


 Bots: locate C&C 
  Spam/Phishing: URLs linking to scam 

servers 



 Goal: detect malicious domains 
 Build features using traffic from 

authoritative DNS servers to recursive 
DNS servers 
◦ Queried domain name, query issue time, TTL, 

list of IP addresses associated with domain 



  F1: Time-based 
features 
◦  Short life 
◦  Daily similarity 
◦  Repeating patterns 
◦  Access ratio 

  F2: DNS answer-
based features 
◦  # of distinct IP addresses 
◦  # of distinct countries 
◦  # of domains IP shared 

with 
◦  Reverse DNS query results 

  F3: TTL value-based 
features 
◦  Average TTL 
◦  Standard deviation of TTL 
◦  # of distinct TTL values 
◦  # of TTL changes 
◦  % usage of specific TTL 

ranges 

  F4: Domain name-
based features 
◦  % of numerical characters 
◦  % of the length of the LMS 



 Global scope: Short-lived 
 Local scope: 
◦ Daily similarity 
  an increase or decrease of request count at same 

intervals everyday 

◦ Regularly repeating patterns 
  Instance of change point detection (CPD) 

◦ Access ratio 
  Idle vs popular 



•  Time series for each domain 
  P(t)= Request count at hour t, normalized by max count 
  P-(t) = Average of past 8 time intervals 
  P+(t) = Average of next 8 time intervals 
  d(t) = |P+(t) - P-(t)| 

◦  Apply Cumulative Sum (CUSUM) algorithm to d(t) 
  Detect times t, when d(t) is large & is a local maximum 
  CUSUM(t) = Max{0, CUSUM(t-1) + d(t) – local_max} 
  Report t as change point if: CUSUM(t) > cusum_max 

◦  Repeating patterns: 
  Number of changes 
  Standard deviation of the durations of detected changes 



 Compute distances of all pairs of daily 
time series 
◦ Normalized each time series by its mean and 

stdv 
◦ Use Euclidian distance 

 dij = Euclidian distance between ith & jth 
days 

 D = Average of all dij values 



 # of distinct IPs 
◦ Resolved for a domain during the experiment 

 # of different countries for those IPs 
 Reverse DNS query results of those IPs 
 # of domains that share those IPs 
◦ Can be large for web hosting providers as 

well 
◦ Reduce false positives by looking for reverse 

DNS query results on Google top 3 search 
results 



  TTL: Length of time to cache a DNS response 
◦  Recommended between 1-5 days 

  Average TTL value 
◦  High availability systems 

  Low TTL values 
  Round Robin DNS 
  Example: CDNs, Fast Flux botnets 

  Standard deviation of TTL 
◦  Compromised home computers (dynamic IP) assigned much shorter 

TTL than compromised servers (static IP) 
  # of TTL changes, Total # of different TTL values 
◦  Higher in malicious domains 

  % usage of specific TTL ranges 
◦  Considered ranges: [0,1), [1,10), [10,100), [100,300), [300,900), >900 
◦  Malicious domains peak at [0, 100) ranges  



  Easy-to-remember names 
◦  Important for benign services 

  Main purpose of DNS 
◦  Unimportant for attackers (e.g., DGA-generated) 

  Features: 
◦  Ratio of numerical characters to name length 
◦  Ratio of length of the longest meaningful substring (i.e., a 

dictionary word) to length of domain name 
  Query name on Google & check # of hits vs a threshold 

  Features applied to only second-level domains 
◦  Example: server.com for x.y.server.com 

  Other possible feature: entropy of the domain name 
◦  DGA-generated names more random than human-

generated 



 DNS traffic from the Security Information 
Exchange (SIE) 
◦  Response data from authoritative name servers in 

North America & Europe 
◦  2.5 months 
◦  >100 billion DNS queries (1 million queries/

minute on average) 
◦  4.8 million distinct domain names 
◦  Filtering 
  Alexa top 1000 (20% reduction) 
  Domains older than 1 year (50% more reduction) 



  Malicious domains 
◦  3500 domains 
◦  Types:  
  Botnet C&C, drive-by-download sites, phishing/scam pages 
◦  Example Sources: 
  malwaredomains.com, Zeus Block List 

  Benign domains 
◦  3000 domains 
◦  Example Source: Alexa top 1000 

  Training period 
◦  Initial period of 7 days (for time-based features) 
◦  Retraining every day 



 C4.5 decision tree algorithm 
  Feature selection 



 Check for base cases 
  For each attribute 
◦ Compute attribute’s normalized information 

gain 
  Split over attribute with highest gain 
 Recurse 

 Normalized information gain = difference 
in entropy of class values 





  False positive rate 
  Filter out domains with < 20 requests in 2.5 months (300,000 

domains remaining) 
  17,686 detected as malicious (5.9%) 
  Hard to verify manually 
  Verification 

  Google searches 
  Well-known spam lists 
  Norton Safe Web 
  McAfee Site Advisor 

  False positive rate: 7.9% 
  Detection rate 

  216 domains reported by malwareurls.com & present in dataset 
  5 had less than 20 queries 
  211 detected malicious 
  Detection rate: 98% 



 Assign uniform TTL values across all 
compromised machines 
◦ Reduces attacker’s infrastructure reliability 

 Reduce # of DNS lookups of malicious 
domain 
◦ Not trivial to implement 
◦ Reduces attacker’s impact 
◦ Requires high degree of coordination 



 Recommended books on website 
 Piazza: 

https://piazza.com/class/i0php4r6eyb43c 
 Reading materials for this lecture on 

website 
 Reading material for next lecture on 

website by tomorrow 



  Vodafone Greece 
◦  Targeted 100+ high-ranking officials 
  Prime minister of Greece & his wife 
  Ministers: national defense, foreign affairs, justice 
  Greek European Union commissioner 
  Mayor of Athens 
◦  Started before Aug ’04, continued till March ’05 
◦  Detected accidentally due to rootkit update 

misconfig 
◦  Traced to an insider in Vodafone 
◦  Vodafone fined $76M 

  Edward Snowden 



  “Despite some variation from year to 
year, inside jobs occur about as often as 
outside jobs. The lesson here, though, 
surely is as simple as this: organizations 
have to anticipate attacks from all 
quarters.” 

 CSI/FBI COMPUTER CRIME AND SECURITY SURVEY 2005 



 Traitors 
◦ A legitimate user with proper access 

credentials gone rouge 
◦  Full knowledge of systems & security policies 

 Masqueraders 
◦ An attacker who has stolen/obtained and uses 

credentials of a legitimate user 



  Unauthorized extraction, duplication, or exfiltration of data 
  Tampering with data (unauthorized changes of data or 

records) 
  Destruction and deletion of critical assets 
  Downloading from unauthorized sources or use of pirated 

software which might contain backdoors or malicious code 
  Eavesdropping and packet sniffing 
  Spoofing and impersonating other users 
  Social engineering attacks 
  Misuse of resources for non-business related or 

unauthorized activities 
  Purposefully installing malicious software 



 Masqueraders 
◦  Behavioral profiling & anomaly detection 
◦ Requires extensive logging of systems & users 
  Host-based 

  Pros: Better coverage 
 Most insider attacks at application level not network level 

 Cons: hard to deploy 

 Traitors 
◦ Decoys/traps (e.g., honeypots, honeytokens) 



 CLI command sequences 
  System calls 
 Database/file accesses 
 Keystroke dynamics 
 Mouse dynamics 



 Multi-class classification 
◦  Data from each user as samples from one class 
◦  Self vs non-self 
◦  Require retraining as users join/leave organization 
◦ Non-self samples bias model’s view of 

masquerader 

  Single-class classification 
◦  Builds a profile for user only using that user’s data 
◦  Requires less data 
◦  Distributed implementation 



  Unix shall commands of 70 users 
◦  Collected using Unix acct 
◦  50 random users as intrusion targets 
◦  20 masquerade users 

  15,000 commands per user 
◦  Over days or months 
◦  First 5,000 commands clean 
◦  Next 10,000 commands randomly injected with 100-command intrusion blocks 
◦  Blocks of size 100: clean or dirty 

  Goal: detect dirty blocks 
  Issues 
◦  Widely different time periods for different users 
◦  Different number of login sessions per user 
◦  Different number (0-24) of intrusion blocks per users 
◦  User job functions unknown 
◦  acct logs commands in the order they finished  



 One-class Naïve Bayes 
 One-class SVM 



  Bayes rule:  
◦  For user u, block d: p(u|d) = p(u)p(d|u)/p(d) 

  Different commands assumed independent 
  Multi-variate Bernoulli model: 
◦  Total of N unique commands (N=856 for Unix) 
◦  Each block as a binary N-dimensional vector 
◦  Each dimension with Bernoulli model 
◦  Performs better at small vocabulary sizes 

  Multinomial model 
◦  Each black as N-dimensional vector 
◦  Each feature = # of occurrences of command 
◦  Performs better at large vocabulary sizes 



 N(u) = number of training blocks for user 
u 

 N(ci, u) = number of blocks containing ci 
for user u 

 Laplacian prior: 
   p(ci|u) = (1 + N(ci, u))/(2+N(u)) 

 p(d|u) computed from p(ci|u) values and 
the independence assumption 



 Laplacian prior: 

 p(d|u) computed from p(ci|u) & 
independence € 
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 Compute p(ci|u) only for user’s self profile 
  For masquerader, assume each command 

has probability 1/N (completely random) 
◦ Makes no assumption about masquerader 

 Given a block d, compute: 
        p(d|self)/p(d|non-self) 

 Threshold controls false positive vs 
detection rate 



 Map data to a high-dimensional feature 
space 

 Maximally separate data points from 
origin 

 Allow some outliers, but probability of 
lying on the wrong side bounded by a 
parameter 









  EXPOSURE: Finding Malicious Domains 
Using Passive DNS Analysis (2011) 

 (https://www.iseclab.org/papers/bilge-ndss11.pdf) 

  The Athens Affair  
 (http://spectrum.ieee.org/telecom/security/the-athens-affair) 

  Insider Attack and Cyber Security: Beyond 
the Hacker, chapter “A Survey of Insider 
Attack Detection Research” 

 One-class Training for Masquerade 
Detection (2003) 

 (http://www.cs.columbia.edu/~kewang/paper/DMSEC-camera.pdf) 


