

 HW due tonight
 Time for guest lecture on Friday
 Projects

 Web servers accessible by outside world
 Web apps developed with security as an

afterthought
 Example: Target breach

Year Total Web-related Percentage

1999 809 109 13.5%

2000 800 186 23.3%

2001 588 120 20.4%

2002 376 100 26.6%

Total 2573 515 20.0%

 Misuse-based
◦  Example: Snort
  1037 out of 2464 signatures
◦ Hard to keep up-to-date
  Time-intensive, error-prone, requires significant

security expertise
◦ Challenge with apps developed in-house

 Anomaly-based
◦ Applicable to custom-developed web apps
◦  Support detection of new attacks

  Input: web server log files
◦ Common Log Format (CLF)

 Analysis: build profiles for apps & active
docs
◦  Lower error rates than generic profiles
◦ Use multiple models
  Reduce vulnerability to mimicry attacks

 Output: anomaly score for each web
request

  An ordered set U = {u1, u2, …, um} of URIs
◦  Extract from successful GET requests

  200 ≤ return-code < 300

  Components of ui
◦  Path to desired resource: pathi
◦  Optional path information: pinfoi
◦  Optional query string: q

  Following a ? Character
  Passing parameters to referenced resource
  Attributes and values: q = (a1, v1), (a2, v2), …, (an, vn)
  Sq = {a1, a2, …, an}

  URIs without query strings not included in U
  Ur: subset of U with resource path r
◦  Partition U
◦  Anomaly detection run independently on each Ur

 Entry: 169.229.60.105 – johndoe [6/Nov/
2014:23:59:59 -0800] “GET /scripts/
access.pl?user=johndoe&cred=admin”
200 2122

 Path: /scripts/access.pl
 q: user=johndoe&cred=admin
  a1 = user, v1 = johndoe
  a2 = cred, v2 = admin
  Sq = {user, cred}

 Each model
◦  returns probability p of normalcy
◦ Has an associated weight w
  default value = 1

 Anomaly score =

€

wm × (1− pm)
m
∑

  Fixed size tokens
◦  Session identifiers

  Short input strings
◦  Fields in an HTML form

 Example:
◦  Buffer overflow: shell code & padding
  Several hundred bytes

◦ XSS

 Learning: Estimate mean μ and variance
σ2 of lengths in training data

 Chebyshev ineqaulity:

 Detection:
◦  strings with length larger than mean
  If length < mean, p = 1
  Padding not effective €

p(| x − µ |> t) <
σ 2

t 2

€

p = p(| x − µ |>| l − µ |) <
σ 2

| l − µ |2

  Observations about attributes:
◦  Regular structure
◦  Mostly human readable
◦  Almost always contain only printable characters

  Character distribution: sorted relative frequencies
◦  Example: passwd => 0.33, 0.17, 0.17, 0.17, 0.17, 0,…, 0
◦  Fall smoothly for human-readable tokens
◦  Fall quickly for malicious input

  Example:
◦  Buffer overflow: needs to send binary data & padding
◦  Directory traversal exploit: many dots in attribute

value

  Learning:
◦  character distribution of each observed attribute is stored
◦  Average of all character distributions computed

  Detection:
◦  Variant of the Pearson -test
◦  Bins: {[0], [1, 3], [4, 6], [7, 11], [12, 15], [16, 255]}
◦  For each query attribute:

  Compute character distribution
  Observed values Oi: Aggregate over bins
  Expected values Ei: Learned character distribution attribute

length
  Compute:

  Read corresponding probability

€

χ2

€

χ2 =
(Oi − Ei)

2

Ei
i=0

5
∑

  Simple manifestations of an exploit
◦  Unusually long parameters
◦  Parameters containing repetitions of non-printable

characters
  Evasion
◦  Replace non-printable characters by groups of

printable characters
  Parameter structure: regular grammar describing

all of its legitimate values
  Detect exploits requiring different parameter

structure
◦  Examples: Buffer overflow, directory traversal, XSS

 Learning: Markov model/Non-
deterministic finite automaton (NFA)
◦  PS(o): probability of emitting symbol o at state

S
◦  P(t): probability of transition t
◦ Output: paths from Start state to Terminal

state

  For a word w = (o1, o2, …, ok)

