CS265/CME309: Randomized Algorithms and
Probabilistic Analysis

Lecture #10: The Probabilistic Method

Gregory Valiant; updated by Mary Wootters
October 29, 2022

1 Introduction

The probabilistic method is a surprisingly effective approach for proving that certain combinatorial
objects exist. The basic recipe for applying the probabilistic method is the following:

1. To show that object C exists, define some probability space and random variable X .
2. Show that Pr[X = (] > 0.

At its core, the probabilistic method relies on the following trivial fact: for any object C, if you can
define a random variable, X, such that Pr[X = C| > 0, then C must exist!

The surprising part is how useful this basic recipe is: there are many sorts of combinatorial
objects for which clean instantiations of the probabilistic method give the best known bounds. We
will begin by giving one of the first known instantiations of this approach, due to Paul Erdos from
1947 [1]. We will then begin considering some of the algorithmic aspects of this—namely if we
know that the desired object exists, how do we actually find it?

2 Ramsey Numbers

Definition 1. The kth Ramsey number, Ry, is the smallest n such that for every way of coloring the
edges of the complete graph on n vertices with 2 colors, there exists a monochromatic k-clique—i.e.
a set of k vertices such that all the (g) internal edges are the same color.

Trivially, Ry = 1, and Ry, = 2. R3 = 6: showing that R3 > 5 is easy, one just needs to provide a
2-coloring of the complete graph on 5 vertices such that there is no monochromatic triangle; showing
that 3 < 6 is a bit annoying, though can be accomplished via a brute-force enumeration over all
possible 2-colorings, for example. R4 = 18, which is quite annoying to show, and we don’t even
know Rj exactly (the best we know is that it is between 43 and 48). The situation only gets worse

*©2019, Gregory Valiant. Not to be sold, published, or distributed without the authors’ consent.

for larger k: we don’t even know Ry up to a multiplicative factor of 30 (its somewhere between 798
and 23,556). Part of the challenge is that telling whether R;, < n naively would require enumerating

over all 2(3) possible colorings, and for each of these, even telling whether there is a monochromatic
k-clique would, naively, require searching through all (Z) possible subsets of & of the n vertices.

Theorem 1. R, € (2F/2 2%),

Proof. We first prove that R;, > 2¥/2 via the probabilistic method. We need to show that if n = 2¥/2,
then there is a coloring with no monochromatic k-clique; we’ll choose a coloring at random, and
show that this has no such clique with positive probability.

Let n = 2¥/2, and consider coloring each of the (;‘) edges red or blue according to the outcomes
of independent coin flips. For a given set of k vertices, the probability they form a monochromatic
k-clique is (1/ 2)(5)‘1 — 27F*/2Hk/2+1 where this expression is because we can pick the first edge
to be any color, and then we must color the remaining (g) — 1 edges with that color. Via a union
bound over the (}) possible sets of k vertices, we have

k2 k/2+1

k
Pr[exists monochrome k-clique] < <Z) 27k2/2+k/2+1 < n_27k2/2+k/2+1 — 2_27k2/2+k/2+1 — 2— < 1.

— k! k! k!

Hence, the probability that this random edge coloring yields a coloring without a monochromatic
k-clique is > 0, and hence there must exist such a coloring.

To show that R;, < 22* we can proceed via an inductive argument. Define R, 1 to be the minimal
n such that any 2-coloring (say red and blue) of the complete graph on n vertices either has a
monochromatic red clique of size at least a, or a monochromatic blue clique of size at least b. First
observe that %, = IR} ,, by symmetry, and R, ;, = 1, as all colorings have a red 1-clique (since that
doesnt even involve any red edges).

