

Mouse dynamics vs physiological biometrics

- Benefit: Transparent collection
 - No hit on usability
- Challenge: Intrinsic behavioral variability
 - Intrinsic human factors
 - Biological or emotional status of the user
 - External environmental variables
 - Software environment, task, interaction mode

Mouse events

- System messages sent to receiving applications
 - Inform current cursor position & mouse button status
- Types
 - Mouse Down
 - Mouse Up
 - Mouse Wheel
 - Mouse Move

Mouse actions

- Single click
 - Mouse down followed by mouse up
- Double click
 - Mouse down, up, down, up
- Common movement
 - General mouse movement with no clicks
- Point and click movement
 - Mouse movement followed by single/double click
- Drag and drop movement
 - Mouse down, movement, mouse up
- Silence
 - No mouse operation

Mouse operation

• Tuple:

<action type, app type, screen-area, window-position, timestamp>

Attribute	Description	Encoding
Mouse action type	As in previous slide	0-9
Application type	Internet surfing, word processing, online chatting, gaming	0-3
Screen area	Area of screen, evenly divided to 9 regions	0-8
Window position	Position of window, including client area, close area, maximum area, minimum area, menu, toolbar, title bar	0-6
Timestamp	Time of action	

Mouse behavior pattern

- Behavior pattern: recurring & fixed segments
 - Micro-habitual patterns
 - Subconscious/habitual factors urging GUI interactions
 - Task-intended patterns
 - Operating habits under certain applications (e.g., using certain function of an application)
 - Example: creating a new document in a word processing app

Hypothesis

- Measurements from behavior patterns more stable than measurements from holistic behavior
 - Better characterize discriminating user features

Mouse behavior pattern mining

- W = $\{w_1, w_2, ..., w_n\}$ a set of all mouse ops
- Operation-set: a set of mouse operations
 - Example: {(1,3,4,0), (2,1,4,0), (3,1,4,0)}
- Sequence: ordered list of operation sets by user ID and timestamp
 - $s = \{s_1, s_2, ..., s_k\}$, each s_i
 - An operation set (subset of W)
 - · Called an element of sequence s
 - $s_i = \langle x_1, x_2, ..., x_m \rangle$, each x_t a mouse operation
- Length of sequence: # mouse operation instances
 - L-sequence: A sequence of length L
- Example:
 - $s = \{ <(1,3,4,0) >, <(1,3,4,0), (2,1,4,0), (3,1,4,0) >, <(2,1,2,1) > \}$
 - length(s) = 5

Mouse operation sequence database

User ID	Sequence ID	Sequence
1	1	$\{ < (1,3,4,0) >, < (1,3,4,0), (2,1,4,0), (3,1,4,0) >,, < (2,1,2,1) > \}$
1	2	$\{(2,1,4,0), (1,1,5,1),, (3,1,4,0)\}$
1	3	$\{(2,3,4,0), (1,1,3,0),, (1,2,2,5)\}$
•••		•••

Mouse patterns

- slD, s> contains sequence q if q a
 - Example: {<(1,3,4,0)>} is a subsequence of {<(1,3,4,0), (2,1,4,0), (3,1,4,0)>}
- Support_{DB}(q) = # tuples in DB that contain q
- Sequential pattern: Support_{DB}(q) ≥ min_supp
 - min_supp a given threshold
- L-pattern: sequential pattern of length L

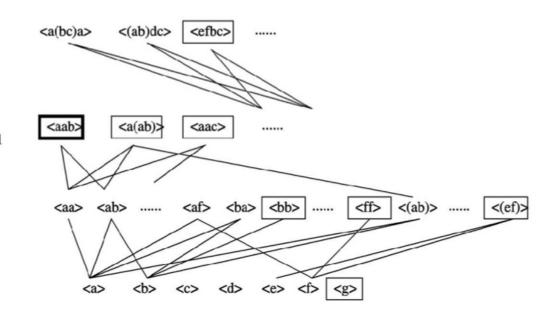
Problem: Mouse behavior pattern mining

- Input
 - Mouse operation sequence DB
 - Threshold min_supp
- Output
 - Set of all frequent mouse behavior patterns in DB

