CS259D: Data Mining for CyberSecurity

Administrativia

- HW due tonight
- Time for guest lecture on Friday
- Projects

Web security

- Web servers accessible by outside world
- Web apps developed with security as an afterthought
- Example: Target breach

Popularity of web-related attacks

Year	Total	Web-related	Percentage
1999	809	109	13.5%
2000	800	186	23.3%
2001	588	120	20.4%
2002	376	100	26.6%
Total	2573	515	20.0%

Web-related attack detection

- Misuse-based
 - Example: Snort
 - 1037 out of 2464 signatures
 - Hard to keep up-to-date
 - Time-intensive, error-prone, requires significant security expertise
 - Challenge with apps developed in-house
- Anomaly-based
 - Applicable to custom-developed web apps
 - Support detection of new attacks

Anomaly detection method

- Input: web server log files
 - Common Log Format (CLF)
- Analysis: build profiles for apps & active docs
 - Lower error rates than generic profiles
 - Use multiple models
 - Reduce vulnerability to mimicry attacks
- Output: anomaly score for each web request

Data: Model

- An ordered set $U = \{u_1, u_2, ..., u_m\}$ of URIs
 - Extract from successful GET requests
 - 200 ≤ return-code < 300
- Components of u_i
 - Path to desired resource: path;
 - Optional path information: pinfo;
 - Optional query string: q
 - Following a ? Character
 - Passing parameters to referenced resource
 - Attributes and values: $q = (a_1, v_1), (a_2, v_2), \dots, (a_n, v_n)$
 - $S_q = \{a_1, a_2, ..., a_n\}$
- URIs without query strings not included in U
- U_r: subset of U with resource path r
 - Partition U
 - Anomaly detection run independently on each U_r

Data: Example record

- Entry: 169.229.60.105 johndoe [6/Nov/ 2014:23:59:59 -0800] "GET /scripts/ access.pl?user=johndoe&cred=admin" 200 2122
- Path: /scripts/access.pl
- q: user=johndoe&cred=admin
- a_1 = user, v_1 = johndoe
- a_2 = cred, v_2 = admin
- $S_q = \{user, cred\}$

Anomaly score

- Each model
 - returns probability p of normalcy
 - Has an associated weight w
 - default value = I
- Anomaly score =

$$\sum_{m} w_{m} \times (1 - p_{m})$$

Attribute length

- Fixed size tokens
 - Session identifiers
- Short input strings
 - Fields in an HTML form
- Example:
 - Buffer overflow: shell code & padding
 - Several hundred bytes
 - XSS

Attribute length

- Learning: Estimate mean μ and variance σ^2 of lengths in training data
- Chebyshev ineqaulity:

$$p(|x - \mu| > t) < \frac{\sigma^2}{t^2}$$

- Detection:
 - strings with length larger than mean
 - If length < mean, p = I
 - Padding not effective

$$p = p(|x - \mu| > |l - \mu|) < \frac{\sigma^2}{|l - \mu|^2}$$

Attribute character distribution

- Observations about attributes:
 - Regular structure
 - Mostly human readable
 - Almost always contain only printable characters
- Character distribution: sorted relative frequencies
 - Example: passwd => 0.33, 0.17, 0.17, 0.17, 0.17, 0,..., 0
 - Fall smoothly for human-readable tokens
 - Fall quickly for malicious input
- Example:
 - Buffer overflow: needs to send binary data & padding
 - Directory traversal exploit: many dots in attribute value

Attribute character distribution

- Learning:
 - character distribution of each observed attribute is stored
 - Average of all character distributions computed
- Detection:
 - Variant of the Pearson χ^2 -test
 - Bins: {[0], [1, 3], [4, 6], [7, 11], [12, 15], [16, 255]}
 - For each query attribute:
 - Compute character distribution
 - Observed values O_i:Aggregate over bins
 - Expected values $\mathbf{E_i}$: Learned character distribution attribute length
 - Compute: $\chi^2 = \sum_{i=0}^{5} \frac{(O_i E_i)^2}{E_i}$
 - Read corresponding probability

- Simple manifestations of an exploit
 - Unusually long parameters
 - Parameters containing repetitions of non-printable characters
- Evasion
 - Replace non-printable characters by groups of printable characters
- Parameter structure: regular grammar describing all of its legitimate values
- Detect exploits requiring different parameter structure
 - Examples: Buffer overflow, directory traversal, XSS

- Learning: Markov model/Nondeterministic finite automaton (NFA)
 - \circ $P_S(o)$: probability of emitting symbol o at state S
 - P(t): probability of transition t
 - Output: paths from Start state to Terminal state
- For a word $w = (o_1, o_2, ..., o_k)$

$$p(w) = p(o_1, o_2, ..., o_k) = \sum_{p:paths} \prod_{S_i \in p} p_{S_i}(o_i) \times p(t_i)$$

