - 3000 domains
 - Example Source: Alexa top 1000
- Training period
 - Initial period of 7 days (for time-based features)
 - Retraining every day

Classifier

- C4.5 decision tree algorithm
- Feature selection

C4.5 Primer

- Check for base cases
- For each attribute
 - Compute attribute's normalized information gain
- Split over attribute with highest gain
- Recurse
- Normalized information gain = difference in entropy of class values

Classifier Accuracy

	AUC	Detection Rate	False Positives
Full data	0.999	99.5%	0.3%
10-folds Cross-Validation	0.987	98.5%	0.9%
66% Percentage Split	0.987	98.4%	1.1%

Testing

- False positive rate
 - Filter out domains with < 20 requests in 2.5 months (300,000 domains remaining)
 - 17,686 detected as malicious (5.9%)
 - Hard to verify manually
 - Verification
 - Google searches
 - Well-known spam lists
 - Norton Safe Web
 - McAfee Site Advisor
 - False positive rate: 7.9%
- Detection rate
 - 216 domains reported by malwareurls.com & present in dataset
 - 5 had less than 20 queries
 - 211 detected malicious
 - Detection rate: 98%

Evasion

- Assign uniform TTL values across all compromised machines
 - Reduces attacker's infrastructure reliability
- Reduce # of DNS lookups of malicious domain
 - Not trivial to implement
 - Reduces attacker's impact
 - Requires high degree of coordination

Administrativia

- Recommended books on website
- Piazza:
 https://piazza.com/class/i0php4r6eyb43c
- Reading materials for this lecture on website
- Reading material for next lecture on website by tomorrow

Insider threats: Examples

- Vodafone Greece
 - Targeted 100+ high-ranking officials
 - Prime minister of Greece & his wife
 - Ministers: national defense, foreign affairs, justice
 - Greek European Union commissioner
 - Mayor of Athens
 - Started before Aug '04, continued till March '05
 - Detected accidentally due to rootkit update misconfig
 - Traced to an insider in Vodafone
 - Vodafone fined \$76M
- Edward Snowden

Insider threats

 "Despite some variation from year to year, inside jobs occur about as often as outside jobs. The lesson here, though, surely is as simple as this: organizations have to anticipate attacks from all quarters."

CSI/FBI COMPUTER CRIME AND SECURITY SURVEY 2005

Types of insider attackers

- Traitors
 - A legitimate user with proper access credentials gone rouge
 - Full knowledge of systems & security policies
- Masqueraders
 - An attacker who has stolen/obtained and uses credentials of a legitimate user

Types of insiders attacks

- Unauthorized extraction, duplication, or exfiltration of data
- Tampering with data (unauthorized changes of data or records)
- Destruction and deletion of critical assets
- Downloading from unauthorized sources or use of pirated software which might contain backdoors or malicious code
- Eavesdropping and packet sniffing
- Spoofing and impersonating other users
- Social engineering attacks
- Misuse of resources for non-business related or unauthorized activities
- Purposefully installing malicious software

Insider threats: defense

- Masqueraders
 - Behavioral profiling & anomaly detection
 - Requires extensive logging of systems & users
 - Host-based
 - Pros: Better coverage
 - Most insider attacks at application level not network level
 - Cons: hard to deploy
- Traitors
 - Decoys/traps (e.g., honeypots, honeytokens)

Insider attack detection: Types of audit data

- CLI command sequences
- System calls
- Database/file accesses
- Keystroke dynamics
- Mouse dynamics

User behavior modeling using unix shell commands

- Multi-class classification
 - Data from each user as samples from one class
 - Self vs non-self
 - Require retraining as users join/leave organization
 - Non-self samples bias model's view of masquerader
- Single-class classification
 - Builds a profile for user only using that user's data
 - Requires less data
 - Distributed implementation

Schonlau dataset

- Unix shall commands of 70 users
 - Collected using Unix acct
 - 50 random users as intrusion targets
 - 20 masquerade users
- 15,000 commands per user
 - Over days or months
 - First 5,000 commands clean
 - Next 10,000 commands randomly injected with 100-command intrusion blocks
 - Blocks of size 100: clean or dirty
- Goal: detect dirty blocks
- Issues
 - Widely different time periods for different users
 - Different number of login sessions per user
 - Different number (0-24) of intrusion blocks per users
 - User job functions unknown
 - acct logs commands in the order they finished

One-class classification

- One-class Naïve Bayes
- One-class SVM

Naïve Bayes Classifier

- Bayes rule:
 - For user u, block d: p(u|d) = p(u)p(d|u)/p(d)
- Different commands assumed independent
- Multi-variate Bernoulli model:
 - Total of N unique commands (N=856 for Unix)
 - Each block as a binary N-dimensional vector
 - Each dimension with Bernoulli model
 - Performs better at small vocabulary sizes
- Multinomial model
 - Each black as N-dimensional vector
 - Each feature = # of occurrences of command
 - Performs better at large vocabulary sizes

Multivariate Bernoulli model

- N(u) = number of training blocks for user
- N(c_i, u) = number of blocks containing c_i
 for user u
- Laplacian prior:

$$p(c_i|u) = (1 + N(c_i, u))/(2+N(u))$$

 p(d|u) computed from p(c_i|u) values and the independence assumption

Multinomial model

Laplacian prior:

$$p(c_i \mid u) = \frac{\sum_{j=1}^{N(u)} n_i(d_j) + \alpha}{\sum_{i=1}^{N} \sum_{j=1}^{N(u)} n_i(d_j) + \alpha N}$$

p(d|u) computed from p(c_i|u) & independence

One class Naïve Bayes

- Compute p(c_i|u) only for user's self profile
- For masquerader, assume each command has probability I/N (completely random)
 - Makes no assumption about masquerader
- Given a block d, compute:
 p(d|self)/p(d|non-self)
- Threshold controls false positive vs detection rate

One class SVM

- Map data to a high-dimensional feature space
- Maximally separate data points from origin
- Allow some outliers, but probability of lying on the wrong side bounded by a parameter

Multivariate vs Multinomial

One-class vs two-class

One-class SVM vs other algorithms

References

 EXPOSURE: Finding Malicious Domains Using Passive DNS Analysis (2011)

(https://www.iseclab.org/papers/bilge-ndss | 1.pdf)

The Athens Affair

(http://spectrum.ieee.org/telecom/security/the-athens-affair)

- Insider Attack and Cyber Security: Beyond the Hacker, chapter "A Survey of Insider Attack Detection Research"
- One-class Training for Masquerade Detection (2003)

(http://www.cs.columbia.edu/~kewang/paper/DMSEC-camera.pdf)