Consider a 2-coloring of a graphonn = 1+ R,_1; + R, vertices. Fix a vertex v, and let
S, denote the subset of vertices that are connected to v via red edges, and S, denote the subset of
vertices connected to v via blue edges. By construction, |S,| + S| +1=n =1+ Re_15+ Rap_1,
and hence either |S,| > R,_1 or [Sy| > R, p—1. In the case that |S,| > R,_1,, either S, has a blue
clique of size b, or, a red clique of size a — 1 all of whose vertices are connected to v via red edges,
in which case the graph has a red clique of size a. An analogous statement holds in the case that
|Sp| > R, p—1. Hence we have shown that

Ra,b S 1+ Ra—l,b + Ra,b—1~

We will argue by induction on a + b that for any a,b, R,; < 2°™°. For the base case, note that
Ripg = Ry = 1< 23 and Roo < Rig+ Rop = 2 < 24. For the inductive step, assume that
Rayp < 297 for all a, b that sum to at most c. Now suppose that a + b = ¢ + 1. Then

Rop < Ry 1p+ Rop oy +1< (207070 — 1) (277071 11 < 2070,

Above, we applied the inductive hypothesis to 12,15, and R, ;1. This establishes the inductive
hypothesis for ¢ 4 1, and completes the proof. [

The proof of the above Theorem wasn’t too difficult. Surprisingly, despite the huge gap between
the upper and lower bounds, and the fact that people have studied Ramsey numbers for almost a
century, we don’t know how to improve significantly on either of them. Specifically, we don’t know
how to tighten the exponents by even a tiny constant factor: there is no constant ¢ > 0 for which we
can show that Ry, > 2(119%/2 or that Ry, < 201792k,

2

3 Independent Sets

In the Ramsey Number example, the distribution we came up with—coloring the edges uniformly
at random—was a very simple/natural distribution. For some examples of the probabilistic method,
we will need slightly more creative distributions.

Definition 2. Given a graph, an independent set is a subset of the vertices such that no pair is
connected via an edge.

Computing the size of the largest independent set of a graph is NP-hard. The following theorem,
however, guarantees the presence of a fairly large independent set, provided the number of edges in
the graph is not too large:

Theorem 2. For any graph with n vertices, and m > n/2 edges, there exists an independent set of
. 2
size at least .

Proof. We proceed via the probabilistic method. Consider the following randomized process for
finding an independent set:

1. For each node, independently remove it and all the edges incident to it, with probability 1— 3.
2. For each remaining edge, arbitrarily (it doesn’t matter how) delete one of its two endpoints.
3. Return the set of remaining vertices.

The above process generates an independent set because of the second step—even without the first
step, the second step ensures that there is no edge connecting a pair of returned vertices, because
that edge would have removed one of those two endpoints. We now analyze the expected size of this
returned set.

Letting X denote the number of vertices that survive step 1, we have that by linearity of expec-

tation,
2

n n
EX|=n—=—.
X] n2m 2m
Letting Y denote the number of edges surviving after the first step, we have that the probability
an edge survives the first step is (%)2 since it survives that step if and only if both its endpoints

survive. Hence

n?

E[Y]=m(—)*= —.

Y]=ml 2m) dm

Finally, note that the number of remaining nodes after step 2 is at least X — Y, because each of the
Y edges can be responsible for the removal of at most 1 vertex in step 2, and hence

n? n? n?

E|number returned vertices| > E|X - Y| =E|X|-E|Y|= — - — = —.

[number returned vertices] > E[X — Y] = B[X] —B[y] = . — = = =
To conclude, note that if the prescribed randomized process, in expectation, will return an indepen-
dent set of size at least k, there must exist an independent set of size at least k.! O]

"How does this fit in the framework that we sketched at the beginning of the lecture, that didn’t have an E in it? It’s
because for any random variable Z, Pr[Z > E[Z]] > 0 (why?), so by showing E[number of returned vertices| > ¢, we
have shown that Pr[number of returned vertices > ¢] > 0, so the desired independent set exists.

One comment: In the theorem statement, we assumed that m > n/2. If this were not true, then
in step 1, we would be removing each vertex with probability 1 — n/(2m) < 0, which is not valid
(since probabilities cannot be less than 0).

