

Insider threats: banking/finance sector

- US Secret Service National Threat Assessment Center (NTAC), Insider threat study (2004)
 - 83% of incidents executed from within organization, during normal business hours
 - Financial loss in almost all insider incidents
 - Loss > \$500K in 30% of cases

Behavioral Biometrics

- Applications
 - User authentication
 - Intrusion detection
- Advantages
 - Very low impact on usability
- Most useful in multimodal systems
 - Complement to more robust methods
 - Highly sensitive to means of implementation
 - Keyboard hardware

Implementation factors

- Required equipment
 - None
 - Multiple cameras
 - EEG sensors
- Enrollment time
 - Training time for system to recognize the user
- Persistence
 - Time it takes for features to change
- Obtrusiveness
- Error rates
 - False rejection rate (FRR)
 - False acceptance rate (FAR)
 - Equal error rate (ERR): error rate when FRR=FAR

Behavioral biometrics: categories

- Authorship
 - Text or drawing made by user
 - Vocabulary, punctuation, brush strokes
- HCI-based biometrics
 - Input interaction: keystrokes, mouse, haptics
 - Software interaction: strategy, knowledge, skill
- Indirect HCI-based biometrics
 - Low-level system activities
 - System call traces, audit logs, program execution traces, registry access, storage activity, call-stack data analysis
- Kinetics: Motor-skills based biometrics
 - Rely on proper functioning of brain, skeleton, joints, nervous system
- Purely behavioral biometrics
 - Walking style, typing style, gripping style

Authentication

- Knowledge: password, PIN
 - Something you know
- Objects: ID card, credit card, access token
 - Something you have
- Biometrics
 - Physiological: fingerprints, retina pattern
 - Something you are
 - Issues: implementation cost, acceptability, stability
 - Behavioral: signature, gait, keystroke dynamics
 - Something you do

Re-authentication

- Continuous authentication of a user for the duration of the user's login session
- Current user same as user who authenticated
- Stolen credentials
- Approaches
 - Indirect: profiling OS and applications
 - System call invocations, call-stack data operation, program trace analysis
 - Direct: profiling valid user
 - Command line input data, keystroke dynamics, mouse activity, GUI events

Deployment scenarios

- Open setting
 - Public library, internet café
 - Unsupervised learning
 - Only data from valid user available for profiling
- Closed setting
 - Corporate office, government building
 - Possible to collect data from all users
 - Supervised learning

Multimodal data analysis

- Combine sources at
 - Data level
 - Can miss on characteristics
 - Feature level
 - Classifier using all features put together
 - Classifier level
 - Separate classifier per data source
 - Voting scheme for final decision

User re-authentication

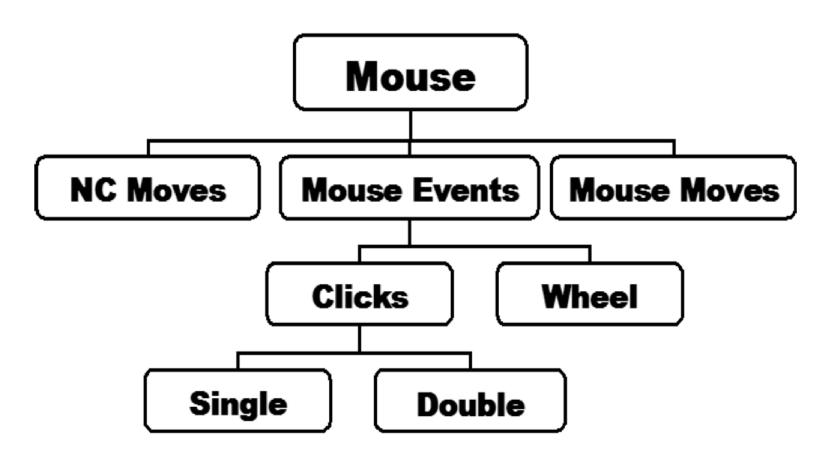
- Goal: detect and flag anomalies in behavior of current user
- Process
 - Collect clean data from each user
 - Build profile of normal behavior for each user
 - Use profile to compare behavior of current user with that of a valid user
 - Any significant behavioral difference flagged

