

 Bots: locate C&C
  Spam/Phishing: URLs linking to scam

servers

 Goal: detect malicious domains
 Build features using traffic from

authoritative DNS servers to recursive
DNS servers
◦ Queried domain name, query issue time, TTL,

list of IP addresses associated with domain

  F1: Time-based
features
◦  Short life
◦  Daily similarity
◦  Repeating patterns
◦  Access ratio

  F2: DNS answer-
based features
◦  # of distinct IP addresses
◦  # of distinct countries
◦  # of domains IP shared

with
◦  Reverse DNS query results

  F3: TTL value-based
features
◦  Average TTL
◦  Standard deviation of TTL
◦  # of distinct TTL values
◦  # of TTL changes
◦  % usage of specific TTL

ranges

  F4: Domain name-
based features
◦  % of numerical characters
◦  % of the length of the LMS

 Global scope: Short-lived
 Local scope:
◦ Daily similarity
  an increase or decrease of request count at same

intervals everyday

◦ Regularly repeating patterns
  Instance of change point detection (CPD)

◦ Access ratio
  Idle vs popular

•  Time series for each domain
  P(t)= Request count at hour t, normalized by max count
  P-(t) = Average of past 8 time intervals
  P+(t) = Average of next 8 time intervals
  d(t) = |P+(t) - P-(t)|

◦  Apply Cumulative Sum (CUSUM) algorithm to d(t)
  Detect times t, when d(t) is large & is a local maximum
  CUSUM(t) = Max{0, CUSUM(t-1) + d(t) – local_max}
  Report t as change point if: CUSUM(t) > cusum_max

◦  Repeating patterns:
  Number of changes
  Standard deviation of the durations of detected changes

 Compute distances of all pairs of daily
time series
◦ Normalized each time series by its mean and

stdv
◦ Use Euclidian distance

 dij = Euclidian distance between ith & jth
days

 D = Average of all dij values

 # of distinct IPs
◦ Resolved for a domain during the experiment

 # of different countries for those IPs
 Reverse DNS query results of those IPs
 # of domains that share those IPs
◦ Can be large for web hosting providers as

well
◦ Reduce false positives by looking for reverse

DNS query results on Google top 3 search
results

  TTL: Length of time to cache a DNS response
◦  Recommended between 1-5 days

  Average TTL value
◦  High availability systems

  Low TTL values
  Round Robin DNS
  Example: CDNs, Fast Flux botnets

  Standard deviation of TTL
◦  Compromised home computers (dynamic IP) assigned much shorter

TTL than compromised servers (static IP)
  # of TTL changes, Total # of different TTL values
◦  Higher in malicious domains

  % usage of specific TTL ranges
◦  Considered ranges: [0,1), [1,10), [10,100), [100,300), [300,900), >900
◦  Malicious domains peak at [0, 100) ranges

  Easy-to-remember names
◦  Important for benign services

  Main purpose of DNS
◦  Unimportant for attackers (e.g., DGA-generated)

  Features:
◦  Ratio of numerical characters to name length
◦  Ratio of length of the longest meaningful substring (i.e., a

dictionary word) to length of domain name
  Query name on Google & check # of hits vs a threshold

  Features applied to only second-level domains
◦  Example: server.com for x.y.server.com

  Other possible feature: entropy of the domain name
◦  DGA-generated names more random than human-

generated

 DNS traffic from the Security Information
Exchange (SIE)
◦  Response data from authoritative name servers in

North America & Europe
◦  2.5 months
◦  >100 billion DNS queries (1 million queries/

minute on average)
◦  4.8 million distinct domain names
◦  Filtering
  Alexa top 1000 (20% reduction)
  Domains older than 1 year (50% more reduction)

  Malicious domains
◦  3500 domains
◦  Types:
  Botnet C&C, drive-by-download sites, phishing/scam pages
◦  Example Sources:
  malwaredomains.com, Zeus Block List

  Benign domains
◦  3000 domains
◦  Example Source: Alexa top 1000

  Training period
◦  Initial period of 7 days (for time-based features)
◦  Retraining every day

 C4.5 decision tree algorithm
  Feature selection

 Check for base cases
  For each attribute
◦ Compute attribute’s normalized information

gain
  Split over attribute with highest gain
 Recurse

 Normalized information gain = difference
in entropy of class values

  False positive rate
  Filter out domains with < 20 requests in 2.5 months (300,000

domains remaining)
  17,686 detected as malicious (5.9%)
  Hard to verify manually
  Verification

  Google searches
  Well-known spam lists
  Norton Safe Web
  McAfee Site Advisor

  False positive rate: 7.9%
  Detection rate

  216 domains reported by malwareurls.com & present in dataset
  5 had less than 20 queries
  211 detected malicious
  Detection rate: 98%

 Assign uniform TTL values across all
compromised machines
◦ Reduces attacker’s infrastructure reliability

 Reduce # of DNS lookups of malicious
domain
◦ Not trivial to implement
◦ Reduces attacker’s impact
◦ Requires high degree of coordination

 Recommended books on website
 Piazza:

https://piazza.com/class/i0php4r6eyb43c
 Reading materials for this lecture on

website
 Reading material for next lecture on

website by tomorrow

  Vodafone Greece
◦  Targeted 100+ high-ranking officials
  Prime minister of Greece & his wife
  Ministers: national defense, foreign affairs, justice
  Greek European Union commissioner
  Mayor of Athens
◦  Started before Aug ’04, continued till March ’05
◦  Detected accidentally due to rootkit update

misconfig
◦  Traced to an insider in Vodafone
◦  Vodafone fined $76M

  Edward Snowden

  “Despite some variation from year to
year, inside jobs occur about as often as
outside jobs. The lesson here, though,
surely is as simple as this: organizations
have to anticipate attacks from all
quarters.”

 CSI/FBI COMPUTER CRIME AND SECURITY SURVEY 2005

 Traitors
◦ A legitimate user with proper access

credentials gone rouge
◦  Full knowledge of systems & security policies

 Masqueraders
◦ An attacker who has stolen/obtained and uses

credentials of a legitimate user

  Unauthorized extraction, duplication, or exfiltration of data
  Tampering with data (unauthorized changes of data or

records)
  Destruction and deletion of critical assets
  Downloading from unauthorized sources or use of pirated

software which might contain backdoors or malicious code
  Eavesdropping and packet sniffing
  Spoofing and impersonating other users
  Social engineering attacks
  Misuse of resources for non-business related or

unauthorized activities
  Purposefully installing malicious software

 Masqueraders
◦  Behavioral profiling & anomaly detection
◦ Requires extensive logging of systems & users
  Host-based

  Pros: Better coverage
 Most insider attacks at application level not network level

 Cons: hard to deploy

 Traitors
◦ Decoys/traps (e.g., honeypots, honeytokens)

 CLI command sequences
  System calls
 Database/file accesses
 Keystroke dynamics
 Mouse dynamics

 Multi-class classification
◦  Data from each user as samples from one class
◦  Self vs non-self
◦  Require retraining as users join/leave organization
◦ Non-self samples bias model’s view of

masquerader

  Single-class classification
◦  Builds a profile for user only using that user’s data
◦  Requires less data
◦  Distributed implementation

  Unix shall commands of 70 users
◦  Collected using Unix acct
◦  50 random users as intrusion targets
◦  20 masquerade users

  15,000 commands per user
◦  Over days or months
◦  First 5,000 commands clean
◦  Next 10,000 commands randomly injected with 100-command intrusion blocks
◦  Blocks of size 100: clean or dirty

  Goal: detect dirty blocks
  Issues
◦  Widely different time periods for different users
◦  Different number of login sessions per user
◦  Different number (0-24) of intrusion blocks per users
◦  User job functions unknown
◦  acct logs commands in the order they finished

 One-class Naïve Bayes
 One-class SVM

  Bayes rule:
◦  For user u, block d: p(u|d) = p(u)p(d|u)/p(d)

  Different commands assumed independent
  Multi-variate Bernoulli model:
◦  Total of N unique commands (N=856 for Unix)
◦  Each block as a binary N-dimensional vector
◦  Each dimension with Bernoulli model
◦  Performs better at small vocabulary sizes

  Multinomial model
◦  Each black as N-dimensional vector
◦  Each feature = # of occurrences of command
◦  Performs better at large vocabulary sizes

 N(u) = number of training blocks for user
u

 N(ci, u) = number of blocks containing ci
for user u

 Laplacian prior:
 p(ci|u) = (1 + N(ci, u))/(2+N(u))

 p(d|u) computed from p(ci|u) values and
the independence assumption

 Laplacian prior:

 p(d|u) computed from p(ci|u) &
independence €

p(ci | u) =

ni(d j)
j=1

N (u)

∑ +α

ni(d j) +αN
j=1

N (u)

∑
i=1

N

∑

 Compute p(ci|u) only for user’s self profile
  For masquerader, assume each command

has probability 1/N (completely random)
◦ Makes no assumption about masquerader

 Given a block d, compute:
 p(d|self)/p(d|non-self)

 Threshold controls false positive vs
detection rate

 Map data to a high-dimensional feature
space

 Maximally separate data points from
origin

 Allow some outliers, but probability of
lying on the wrong side bounded by a
parameter

  EXPOSURE: Finding Malicious Domains
Using Passive DNS Analysis (2011)

 (https://www.iseclab.org/papers/bilge-ndss11.pdf)

  The Athens Affair
 (http://spectrum.ieee.org/telecom/security/the-athens-affair)

  Insider Attack and Cyber Security: Beyond
the Hacker, chapter “A Survey of Insider
Attack Detection Research”

 One-class Training for Masquerade
Detection (2003)

 (http://www.cs.columbia.edu/~kewang/paper/DMSEC-camera.pdf)