Note: At this point we are done with the material in the mini-lecture videos for before class.
The material below is for reference after class.

4 Max-Cut, k-SAT, and De-randomization via Conditional Ex-
pectation

The Max-Cut problem is defined as follows: Given a graph G = (V, E), partition V' into two sets,
A, B, so as to maximize the number of edges with one endpoint in A and one endpoint in B. This is
a standard NP-hard problem, though, as we will see, an efficient greedy algorithm will always cut at
least | E|/2 edges.

Rather than directly describing and analyzing the greedy algorithm, we will present it as the
consequence of de-randomizing a simple randomized scheme.

Proposition 3. Consider the randomized scheme that partitions V' into A and B according to flips
of independent fair coins for each vertex. The expected number of edges cut by this scheme is |E|/2.

Proof. By linearity of expectation, the expected number of edges cut is the sum of the probabilities
that each edge is cut. For a given edge (u,v), it will be cut with probability 1/2, as this is the
probability v and u are assigned different sets. 0

The idea behind how to “de-randomize” this scheme is as follows: suppose we choose an or-
dering of the vertices, vy, ..., v,, and assign each vertex to either set A or B iteratively. Given our
assignment for vy, ..., v;_1, we will assign v; to whichever set maximizes the expected number of
edges cut, given the assignment of vy, ...,v;_1 where the expectation is with respect to randomly
assigning v 1, ..., v,. The rational is as follows, where the expectations in the following equation
are with respect to independently assigning each of vy, ..., v, to A or B with probability 1/2:

)) 1 . .
E|cut size|assignment to vy, ..., v;_1] = §E[cut size|v; € A, assignment to vy, ..., v;_1]

1) .
+§E[cut size|v; € B, assignment to vy, ..., v;_1],

hence at least one of the these two terms must be at least half the left hand side. Each of these
two terms is straightforward to evaluate: Elcut size|v, € A, assignmentto vy, ..., v;1] is simply
the sum of the number of edges between vy, ..., v, that are cut in the prescribed assignment, plus
1/2 times the number of edges with an endpoint in v;,1,...,v, (since these edges are cut with
probability 1/2 over the randomness in assigning these remaining nodes to the two sets).

Before we have assigned any of the vertices, the expected number of edges cut is | F| /2, and after
each successive assignment, the expectation conditioned on the assigned vertices is non-decreasing
as we iteratively assign vertices. Hence, after all vertices are assigned, we have obtained a determin-
istic algorithm that cuts at least half the edges.

What is this algorithm actually doing? Well, at each step, we put v, into whichever of A or B cuts
more edges, which corresponds to asking whether node v; has more neighbors among vy, ..., v;_;
in set A versus in set B. Hence this is simply the iterative greedy algorithm!

4

4.1 k-SAT

The same high-level arguments can also be applied to £-SAT formulas. For example, in the case of
a 3-SAT formula over binary variables x4, ..., z,, if each clause contains exactly 3 variables, then
a random assignment to z1, ..., z, satisfies, in expectation, a (1 — 2%) = 7/8 fraction of clauses
(since a clause is not satisfied if each of the 3 variables gets “unlucky” in its random assignment.
Hence, via the probabilistic method, there must exist a satisfying assignment that satisfies at least
this fraction of clauses?

How can we make an efficient algorithm for finding such an assignment? Just as in the max-cut
example, we can iteratively assign the variables z1, ..., x, by sequentially assigning z; so as to
maximize the expected number of satisfied clauses given the assignment to x1, ..., z; 1, and with
respect to the randomness of assigning z;.1,...,x,. Computing these conditional expectations
is straightforward, since for each clause, if the assignment to x4, ..., x; doesnt already satisfy or
falsify it, the probability it is satisfied is 1 — 1/2* where k denotes the number of unassigned (i.e.
randomized) variables that are left in that clause.

References

[1] Paul Erdos. Some remarks on the theory of graphs. Bulletin of the American Mathematical
Society, 53(4):292-294, 1947.