€

p(w) = p(o1,o2,...,ok) = pSi (oi) × p(ti)
Si ∈p
∏

p:paths
∑

  w = ab
  P(w) =

0.3*0.5*0.2*0.5*0.4 +
0.7*1.0*1.0*1.0*1.0 =
0.706

  Goal: Find a model with highest likelihood given
training examples

  Bayesian model induction:
 P(model | training data) = p(training data| model)* p(model)/p(training data)

  P(training data) a scaling factor; ignored
  P(training data| model) computed as last slide
  P(model): preference towards smaller models
◦  Total number of states: N
◦  Total number of transitions at each state S: T(S)
◦  Total number of emissions at each state S: E(S)

€

P(Model)∝ 1
(N +1)T (S) × (N +1)E(S)

S
∏

  Start with a model exactly reflecting input data
  Gradually merge states
  Until posterior probability does not increase
  Cost: O((n*L)3) with n training input strings, and

L maximum length of each string
◦  Up to n*L states
◦  (n*L)(n*L-1)/2 comparisons for each merging
◦  Up to n*L-1 merges

  Optimizations
◦  Viterbi path approximations
◦  Path prefix compression
◦  Cost: O(n*L2)

  First option: Compute probability of
query attribute
◦  Issue: probabilities of all input words sum up

to 1; all words have small probabilities

 Output:
◦  p = 1 if word is a valid output of Markov

model
◦  p = 0 otherwise

  Goal: determine whether values of an attribute are
drawn from an enumerated set of tokens

  Example: flags, indices
  Learning:
◦  Growth in # of different argument instances compared to

total # of argument instances
◦  Compute correlation between these numbers:
◦  F(x) = x
◦  G(x) = G(x-1) + 1 if x-th value is new
◦  G(x) = G(x-1) - 1 if x-th value was seen before
◦  Corr = Covar(F, G)/Sqrt(Var(F) * Var(G))
◦  If Corr < 0, then enumeration
◦  If enumeration, then store all values for use in detection

phase

  If enumeration: value expected to be
among stored values
◦ Output p = 1 or p = 0 correspondingly

  If random: p = 1

 Observation: URIs typically produced not
directly by user, but by scripts, forms,
client-side programs
◦ Result: regularity in number, name, order of

parameters
◦ Hand-crafted attacks typically break this

regularity
  Incomplete or malformed requests to probe/exploit

web app
 Missing argument
 Mutually exclusive arguments appearing together

 Learning: Record set Sq for each query q
during training in a hash table

 Detection: Lookup the attribute set in
hash table
◦ Return p = 1 or p = 0 correspondingly

 Legitimate invocations often contain same
attributes in same orders
◦  Sequential program logic preserves order

even when some attributes left out

 Learning:
◦ Attribute as precedes at if as and at appear

together in parameter list of at least one
query and as comes before at when they
appear together

 Directed graph
  # vertices = # attributes
  For each training query, add edges between

nodes of ordered attribute pairs
  Find all strongly connected components

(SCC) of the graph
  Remove edges between nodes in same SCC
  For each node, find all reachable nodes
 Add corresponding pairs to set of

precedence orders

  Find all order violations
◦ Return p = 0 or p = 1 correspondingly

  Frequency patterns of different server-side
web applications

  Two types of frequencies:
◦  Frequency of application being accessed from a

certain client (IP address)
◦  Total frequency of all accesses

 Attacks
◦  Probing
◦  Guess parameter values
◦  Evasion: slow down

 Learning:
◦  divide training time to intervals of fixed time

(e.g., 10 sec)
◦ Count accesses in each interval
◦  Find total and client-specific distributions

 Detection:
◦ Chebyshev probability for total, and for client
◦ Return average of the two probabilities

 Regular delay between each successive
request
◦  Surveillance
◦  Scripted probes

 Learning: Find distribution of normal
delays
◦  Similar to character distribution model

 Detection: Pearson -test

€

χ2

 Order of invocation of web-based
applications for each client
◦  Infer session structure regularity
◦  Similar to structural inference model

 Learning: group queries based on source
IP
◦  Session: Queries within an interval of time
◦  Build NFA for sessions

 Detection: p = 1 or p = 0 depending on
session being an output of NFA

  “A multi-model approach to the detection
of web-based attacks”, 2005