Data sources

- Keystrokes
- Mouse movements
- GUI events
- Data point: Event ID (assigned by OS), X
 &Y screen coordinates, event time,

application

Mouse events


ID	Message Name
513	WM_LBUTTONDOWN
514	WM_LBUTTONUP
515	WM_LBUTTONDBLCLK
516	WM_RBUTTONDOWN
517	WM_RBUTTONUP
518	WM_RBUTTONDBLCLK
519	WM_MBUTTONDOWN
520	WM_MBUTTONUP
521	WM_MBUTTONDBLCLK
522	WM_MOUSEWHEEL

ID	Message Name
161	WM_NCLBUTTONDOWN
162	WM_NCLBUTTONUP
163	WM_NCLBUTTONDBLCLK
164	WM_NCRBUTTONDOWN
165	WM_NCRBUTTONUP
166	WM_NCRBUTTONDBLCLK
167	WM_NCMBUTTONDOWN
168	WM_NCMBUTTONUP
169	WM_NCMBUTTONDBLCLK
160	WM_NCMOUSEMOVE

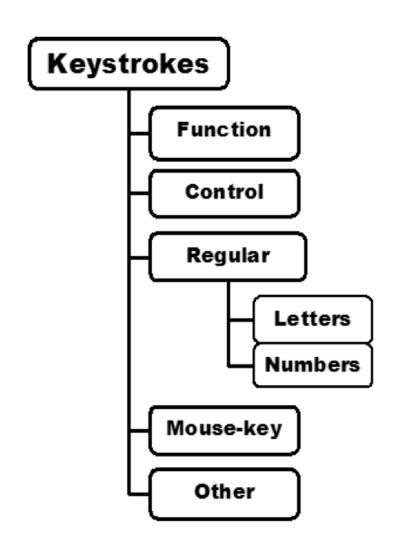
Mouse data collection

- Client area: area of application window below the menu and toolbars
- Rate of client area mouse movements
 - several hundred movements per second
 - Too large, did not collect all movements
 - Recorded every 100ms if & only if cursor position changed
- Single & double clicks
 - Most infrequent events
 - Higher granularity not helpful

Mouse events hierarchy

Mouse event features

- Over a window of W data points
 - # of events in each mouse category & subcategory
 - Other features extracted from two subsequent events or two events separated by K data points (events of same category or subcategory)
 - K a parameter for each user and type of event
 - Features: Mean, stdv, skewness (3rd moment) of
 - Distance
 - Speed = distance(P,Q)/time(P,Q)
 - Angle of orientation
 - X coordinate
 - Y coordinate
 - N-graph duration (N between 1-8): elapsed time between first & Nth data point
 - Total of 200 features


Mouse movements features

- NC moves
 - Similar to event features
 - Distance, speed, angle, etc. computed
 - between two subsequent NC moves
 - two NC moves separated by K data points
 - Total of 40 features
- Client area moves
 - Similar to NC mouse movement features
 - Total of 40 features

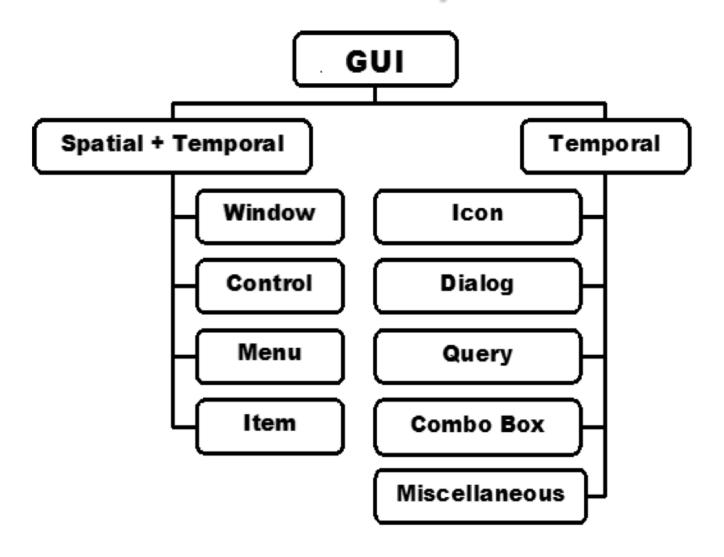
Keystroke data

- Two types in Windows OS
 - WM_KEYDOWN
 - WM_KEYUP
 - Event ID uniquely identifying the key

