
Human Genome Resequencing

Which human did we sequence?

 Answer one:

 Answer two: “it doesn’t matter”

Polymorphism rate: number of letter changes between two different
members of a species

 Humans: ~1/1,000

Other organisms have much higher polymorphism rates

§  Population size!

Why humans are so similar

A small population that interbred
reduced the genetic variation

Out of Africa ~ 40,000 years ago

Out of Africa

Heterozygosity: H
H = 4Nu/(1 + 4Nu)
u ~ 10-8, N ~ 104

⇒ H ~ 4×10-4

N

DNA Sequencing

Goal:
 Find the complete sequence of A, C, G, T’s in DNA

Challenge:

 There is no machine that takes long DNA as an input, and gives the
complete sequence as output

 Can only sequence ~150 letters at a time

Method to sequence longer regions

cut many times at
random (Shotgun)

genomic segment

Get one or two reads from
each segment

~100 bp ~100 bp

Definition of Coverage

Length of genomic segment: G
Number of reads: N
Length of each read: L

Definition: Coverage C = N L / G

How much coverage is enough?

 Lander-Waterman model: Prob[not covered bp] = e-C
 Assuming uniform distribution of reads, C=10 results in 1
gapped region /1,000,000 nucleotides

C

Two main assembly problems

•  De Novo Assembly

•  Resequencing

Human Genome Variation

SNP TGCTGAGA
TGCCGAGA Novel Sequence TGCTCGGAGA

TGC - - - GAGA

Inversion Mobile Element or
Pseudogene Insertion

Translocation Tandem Duplication

Microdeletion TGC - - AGA
TGCCGAGA Transposition

Large Deletion Novel Sequence
at Breakpoint

TGC

Read Mapping

•  Want ultra fast, highly similar alignment
•  Detection of genomic variation

......AGGTGCATGCCGCATCGATCGAGCGCGATGCTAGCTAGCTGATCGT......
 GTGCATGCCGCATCGACCGAGCGCGATGCTAGCTAGGTGATC
 GCATGCCGCATCGACCGAGCGCGATGCTAGCTAGGTGATCGT
 TGCCGCATCGACCGAGCGCGATGCTAGCTAGGTGATCGT...
 CATCGACCGAGCGCGATGCTAGCTAGGTGATCGT......

Read Mapping – Burrows-Wheeler Transform

•  Modern fast read aligners: BWT, Bowtie, SOAP
§  Based on Burrows-Wheeler transform

......AGGTGCATGCCGCATCGATCGAGCGCGATGCTAGCTAGCTGATCGT......
 GTGCATGCCGCATCGACCGAGCGCGATGCTAGCTAGGTGATC
 GCATGCCGCATCGACCGAGCGCGATGCTAGCTAGGTGATCGT
 TGCCGCATCGACCGAGCGCGATGCTAGCTAGGTGATCGT...
 CATCGACCGAGCGCGATGCTAGCTAGGTGATCGT......

Burrows-Wheeler Transform

BANANA

ANA BANANA
ANANA
NANA
ANA
NA
A

BANANA
ANANA
NANA
ANA
NA
A

suffixes of
BANANA

X =

Burrows-Wheeler Transform

BANANA$

ANA BANANA$
ANANA$
NANA$
ANA$
NA$
A$
$

BANANA$
ANANA$
NANA$
ANA$
NA$
A$
$

X =

Burrows-Wheeler Transform

BANANA$

ANA BANANA$
ANANA$B
NANA$BA
ANA$BAN
NA$BANA
A$BANAN
$BANANA

BANANA$
ANANA$B
NANA$BA
ANA$BAN
NA$BANA
A$BANAN
$BANANA

BANANA$
ANANA$B
NANA$BA
ANA$BAN
NA$BANA
A$BANAN
$BANANA

X =

Burrows-Wheeler Transform

BANANA$

ANA BANANA$
ANANA$B
NANA$BA
ANA$BAN
NA$BANA
A$BANAN
$BANANA

BANANA$
ANANA$B
NANA$BA
ANA$BAN
NA$BANA
A$BANAN
$BANANA

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

X =

Burrows-Wheeler Transform

BANANA$

ANA BANANA$
ANANA$B
NANA$BA
ANA$BAN
NA$BANA
A$BANAN
$BANANA

BANANA$
ANANA$B
NANA$BA
ANA$BAN
NA$BANA
A$BANAN
$BANANA

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

X =

Burrows-Wheeler Transform

BANANA$

ANA BANANA$
ANANA$B
NANA$BA
ANA$BAN
NA$BANA
A$BANAN

BANANA$
ANANA$B
NANA$BA
ANA$BAN
NA$BANA
A$BANAN

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

BWT(BANANA) = ANNB$AA

BWT matrix of
string ‘BANANA’

X =

Suffix Arrays

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

1 $BANANA
2 A$BANAN
3 ANA$BAN
4 ANANA$B
5 BANANA$
6 NA$BANA
7 NANA$BA

Suffixes are sorted in the BWT matrix

Define suffix array S:

S(i) = j, where Xj …Xn is the i-th suffix
lexicographically

S

B A N A N A $ X
1 2 3 4 5 6 7

7 6 4 2 1 5 3

A N N B $ A A BWT(X)

BWT(X) constructed from S:
At each position, take the
letter to the left of the one
pointed by S

Reconstructing BANANA

BWT matrix of
string ‘BANANA’

