


 HW due tonight 
 Time for guest lecture on Friday 
 Projects 



 Web servers accessible by outside world 
 Web apps developed with security as an 

afterthought 
 Example: Target breach 



Year Total Web-related Percentage 

1999 809 109 13.5% 

2000 800 186 23.3% 

2001 588 120 20.4% 

2002 376 100 26.6% 

Total 2573 515 20.0% 



 Misuse-based 
◦  Example: Snort 
  1037 out of 2464 signatures 
◦ Hard to keep up-to-date 
  Time-intensive, error-prone, requires significant 

security expertise 
◦ Challenge with apps developed in-house 

 Anomaly-based 
◦ Applicable to custom-developed web apps 
◦  Support detection of new attacks 



  Input: web server log files 
◦ Common Log Format (CLF) 

 Analysis: build profiles for apps & active 
docs 
◦  Lower error rates than generic profiles 
◦ Use multiple models 
  Reduce vulnerability to mimicry attacks 

 Output: anomaly score for each web 
request 



  An ordered set U = {u1, u2, …, um} of URIs 
◦  Extract from successful GET requests  

  200 ≤ return-code < 300 

  Components of ui 
◦  Path to desired resource: pathi 
◦  Optional path information: pinfoi 
◦  Optional query string: q 

  Following a ? Character 
  Passing parameters to referenced resource 
  Attributes and values: q = (a1, v1), (a2, v2), …, (an, vn) 
  Sq = {a1, a2, …, an} 

  URIs without query strings not included in U 
  Ur: subset of U with resource path r 
◦  Partition U 
◦  Anomaly detection run independently on each Ur 



 Entry: 169.229.60.105  –  johndoe [6/Nov/
2014:23:59:59  -0800] “GET /scripts/
access.pl?user=johndoe&cred=admin”  
200  2122 

 Path: /scripts/access.pl 
 q: user=johndoe&cred=admin 
  a1 = user, v1 = johndoe 
  a2 = cred, v2 = admin 
  Sq = {user, cred} 



 Each model 
◦  returns probability p of normalcy 
◦ Has an associated weight w 
  default value = 1 

 Anomaly score = 

€ 

wm × (1− pm )
m
∑



  Fixed size tokens 
◦  Session identifiers 

  Short input strings 
◦  Fields in an HTML form 

 Example:  
◦  Buffer overflow: shell code & padding 
  Several hundred bytes 

◦ XSS 



 Learning: Estimate mean μ and variance 
σ2 of lengths in training data 

 Chebyshev ineqaulity: 

 Detection:  
◦  strings with length larger than mean 
  If length < mean, p = 1 
  Padding not effective € 

p(| x − µ |> t) <
σ 2

t 2

€ 

p = p(| x − µ |>| l − µ |) <
σ 2

| l − µ |2



  Observations about attributes: 
◦  Regular structure 
◦  Mostly human readable 
◦  Almost always contain only printable characters 

  Character distribution: sorted relative frequencies  
◦  Example: passwd => 0.33, 0.17, 0.17, 0.17, 0.17, 0,…, 0 
◦  Fall smoothly for human-readable tokens 
◦  Fall quickly for malicious input 

  Example: 
◦  Buffer overflow: needs to send binary data & padding 
◦  Directory traversal exploit: many dots in attribute 

value 



  Learning:  
◦  character distribution of each observed attribute is stored 
◦  Average of all character distributions computed 

  Detection: 
◦  Variant of the Pearson      -test 
◦  Bins: {[0], [1, 3], [4, 6], [7, 11], [12, 15], [16, 255]} 
◦  For each query attribute: 

  Compute character distribution 
  Observed values Oi: Aggregate over bins 
  Expected values Ei: Learned character distribution attribute 

length 
  Compute: 

  Read corresponding probability 

€ 

χ2

€ 

χ2 =
(Oi − Ei)

2

Ei
i=0
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∑



  Simple manifestations of an exploit 
◦  Unusually long parameters 
◦  Parameters containing repetitions of non-printable 

characters 
  Evasion 
◦  Replace non-printable characters by groups of 

printable characters 
  Parameter structure: regular grammar describing 

all of its legitimate values 
  Detect exploits requiring different parameter 

structure 
◦  Examples: Buffer overflow, directory traversal, XSS 



 Learning: Markov model/Non-
deterministic finite automaton (NFA) 
◦  PS(o): probability of emitting symbol o at state 

S 
◦  P(t): probability of transition t 
◦ Output: paths from Start state to Terminal 

state 

  For a word w = (o1, o2, …, ok) 