- \bullet w = ab
- P(w) = 0.3*0.5*0.2*0.5*0.4 + 0.7*1.0*1.0*1.0*1.0 = 0.706

- Goal: Find a model with highest likelihood given training examples
- Bayesian model induction:
 P(model | training data) = p(training data| model)* p(model)/p(training data)
- P(training data) a scaling factor; ignored
- P(training data| model) computed as last slide
- P(model): preference towards smaller models
 - Total number of states: N
 - Total number of transitions at each state S:T(S)
 - Total number of emissions at each state S: E(S)

$$P(Model) \propto \frac{1}{\prod_{S} (N+1)^{T(S)} \times (N+1)^{E(S)}}$$

Structural inference: Learning

- Start with a model exactly reflecting input data
- Gradually merge states
- Until posterior probability does not increase
- Cost: O((n*L)³) with n training input strings, and L maximum length of each string
 - Up to n*L states
 - (n*L)(n*L-I)/2 comparisons for each merging
 - Up to n*L-I merges
- Optimizations
 - Viterbi path approximations
 - Path prefix compression
 - Cost: O(n*L²)

Structural inference: Detection

- First option: Compute probability of query attribute
 - Issue: probabilities of all input words sum up to I; all words have small probabilities
- Output:
 - p = I if word is a valid output of Markov model
 - p = 0 otherwise

Token finder

- Goal: determine whether values of an attribute are drawn from an enumerated set of tokens
- Example: flags, indices
- Learning:
 - Growth in # of different argument instances compared to total # of argument instances
 - Compute correlation between these numbers:
 - \circ F(x) = x
 - G(x) = G(x-1) + 1 if x-th value is new
 - G(x) = G(x-1) 1 if x-th value was seen before
 - Corr = Covar(F, G)/Sqrt(Var(F) *Var(G))
 - If Corr < 0, then enumeration
 - If enumeration, then store all values for use in detection phase

Token finder: Detection

- If enumeration: value expected to be among stored values
 - Output p = I or p = 0 correspondingly
- If random: p = I

Attribute presence/absence

- Observation: URIs typically produced not directly by user, but by scripts, forms, client-side programs
 - Result: regularity in number, name, order of parameters
 - Hand-crafted attacks typically break this regularity
 - Incomplete or malformed requests to probe/exploit web app
 - Missing argument
 - Mutually exclusive arguments appearing together

Attribute presence/absence

- Learning: Record set S_q for each query q during training in a hash table
- Detection: Lookup the attribute set in hash table
 - Return p = I or p = 0 correspondingly

Attribute order

- Legitimate invocations often contain same attributes in same orders
 - Sequential program logic preserves order even when some attributes left out
- Learning:
 - Attribute a_s precedes a_t if as and at appear together in parameter list of at least one query and a_s comes before a_t when they appear together

Attribute order

- Directed graph
- # vertices = # attributes
- For each training query, add edges between nodes of ordered attribute pairs
- Find all strongly connected components (SCC) of the graph
- Remove edges between nodes in same SCC
- For each node, find all reachable nodes
- Add corresponding pairs to set of precedence orders

Attribute order

- Find all order violations
 - Return p = 0 or p = I correspondingly

Access frequency

- Frequency patterns of different server-side web applications
- Two types of frequencies:
 - Frequency of application being accessed from a certain client (IP address)
 - Total frequency of all accesses
- Attacks
 - Probing
 - Guess parameter values
 - Evasion: slow down

Access frequency

Learning:

- divide training time to intervals of fixed time (e.g., 10 sec)
- Count accesses in each interval
- Find total and client-specific distributions

Detection:

- Chebyshev probability for total, and for client
- Return average of the two probabilities

Inter-request time delay

- Regular delay between each successive request
 - Surveillance
 - Scripted probes
- Learning: Find distribution of normal delays
 - Similar to character distribution model
- Detection: Pearson χ^2 -test

Invocation order

- Order of invocation of web-based applications for each client
 - Infer session structure regularity
 - Similar to structural inference model
- Learning: group queries based on source
 IP
 - Session: Queries within an interval of time
 - Build NFA for sessions
- Detection: p = I or p = 0 depending on session being an output of NFA

Evaluation

Data set	Number of alerts	Number of queries	False positive rate	Alarms per day
Google	206	490,704	0.000419	4944
UCSB	3	4617	0.000650	0.01
TU Vienna	137	713,500	0.000192	1.71

Reference

• "A multi-model approach to the detection of web-based attacks", 2005