Pattern sequences: Example

- Set of items= $\{a, b, c, d, e, f, g\}$, $min_supp=2$
- $s = \langle a \text{ (abc) (ac) d (cf)} \rangle$
 - \circ Length(s) = 9
 - <a (bc) d f> a subsequence of s
 - Sequences I, 3 contain q= <(ab) c>
 - Support(q) = 2

User ID	Sequence ID	Sequence
1	I	<a (abc)="" (ac)="" (cf)="" d="">
ſ	2	<(ad) c (bc) (ae)>
1	3	<(ef) (ab) (df) c b>
I	4	<e (af)="" b="" c="" g=""></e>


Algorithm GSP: Generalized Sequential Patterns (1996)

4th scan, 6 candidates 4 length-4 sequential patterns

3rd scan, 64 candidates 21 length-3 sequential patterns 13 candidates not appear in database at all

2nd scan, 51 candidates 22 length-2 sequential patterns 9 candidates not appear in database at all

1st scan, 7 candidates 6 length-1 sequential patterns

Candidate cannot pass support threshold

Candidate does not appear in database at all

Algorithm GSP: Drawbacks

- Too many candidates generated
- Candidates may not appear in database at all

PrefixSpan: Prefix-Projected Sequential Patterns Mining (2004)

- Project the database into a set of smaller databases
 - Based on set of patterns mined so far
- Mine locally frequent patterns in each projected database

PrefixSpan: Example

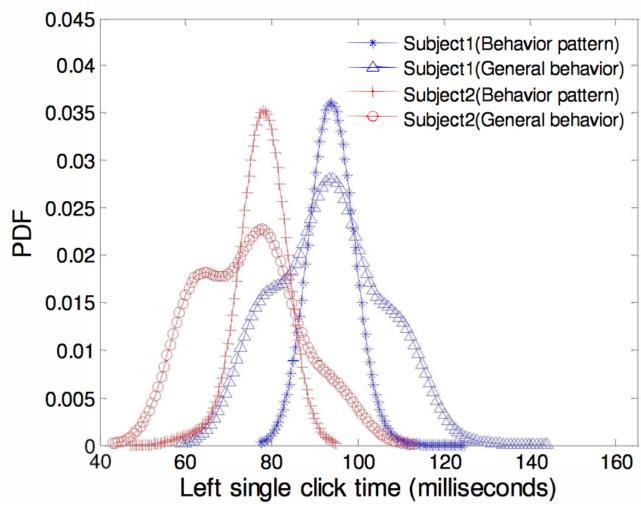
prefix	projected (suffix) database	sequential patterns		
$\langle a \rangle$	$\langle (abc)(ac)d(cf)\rangle, \langle (_d)c(bc)(ae)\rangle,$	$\langle a \rangle$, $\langle aa \rangle$, $\langle ab \rangle$, $\langle a(bc) \rangle$, $\langle a(bc)a \rangle$, $\langle aba \rangle$,		
	$\langle (_b)(df)cb\rangle, \langle (_f)cbc\rangle$	$\langle abc \rangle$, $\langle (ab) \rangle$, $\langle (ab)c \rangle$, $\langle (ab)d \rangle$, $\langle (ab)f \rangle$,		
		$\langle (ab)dc \rangle$, $\langle ac \rangle$, $\langle aca \rangle$, $\langle acb \rangle$, $\langle acc \rangle$, $\langle ad \rangle$,		
		$\langle adc \rangle, \langle af \rangle$		
$\langle b \rangle$	$\langle (_c)(ac)d(cf)\rangle, \qquad \langle (_c)(ae)\rangle,$	$\langle b \rangle$, $\langle ba \rangle$, $\langle bc \rangle$, $\langle (bc) \rangle$, $\langle (bc)a \rangle$, $\langle bd \rangle$, $\langle bdc \rangle$,		
	$\langle (df)cb\rangle, \langle c\rangle$	$\langle bf \rangle$		
$\langle c \rangle$	$\langle (ac)d(cf)\rangle, \langle (bc)(ae)\rangle, \langle b\rangle, \langle bc\rangle$	$\langle c \rangle$, $\langle ca \rangle$, $\langle cb \rangle$, $\langle cc \rangle$		
$\langle d \rangle$	$\langle (cf) \rangle$, $\langle c(bc)(ae) \rangle$, $\langle (-f)cb \rangle$	$\langle d \rangle$, $\langle db \rangle$, $\langle dc \rangle$, $\langle dcb \rangle$		
$\langle e \rangle$	$\langle (-f)(ab)(df)cb\rangle, \langle (af)cbc\rangle$	$\langle e \rangle$, $\langle ea \rangle$, $\langle eab \rangle$, $\langle eac \rangle$, $\langle eacb \rangle$, $\langle eb \rangle$, $\langle ebc \rangle$,		
		$\langle ec \rangle$, $\langle ecb \rangle$, $\langle ef \rangle$, $\langle efb \rangle$, $\langle efc \rangle$, $\langle efcb \rangle$.		
$\langle f \rangle$	$\langle (ab)(df)cb\rangle, \langle cbc\rangle$	$\langle f \rangle$, $\langle fb \rangle$, $\langle fbc \rangle$, $\langle fc \rangle$, $\langle fcb \rangle$		

Reference-behavior pattern generation and matching

- Pattern generation
 - For each user
 - Mine behavior patterns from each session
 - Collect all patterns as reference behavior pattern
- Pattern matching
 - Given a new operation sequence match against mined patterns

Minimum support

Minimum	Length-1	Lenth-2	Other	All
support	pattern	Pattern	Patterns	Patterns
2%	23.64%	32.15%	25.22%	81.01%
5%	16.08%	22.06%	24.90%	63.04%
8%	12.29%	17.65%	17.34%	47.19%
20%	0.95%	1.26%	0%	2.21%


Feature construction from patterns

- Click elapsed time
 - Time spent by user to perform a click action
 - Single click: mean, stdv of overall time
 - Double click: mean, stdv of overall & 3 interval times
- Movement speed
 - Average movement speed for different types of mouse movement
 - 24 types: 8 directions, 3 distance ranges
- Movement acceleration
 - Average acceleration for different types of mouse movement
 - Similar to movement speed
- Relative position of extreme speed
 - Example: 0.5 for middle position of movement speed curve

Features

- 20 click-related features
- 24 movement-related features
 - Only from common & point-and-click movements
- 24 acceleration-related features
- 24 extreme-speed-related features
- Total: 92 features

Behavior pattern features: Stability and discrimination power

Detectors

- Nearest neighbor detector
 - Anomaly score: Mahalanobis distance between test & training feature vectors
- Neural network detector
 - Single hidden layer, I output node
 - Train with every input feature vector & output=1.0
 - Test-vector fed into network, output ~ I.0 or
 -I.0
- One-class SVM

Data collection

- 28 participants
 - ~90,000 mouse actions/user
 - 30 sessions
 - Each 30 minute
 - Internet surfing, word processing, online chatting, programming, online gaming
 - Between 30-60 days per participant
- Data record
 - Event type (e.g., mouse move/click), position, timestamp, application information

Results

	Behavior Pattern		Holistic Behavior	
Detector	FAR	FRR	FAR	FRR
Nearest Neighbor	2.73%	3.67%	8.87%	9.63%
	(0.0124)	(0.0089)	(0.0936)	(0.0923)
Neural Network	0.89%	2.15%	6.36%	6.95%
	(0.0057)	(0.0065)	(0.0534)	(0.0653)
One-Class SVM	0.37%	1.12%	5.57%	6.73%
	(0.0062)	(0.0067)	(0.0502)	(0.0493)

Results

Operation length	FAR	FRR	Authentication time
100	44.65%	34.78%	about 1 minute
500	7.78%	9.45%	about 5 minutes
1000	2.75%	3.39%	about 10 minutes
2000	1.22%	1.69%	about 20 minutes
3000	0.37%	1.12%	about 30 minutes

Administrativia

• HWI is out!

Reference

 Continuous Authentication for Mouse Dynamics: A Pattern-Growth Approach (C. Shen et al., 2012)