€ 

p(w) = p(o1,o2,...,ok ) = pSi (oi) × p(ti)
Si ∈p
∏

p:paths
∑



  w = ab 
  P(w) = 

0.3*0.5*0.2*0.5*0.4 + 
0.7*1.0*1.0*1.0*1.0 = 
0.706 



  Goal: Find a model with highest likelihood given 
training examples 

  Bayesian model induction: 
 P(model | training data) = p(training data| model)* p(model)/p(training data) 

  P(training data) a scaling factor; ignored 
  P(training data| model) computed as last slide 
  P(model): preference towards smaller models 
◦  Total number of states: N 
◦  Total number of transitions at each state S: T(S) 
◦  Total number of emissions at each state S: E(S) 

€ 

P(Model)∝ 1
(N +1)T (S ) × (N +1)E(S )

S
∏



  Start with a model exactly reflecting input data 
  Gradually merge states 
  Until posterior probability does not increase 
  Cost: O((n*L)3) with n training input strings, and 

L maximum length of each string 
◦  Up to n*L states 
◦  (n*L)(n*L-1)/2 comparisons for each merging 
◦  Up to n*L-1 merges 

  Optimizations 
◦  Viterbi path approximations 
◦  Path prefix compression 
◦  Cost: O(n*L2) 



  First option: Compute probability of 
query attribute 
◦  Issue: probabilities of all input words sum up 

to 1; all words have small probabilities 

 Output:  
◦  p = 1 if word is a valid output of Markov 

model 
◦  p = 0 otherwise 



  Goal: determine whether values of an attribute are 
drawn from an enumerated set of tokens 

  Example: flags, indices 
  Learning: 
◦  Growth in # of different argument instances compared to 

total # of argument instances 
◦  Compute correlation between these numbers: 
◦  F(x) = x 
◦  G(x) = G(x-1) + 1 if x-th value is new 
◦  G(x) = G(x-1) - 1  if x-th value was seen before 
◦  Corr = Covar(F, G)/Sqrt(Var(F) * Var(G)) 
◦  If Corr < 0, then enumeration 
◦  If enumeration, then store all values for use in detection 

phase 



  If enumeration: value expected to be 
among stored values 
◦ Output p = 1 or p = 0 correspondingly 

  If random: p = 1 



 Observation: URIs typically produced not 
directly by user, but by scripts, forms, 
client-side programs 
◦ Result: regularity in number, name, order of 

parameters 
◦ Hand-crafted attacks typically break this 

regularity 
  Incomplete or malformed requests to probe/exploit 

web app 
 Missing argument 
 Mutually exclusive arguments appearing together 



 Learning: Record set Sq for each query q 
during training in a hash table 

 Detection: Lookup the attribute set in 
hash table 
◦ Return p = 1 or p = 0 correspondingly 



 Legitimate invocations often contain same 
attributes in same orders 
◦  Sequential program logic preserves order 

even when some attributes left out 

 Learning: 
◦ Attribute as precedes at if as and at appear 

together in parameter list of at least one 
query and as comes before at when they 
appear together 



 Directed graph 
  # vertices = # attributes 
  For each training query, add edges between 

nodes of ordered attribute pairs 
  Find all strongly connected components 

(SCC) of the graph 
  Remove edges between nodes in same SCC 
  For each node, find all reachable nodes 
 Add corresponding pairs to set of 

precedence orders 



  Find all order violations 
◦ Return p = 0 or p = 1 correspondingly 



  Frequency patterns of different server-side 
web applications 

  Two types of frequencies: 
◦  Frequency of application being accessed from a 

certain client (IP address) 
◦  Total frequency of all accesses 

 Attacks 
◦  Probing 
◦  Guess parameter values 
◦  Evasion: slow down 



 Learning:  
◦  divide training time to intervals of fixed time 

(e.g., 10 sec) 
◦ Count accesses in each interval 
◦  Find total and client-specific distributions 

 Detection: 
◦ Chebyshev probability for total, and for client 
◦ Return average of the two probabilities 



 Regular delay between each successive 
request 
◦  Surveillance 
◦  Scripted probes 

 Learning: Find distribution of normal 
delays 
◦  Similar to character distribution model 

 Detection: Pearson     -test 

€ 

χ2



 Order of invocation of web-based 
applications for each client 
◦  Infer session structure regularity 
◦  Similar to structural inference model 

 Learning: group queries based on source 
IP 
◦  Session: Queries within an interval of time 
◦  Build NFA for sessions 

 Detection: p = 1 or p = 0 depending on 
session being an output of NFA 





  “A multi-model approach to the detection 
of web-based attacks”, 2005 


