1. (8 pt.) [Counting small cuts.]

Recall that a cut of an undirected graph \(G = (V, E) \) is a partition of the vertices \(V \) into nonempty disjoint sets \(A \) and \(B \). A min cut of \(G \) is a cut that minimizes the number of edges that cross the cut (have one endpoint in \(A \) and one in \(B \)).

In the following problems, assume \(G \) is a connected graph on \(n \) vertices (i.e., there is no cut with 0 edges that cross it).

(a) (2 pt.) A graph may have many possible min cuts. Prove that \(G \) has at most \(n(n-1)/2 \) min cuts.

(b) (2 pt.) Show that part (a) is tight; for every \(n \geq 2 \), give a connected graph on \(n \) vertices with exactly \(n(n-1)/2 \) min cuts.

(c) (4 pt.) Let \(\alpha \) be a positive integer. Suppose that any min cut of \(G \) has \(k \) edges that cross the cut. An \(\alpha \)-small cut of \(G \) is a cut that has at most \(\alpha k \) edges that cross the cut. Prove that the number of such cuts is at most \(O(n^{2\alpha}) \).

[Note: If you find it easier, you’ll still get full credit if you prove a bound of \(O((2n)^{2\alpha}) \).]

[HINT: Consider stopping Karger’s algorithm early and then outputting a random cut in the contracted graph. What is the probability that this returns a fixed \(\alpha \)-small cut of \(G \)?]

(d) (0 pt.) [Optional: this won’t be graded] Let \(f(n, \alpha) \) be the maximum number of \(\alpha \)-small cuts that an \(n \) vertex graph can have. What are the tightest upper and lower bounds you can find for \(f(n, \alpha) \)?

2. (12 pt.) [Tightness of Markov’s and Chebyshev’s Inequalities]

(a) (4 pt.) Show that Markov’s inequality is tight. Specifically, for each value \(c > 1 \), describe a distribution \(D_c \) supported on non-negative real numbers such that if the random variable \(X \) is drawn according to \(D_c \) then (1) \(\mathbb{E}[X] > 0 \) and (2) \(\Pr[X \geq c\mathbb{E}[X]] = 1/c \).

(b) (4 pt.) Show that Chebyshev’s inequality is tight. Specifically, for each value \(c > 1 \), describe a distribution \(D_c \) supported on real numbers such that if the random variable \(X \) is drawn according to \(D_c \) then (1) \(\mathbb{E}[X] = 0 \) and \(\text{Var}[X] = 1 \) and (2) \(\Pr[|X - \mathbb{E}[X]| \geq c\sqrt{\text{Var}[X]}] = 1/c^2 \).

(c) (4 pt.) [One-sided version of Chebyshev’s Inequality] Prove a one-sided bound on the distribution of a random variable \(X \) given its variance. That is, if \(\text{Var}[X] = 1 \), what is the best upper bound on \(\Pr[X - \mathbb{E}[X] \geq t] \)? Give your answer in terms of \(t \). Prove your bound (a) is true and (b) is tight by coming up with a variable \(X \) with distribution \(D_t \) and variance 1 for which \(\Pr[X - \mathbb{E}[X] \geq t] \) equals your answer.
3. (0 pt.) [This whole problem is optional and will not be graded.] In this problem, you’ll analyze a different primality test than we saw in class. This one is called the Agrawal-Biswas Primality test.

Given a degree d polynomial $p(x)$ with integer coefficients, for any polynomial $q(x)$ with integer coefficients, we say $q(x) \equiv t(x) \mod (p(x), n)$ if there exists some polynomial $s(x)$ such that $q(x) = s(x) \cdot p(x) + t(x) \mod n$. (Here, we say that $\sum c_i x^i = \sum c'_i x^i \mod n$ if and only if $c_i = c'_i \mod n$ for all i.) For example, $x^5 + 6x^4 + 3x + 1 \equiv 3x + 1 \mod (x^2 + x, 5)$, since $(x^3)(x^2 + x) + (3x + 1) = x^5 + 6x^4 + 3x + 1 \equiv x^5 + 6x^4 + 3x + 1 \mod 5$.

Agrawal-Biswas Primality Test.

Given n:

- If n is divisible by 2, 3, 5, 7, 11, or 13, or is a perfect power (i.e. $n = c^r$ for integers c and r) then output **composite**.

- Set d to be the smallest integer greater than $\log n$, and choose a random degree d polynomial with leading coefficient 1:

 $$r(x) = x^d + c_{d-1}x^{d-1} + \ldots + c_1x + c_0,$$

 by choosing each coefficient c_i uniformly at random from $\{0, 1, \ldots, n-1\}$.

- If $(x+1)^n \equiv x^n + 1 \mod (r(x), n)$ then output **prime**, else output **composite**.

Consider the following theorem (you can assume this if you like, or for even more optional work, try to prove it!):

Theorem 1 (Polynomial version of Fermat’s little theorem).

- If n is prime, then for any integer a, $(x-a)^n \equiv x^n - a \mod n$.

- If n is not prime and is not a power of a prime, then for any a s.t. $\gcd(a, n) = 1$ and any prime factor p of n, $(x-a)^n \not\equiv x^n - a \mod p$.

First, show that if n is prime, then the Agrawal-Biswas primality test will always return **prime**.

Now, we will prove that if n is composite, the probability over random choices of $r(x)$ that the algorithm successfully finds a witness to the compositeness of n (and hence returns **composite**) is at least $\frac{1}{4^n}$.

(a) Using the polynomial version of Fermat’s Little Theorem, and the fact that, for prime q, every polynomial over \mathbb{Z}_q that has leading coefficient 1 (i.e. that is “monic”) has a unique factorization into irreducible monic polynomials, prove that the number of irreducible degree d factors that the polynomial $(x+1)^n - (x^n + 1)$ has over \mathbb{Z}_p is at most n/d, where p is any prime factor of n. (A polynomial is irreducible if it cannot be factored, for example $x^2 + 1 = (x+1)(x+1) \mod 2$ is not irreducible over \mathbb{Z}_2, but $x^2 + 1$ is irreducible over \mathbb{Z}_3.)

[HINT: Even though this question sounds complicated, the proof is just one line...]
(b) Let $f(d, p)$ denote the number of irreducible monic degree d polynomials over \mathbb{Z}_p. Prove that if n is composite, and not a power of a prime, the probability that $r(x)$ is a witness to the compositeness of n is at least $\frac{f(d, p) - n/d}{p^d}$, where p is a prime factor of n.

[HINT: p^d is the total number of monic degree d polynomials over \mathbb{Z}_p.]

(c) Now complete the proof, and prove that the algorithm succeeds with probability at least $1/(4d)$, leveraging the fact that the number of irreducible monic polynomials of degree d over \mathbb{Z}_p is at least $p^d/d - p^d/2$. (You should be able to prove a much better bound, though $1/4d$ is fine.)

[HINT: You will also need to leverage the fact that we chose $d > \log n$ and also explicitly made sure that n has no prime factors less than 17.]