CS259D: Data Mining for CyberSecurity
Administrativia

- HW due tonight
- Time for guest lecture on Friday
- Projects
Web security

- Web servers accessible by outside world
- Web apps developed with security as an afterthought
- Example: Target breach
Popularity of web-related attacks

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Web-related</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>809</td>
<td>109</td>
<td>13.5%</td>
</tr>
<tr>
<td>2000</td>
<td>800</td>
<td>186</td>
<td>23.3%</td>
</tr>
<tr>
<td>2001</td>
<td>588</td>
<td>120</td>
<td>20.4%</td>
</tr>
<tr>
<td>2002</td>
<td>376</td>
<td>100</td>
<td>26.6%</td>
</tr>
<tr>
<td>Total</td>
<td>2573</td>
<td>515</td>
<td>20.0%</td>
</tr>
</tbody>
</table>
Web-related attack detection

- **Misuse-based**
 - Example: Snort
 - 1037 out of 2464 signatures
 - Hard to keep up-to-date
 - Time-intensive, error-prone, requires significant security expertise
 - Challenge with apps developed in-house

- **Anomaly-based**
 - Applicable to custom-developed web apps
 - Support detection of new attacks
Anomaly detection method

- **Input:** web server log files
 - Common Log Format (CLF)
- **Analysis:** build profiles for apps & active docs
 - Lower error rates than generic profiles
 - Use multiple models
 - Reduce vulnerability to mimicry attacks
- **Output:** anomaly score for each web request
Data: Model

- An ordered set $U = \{u_1, u_2, \ldots, u_m\}$ of URIs
 - Extract from successful GET requests
 - $200 \leq \text{return-code} < 300$
- Components of u_i
 - Path to desired resource: path_i
 - Optional path information: pinfo_i
 - Optional query string: q
 - Following a ? Character
 - Passing parameters to referenced resource
 - Attributes and values: $q = (a_1, v_1), (a_2, v_2), \ldots, (a_n, v_n)$
 - $S_q = \{a_1, a_2, \ldots, a_n\}$
- URIs without query strings not included in U
- U_r: subset of U with resource path r
 - Partition U
 - Anomaly detection run independently on each U_r
Data: Example record

- Path: /scripts/access.pl
- q: user=johndoe&cred=admin
- a₁ = user, v₁ = johndoe
- a₂ = cred, v₂ = admin
- S₉ = {user, cred}
Anomaly score

• Each model
 ◦ returns probability p of normalcy
 ◦ Has an associated weight w
 • default value = 1

• Anomaly score =

$$\sum_m w_m \times (1 - p_m)$$
Attribute length

- Fixed size tokens
 - Session identifiers
- Short input strings
 - Fields in an HTML form
- Example:
 - Buffer overflow: shell code & padding
 - Several hundred bytes
 - XSS
Attribute length

- **Learning:** Estimate mean μ and variance σ^2 of lengths in training data

- **Chebyshev inequality:**
 $$p(|x - \mu| > t) < \frac{\sigma^2}{t^2}$$

- **Detection:**
 - strings with length larger than mean
 - If length < mean, $p = 1$
 - Padding not effective

 $$p = p(|x - \mu| > |l - \mu|) < \frac{\sigma^2}{|l - \mu|^2}$$
Observations about attributes:
- Regular structure
- Mostly human readable
- Almost always contain only printable characters

Character distribution: sorted relative frequencies
- Example: passwd => 0.33, 0.17, 0.17, 0.17, 0.17, 0,…, 0
- Fall smoothly for human-readable tokens
- Fall quickly for malicious input

Example:
- Buffer overflow: needs to send binary data & padding
- Directory traversal exploit: many dots in attribute value
Attribute character distribution

- **Learning:**
 - character distribution of each observed attribute is stored
 - Average of all character distributions computed

- **Detection:**
 - Variant of the Pearson χ^2-test
 - Bins: $\{[0], [1, 3], [4, 6], [7, 11], [12, 15], [16, 255]\}$
 - For each query attribute:
 - Compute character distribution
 - Observed values O_i: Aggregate over bins
 - Expected values E_i: Learned character distribution attribute length
 - Compute: $\chi^2 = \sum_{i=0}^{5} \frac{(O_i - E_i)^2}{E_i}$
 - Read corresponding probability
Structural inference

- Simple manifestations of an exploit
 - Unusually long parameters
 - Parameters containing repetitions of non-printable characters
- Evasion
 - Replace non-printable characters by groups of printable characters
- Parameter structure: regular grammar describing all of its legitimate values
- Detect exploits requiring different parameter structure
 - Examples: Buffer overflow, directory traversal, XSS
Structural inference

- Learning: Markov model/Non-deterministic finite automaton (NFA)
 - \(P_S(o) \): probability of emitting symbol \(o \) at state \(S \)
 - \(P(t) \): probability of transition \(t \)
 - Output: paths from Start state to Terminal state

- For a word \(w = (o_1, o_2, \ldots, o_k) \)

\[
p(w) = p(o_1, o_2, \ldots, o_k) = \sum_{p: \text{paths } S_i \in p} \prod_{i} p_{S_i}(o_i) \times p(t_i)
\]
Structural inference