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

A
N
N
B
$
A
A

$
A
A
A
B
N
N

A$
NA
NA
BA
$B
AN
AN

$B
A$
AN
AN
BA
NA
NA

A$B
NA$
NAN
BAN
$BA
ANA
ANA

sort append
BWT

sort append
BWT

$BA
A$B
ANA
ANA
BAN
NA$
NAN

sort

Reconstructing BANANA - faster

BWT matrix of
string ‘BANANA’

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

Lemma. The i-th occurrence of character c in last
column is the same text character as the i-th
occurrence of c in the first column

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

Reconstructing BANANA - faster

BWT matrix of
string ‘BANANA’

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

Lemma. The i-th occurrence of character c in last
column is the same text character as the i-th
occurrence of c in the first column

$BANAN
A$BANA
ANA$BA
ANANA$
BANANA
NA$BAN
NANA$B

A
N
N
B
$
A
A

Reconstructing BANANA - faster

BWT matrix of
string ‘BANANA’

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

Lemma. The i-th occurrence of character c in last
column is the same text character as the i-th
occurrence of c in the first column

$BANAN
A$BANA
ANA$BA
ANANA$
BANANA
NA$BAN
NANA$B

A
N
N
B
$
A
A

A$BANAN
ANA$BAN
ANANA$B

Same words,
same sorted order

Reconstructing BANANA - faster

BWT matrix of
string ‘BANANA’

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

Lemma. The i-th occurrence of character ‘a’ in last
column is the same text character as the i-th
occurrence of ‘a’ in the first column

LF(): Map the i-th occurrence of character ‘a’ in last
column to the first column

LF(r): Let row r contain the i-th occurrence of ‘a’ in last

 column
 Then, LF(r) = r’; r’: i-th row starting with ‘a’

Reconstructing BANANA - faster

BWT matrix of
string ‘BANANA’

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

LF(r): Let row r be the i-th occurrence of ‘a’ in last column
 Then, LF(r) = r’; r’: i-th row starting with ‘a’

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

LF[] = [2, 6, 7, 5, 1, 3, 4]

Row LF(r) is obtained by rotating row r one
position to the right

Reconstructing BANANA - faster

BWT matrix of
string ‘BANANA’

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

LF(r): Let row r be the i-th occurrence of ‘a’ in last column
 Then, LF(r) = r’; r’: i-th row starting with ‘a’

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

LF[] = [2, 6, 7, 5, 1, 3, 4]

Therefore, the last character in row LF(r) is the
character before the last character in row r

Reconstructing BANANA - faster

BWT matrix of
string ‘BANANA’

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

LF[] = [2, 6, 7, 5, 1, 3, 4]

Computing LF() is easy:

Let C(a): # of characters smaller than ‘a’

Example: C($) = 0; C(A) = 1; C(B) = 4; C(N) = 5

Let row r end with the i-th occurrence of ‘a’ in last column

Then, LF(r) = C(a) + i (why?)

Reconstructing BANANA - faster

BWT matrix of
string ‘BANANA’

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

A N N B $ A A

C() 1 5 5 4 0 1 1
C() copied
for convenience

index i 1 1 2 1 1 2 3
indicating this is
i-th occurrence of ‘c’

LF() 2 6 7 5 1 3 4 LF() = C() + i

Reconstruct BANANA:

S := “”; r := 1; c := BWT[r];
UNTIL c = ‘$’ {

 S := cS;
 r := LF(r);
 c := BWT(r); }

Credit: Ben Langmead thesis

Searching for query “ANA”

BWT matrix of
string ‘BANANA’

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

L(W): lowest index in BWT matrix where W is prefix
U(W): highest index in BWT matrix where W is prefix

Example:
L(“NA”) = 6
U(“NA”) = 7

Lemma (prove as exercise)
L(aW) = C(a) + i +1,

 where i = # ‘a’s up to L(W) – 1 in BWT(X)
U(aW) = C(a) + j,

 where j = # ‘a’s up to U(W) in BWT(X)

Example:
L(“ANA”) = C(‘A’) + # ‘A’s up to (L(“NA”) – 1) + 1

 = 1 + (# ‘A’s up to 5) + 1
 = 1 + 1 + 1 = 3

U(“ANA”) = 1 + # ‘A’s up to U(“NA”) = 1 + 3 = 4

Searching for query “ANA”

BWT matrix of
string ‘BANANA’

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

Let
LFC(r, a) = C(a) + i, where i = #’a’s up to r in BWT

ExactMatch(W[1…k]) {

 a := W[k];
 low := C(a) +1;
 high := C(a+1); // a+1: lexicographically next char
 i := k – 1;
 while (low <= high && i >= 1) {

 a = W[i];
 low = LFC(low – 1, a) + 1;
 high = LFC(high, a);
 i := i – 1; }

 return (low, high);
}

Credit: Ben Langmead thesis

Summary of BWT algorithm

Suffix array of string X:
S(i) = j, where Xj …Xn is the j-th suffix lexicographically

•  BWT follows immediately from suffix array

§  Suffix array construction possible in O(n), many good O(n log n) algorithms

•  Reconstruct X from BWT(X) in time O(n)

•  Search for all exact occurrences of W in time O(|W|)

•  BWT(X) is easier to compress than X

Li H, Durbin R.
Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009. 7154 cites

Langmead B, Salzberg SL.
Fast gapped-read alignment with Bowtie2. Nature Methods, 2012. 3017 cites

Li H
Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM

