Class 10: Agenda, Questions, and Links

1 Warm-Up

Go to http://Pollev.com/cs265 and answer the following questions.

Group Work

Important: as you make progress on the question(s), one person in each room should record your progress on http://PollEv.com/cs265.

- 1. Show that, in any undirected, unweighted graph G = (V, E) with no self-loops, there is a cut with at least |E|/2 edges that cross it. (Recall that a *cut* in G is just a partition of the vertices $V = S \cup \bar{S}$, and that an edge $\{u, v\}$ crosses the cut if $u \in S$ and $v \in \bar{S}$ or the other way around).
- 2. Let φ be a 3-CNF formula. That is, φ is the AND of a bunch of clauses that look like $(x \lor y \lor z)$ (or $(x \lor \bar{y} \lor \bar{z})$, or ..., where \bar{x} means "not x"). For example, maybe

$$\varphi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee \overline{x_4} \vee x_5) \wedge \cdots \wedge (x_{23} \vee \overline{x_1} \vee \overline{x_5}).$$

Given an assignment σ to the variables x_1, x_2, \ldots (eg, $x_1 = TRUE, x_2 = FALSE$, etc.), we say that a clause of φ is satisfied by σ if that clause evaluates to TRUE. Show that any 3-CNF formula φ has an assignment σ so that at least 7/8 of the clauses are satisfied.

Once you are done with those, **go to PollEverywhere and say what you did!** (and/or upvote others' answers). If you have time, think about how you would find such assignments *efficiently*.

2 Announcements

• HW4 due Friday! HW5 out Friday.

3 Questions?

Any questions from the minilectures and/or the quiz? (The probabilistic method; Ramsey numbers; Independent sets)

• Go into small groups and ask each other your questions.

• Go to https://pollev.com/cs265 and ask your questions/comments there, or else upvote others' questions.

4 Derandomization via conditional expectation

In class today, we'll explore a general way to turn an existence proof—like the ones from your warm-up exercise—into an algorithm. This is called "Derandomization via conditional expectation."

Group Work

Important: as you make progress on the question(s), one person in each room should record your progress on http://PollEv.com/cs265.

Our goal in this group work is to find an efficient, deterministic algorithm to find a cut (S, \bar{S}) so that the number of edges crossing the cut is at least |E|/2. In general, finding a cut with the *maximum* number of edges crossing it is NP-hard; but this will at least find a large-ish cut.

Note: There is a straightforward deterministic greedy algorithm to do this. Here, we'll see a way to derive a deterministic algorithm using conditional expectations.

1. Let G = (V, E) be as in warm-up question 1. Suppose the vertices are ordered $V = \{v_1, v_2, \dots, v_n\}$.

Suppose that $S \subseteq V$ is chosen uniformly at random (that is, each v_i is included in S independently with probability 1/2). Let X be the number of edges crossing the cut (S, \bar{S}) .

Convince yourself that $\mathbb{E}[X|v_1 \in S] = |E|/2$.

2. Suppose that you have made some choices for $v_1, v_2, \ldots, v_{t-1}$ (eg, $v_1 \in S, v_2 \notin S, v_3 \in S, \ldots, v_{t-1} \in S$), so that

$$\mathbb{E}[X| \text{ choices for } v_1, \dots, v_{t-1}] \ge \frac{|E|}{2}.$$

Show that **either**

$$\mathbb{E}[X \mid \text{choices for } v_1, \dots, v_{t-1}; \text{ and } v_t \in S] \geq \frac{|E|}{2}$$

or

$$\mathbb{E}[X \mid \text{choices for } v_1, \dots, v_{t-1}; \text{ and } v_t \notin S] \geq \frac{|E|}{2}$$

At this point, please record your progress on PollEverywhere.

3. Again, suppose that you have made choices for v_1, \ldots, v_{t-1} so that

$$\mathbb{E}[X| \text{ choices for } v_1, \dots, v_{t-1}] \ge \frac{|E|}{2}.$$

Show how to deterministically, efficiently make a choice for v_t so that

$$\mathbb{E}[X| \text{ choices for } v_1, \dots, v_{t-1}; \text{ and } v_t] \geq \frac{|E|}{2}.$$

4. Building on your method above, design an algorithm to make a choice for v_1 , and then v_2 , and then v_3 , and so on, so that eventually you have (efficiently, deterministically) found a set S so that at least |E|/2 edges cross the cut (S, \bar{S}) .

At this point, please record your progress on PollEverywhere.

[Solutions and discussion of the general paradigm]

Group Work

Important: as you make progress on the question(s), one person in each room should record your progress on http://PollEv.com/cs265.

1. Let φ be a 3-CNF formula with n variables and m clauses. Give an efficient (polynomial in n, m) deterministic algorithm to find an assignment to φ so that at least a 7/8-fraction of the clauses are satisfied.

Hint: Use the method you developed in the previous group work, and consider the second warm-up question.

At this point, please fill out the PollEverywhere to record your progress.