- \(w = ab \)
- \(P(w) = 0.3 \times 0.5 \times 0.2 \times 0.5 \times 0.4 + 0.7 \times 1.0 \times 1.0 \times 1.0 \times 1.0 = 0.706 \)
Structural inference

- Goal: Find a model with highest likelihood given training examples
- Bayesian model induction:
 \[P(\text{model} | \text{training data}) = p(\text{training data} | \text{model}) \times \frac{p(\text{model})}{p(\text{training data})} \]
- \(P(\text{training data}) \) a scaling factor; ignored
- \(P(\text{training data} | \text{model}) \) computed as last slide
- \(P(\text{model}) \): preference towards smaller models
 - Total number of states: \(N \)
 - Total number of transitions at each state \(S \): \(T(S) \)
 - Total number of emissions at each state \(S \): \(E(S) \)

\[
P(\text{Model}) \propto \frac{1}{\prod_s (N + 1)^{T(S)} \times (N + 1)^{E(S)}}
\]
Structural inference: Learning

- Start with a model exactly reflecting input data
- Gradually merge states
- Until posterior probability does not increase
- Cost: $O((n^*L)^3)$ with n training input strings, and L maximum length of each string
 - Up to n^*L states
 - $(n^*L)(n^*L-1)/2$ comparisons for each merging
 - Up to n^*L-1 merges

- Optimizations
 - Viterbi path approximations
 - Path prefix compression
 - Cost: $O(n^*L^2)$
First option: Compute probability of query attribute
 ◦ Issue: probabilities of all input words sum up to 1; all words have small probabilities

Output:
 ◦ $p = 1$ if word is a valid output of Markov model
 ◦ $p = 0$ otherwise
Token finder

- Goal: determine whether values of an attribute are drawn from an enumerated set of tokens
- Example: flags, indices
- Learning:
 - Growth in # of different argument instances compared to total # of argument instances
 - Compute correlation between these numbers:
 - $F(x) = x$
 - $G(x) = G(x-1) + 1$ if x-th value is new
 - $G(x) = G(x-1) - 1$ if x-th value was seen before
 - $\text{Corr} = \frac{\text{Covar}(F, G)}{\sqrt{\text{Var}(F) \times \text{Var}(G)}}$
 - If $\text{Corr} < 0$, then enumeration
 - If enumeration, then store all values for use in detection phase
Token finder: Detection

- If enumeration: value expected to be among stored values
 - Output $p = 1$ or $p = 0$ correspondingly
- If random: $p = 1$
Attribute presence/absence

- Observation: URIs typically produced not directly by user, but by scripts, forms, client-side programs
 - Result: regularity in number, name, order of parameters
 - Hand-crafted attacks typically break this regularity
 - Incomplete or malformed requests to probe/exploit web app
 - Missing argument
 - Mutually exclusive arguments appearing together
Attribute presence/absence

- Learning: Record set S_q for each query q during training in a hash table
- Detection: Lookup the attribute set in hash table
 - Return $p = 1$ or $p = 0$ correspondingly
Attribute order

- Legitimate invocations often contain same attributes in same orders
 - Sequential program logic preserves order even when some attributes left out

- Learning:
 - Attribute a_s precedes a_t if as and at appear together in parameter list of at least one query and a_s comes before a_t when they appear together
Attribute order

- Directed graph
- # vertices = # attributes
- For each training query, add edges between nodes of ordered attribute pairs
- Find all strongly connected components (SCC) of the graph
- Remove edges between nodes in same SCC
- For each node, find all reachable nodes
- Add corresponding pairs to set of precedence orders
Attribute order

• Find all order violations
 ◦ Return $p = 0$ or $p = 1$ correspondingly
Access frequency

- Frequency patterns of different server-side web applications
- Two types of frequencies:
 - Frequency of application being accessed from a certain client (IP address)
 - Total frequency of all accesses
- Attacks
 - Probing
 - Guess parameter values
 - Evasion: slow down
Access frequency

- Learning:
 - divide training time to intervals of fixed time (e.g., 10 sec)
 - Count accesses in each interval
 - Find total and client-specific distributions

- Detection:
 - Chebyshev probability for total, and for client
 - Return average of the two probabilities
Inter-request time delay

- Regular delay between each successive request
 - Surveillance
 - Scripted probes
- Learning: Find distribution of normal delays
 - Similar to character distribution model
- Detection: Pearson χ^2-test
Invocation order

- Order of invocation of web-based applications for each client
 - Infer session structure regularity
 - Similar to structural inference model
- Learning: group queries based on source IP
 - Session: Queries within an interval of time
 - Build NFA for sessions
- Detection: $p = 1$ or $p = 0$ depending on session being an output of NFA
Evaluation

<table>
<thead>
<tr>
<th>Data set</th>
<th>Number of alerts</th>
<th>Number of queries</th>
<th>False positive rate</th>
<th>Alarms per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google</td>
<td>206</td>
<td>490,704</td>
<td>0.000419</td>
<td>4944</td>
</tr>
<tr>
<td>UCSB</td>
<td>3</td>
<td>4617</td>
<td>0.000650</td>
<td>0.01</td>
</tr>
<tr>
<td>TU Vienna</td>
<td>137</td>
<td>713,500</td>
<td>0.000192</td>
<td>1.71</td>
</tr>
</tbody>
</table>
Reference

• “A multi-model approach to the detection of web-based attacks”, 2005