Keystrokes features hierarchy

Keystrokes features hierarchy

- Function keys
 - Example: F1-F12
- Control keys
 - Example: Control, Alt, Delete
- Regular keys
 - Alphabet letters, numbers
- Mouse keys
 - Example: Page Up/Down, Tab, arrow keys
- Other keys
 - Example: punctuation keys, Pause/Break, PrtSc/ SysRq


Keystroke features

- Over a window of W data points
 - # of events in each category & subcategory
 - # of occurrences of each letter & each numeral
 - 26 alphabet features, 10 numeric features
 - Mean, stdv, skewness
 - N-graph duration between consecutive keystrokes
 - N between I-8
 - Total of 236 features

GUI data

- Data induced by 138 GUI events
- Grouped into a hierarchy based on function

GUI events hierarchy

GUI events hierarchy

- Temporal and spatial
 - Window
 - Scroll bar, minimize, maximize, restore, move, etc.
 - Control
 - Application & process control, open/close, etc.
 - Menu
 - Open, select, navigate, close, etc.
 - Item
 - List, button, etc.
- Temporal
 - Icon
 - Dialog
 - Query
 - Combo box
 - Open/close, select, move, resize, etc.
 - Miscellaneous
 - Power up/down, language change, background color change, etc.

GUI spatial features

- Over a window of W data points
 - # of events in each spatial category
 - Subsequent spatial events or spatial events separated by K data points
 - Mean, stdv, skewness
 - Distance
 - Speed
 - Angle of orientation
 - X coordinate
 - Y coordinate
 - N-graph duration (N between 1-8)
 - Total of 200 features

GUI temporal features

- Over a window of W data points
 - # of events in each temporal category
 - Subsequent spatial events or spatial events separated by K data points
 - Mean, stdv, skewness
 - N-graph duration (N between I-8)
 - Total of 240 features

Summary of feature space

- Window size W: for each user
 - Tested: 100, 300, 500, 1000
 - Chosen: 500
- Frequency K: for each user & subcategory
 - Tested: 1, 5, 10, 15, 20
 - Chosen: 8 for frequent events, I otherwise
 - Frequent: induced > 10 times per second
- Candidate feature space: 956 dimensions
- Hierarchical groupings improve performance
 - Removing features from lower levels of mouse hierarchy lowered classifier performance

Classification

- C4.5 decision tree algorithm
 - Feature subset selection, and classification

Data collection

- 61 volunteers
 - Task I:
 - Reading assignment
 - 20 questions about assignment
 - Task 2:
 - Set of web pages
 - Another set of questions
 - Average 4 hours of data collection
 - Average 92K data points, 4.5MB per user

Implementation schemes

- Two schemes
 - I. Classify one feature vector instance at a time
 - If the instance matched normal profile, serve request
 - Else, alert sys admin, ask re-auth, or close session
 - May cause high false alarm rates
 - 2. Smoothing
 - Look at a window of n (n between I-II) feature vector instances
 - If m (m between I,n) of those matched profile, serve request
- Overlapping windows
 - W-s old points, s new points
 - \circ s = 50, equivalent to 5 second intervals
 - Reduces time-to-alarm
- False bell rate
- Evaluation
 - I0-fold cross validation

Pair-wise discrimination

Scheme	FP Rate	FB Rate	FN Rate	Error Rate	Bell Count
Basic	5.12±5.05%	1.32±0.93%	6.76±2.03%	5.48±2.63%	2.30±1.95
Smoothing	4.52±4.58%	1.13±0.65%	5.45±2.05%	$4.64{\pm}2.43\%$	1.86±1.18

Anomaly detection

Scheme	FP Rate	FB Rate	FN Rate	Error Rate	Bell Count
Basic	45.70±17.30%	6.28±1.70%	0.54±0.27%	1.21±0.60%	10.85±5.76
Smoothing	23.37±15.97%	1.76±0.94%	1.50±1.40%	1.77±1.01%	2.66±1.82

References

 An examination of user behavior for reauthentication (M. Pusara's PhD thesis, 2007)