Class 12: Agenda, Questions, and Links

1 Warm-Up

Go to http://PollEv.com/cs265 and answer the following questions.

Consider the Markov chain given by:

What is the transition matrix for this Markov chain? Suppose that you start in state 0. What is the probability that you are in state 2 after one step? Two steps? Three steps?

As \(t \to \infty \), what do you think is \(\lim_{t \to \infty} \Pr[X_t = 2 | X_0 = 0] \)? [No need to do a formal analysis here; what’s your hunch?]

2 Announcements

• HW6 due Friday!

• Heads up for next week: Wednesday (Nov 4) is a “buffer” day, which means that we’ll just use it for catch-up and questions. This means:
 – No videos/quiz for Wednesday Nov 4.
 – You’ll actually get 2 weeks to do HW7 (which will be released this Friday).

• PSA: If you are eligible to vote (and haven’t voted already), make plans to vote! Hopefully having nothing due on Wednesday 11/4 will make it easier for you to vote by 11/3.
3 Questions?

Any questions from the minilectures and/or the quiz and/or the warm-up? (Markov chains and a randomized algorithm for 2SAT)

- Go into small groups and ask each other your questions.
- Go to https://pollev.com/cs265 and ask your questions/comments there, or else upvote others’ questions.

4 Using diagonalization to analyze a Markov chains

Group Work

Important: as you make progress on the question(s), one person in each room should record your progress on http://PollEv.com/cs265.

1. Let P denote the transition matrix you got from the warm-up exercise. How would you figure out the probability of being in state 2 at time 100, if you started at state 0? (You don’t actually need to do this, just describe how you would do the computation, in terms of P).

2. Let

$$F = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{pmatrix}$$

where $i = \sqrt{-1}$. (You may recognize F as the 4×4 discrete Fourier matrix, so $F_{jk} = \frac{1}{2} e^{-2\pi i j k/4}$.) Notice that F is a Hermitian matrix, which means that $F^* F = FF^* = I$, where F^* denotes the Hermitian conjugate (e.g., take the transpose and change all of the i's to $-i$'s).

Convince yourself that

$$P = F \cdot \begin{pmatrix} 1 \\ -1/3 \\ 1/3 \end{pmatrix} \cdot F^*.$$

Hint: Check that the columns of F are eigenvectors for P.

Note: If your linear algebra is rusty and you trust me then “Mary said so” is a fine amount of convincing. You can also use matlab/python/etc to verify this if you want. The main point here is that you should understand this so that you can use it in the next part.
3. Given the previous part, return to the first question. How would you figure out the probability of being in state 2 at time 100, if you started at state 0? This time, use the previous part to get an easier-to-compute-with expression. Come up with a statement like

\[\Pr[X_t = 2 | X_0 = 0] = \frac{1}{4} \pm O(___) \]

where the thing in the \(O() \) term depends on \(t \). What is the best bound you can get?

At this point, please answer the pollEverywhere with your answer!

*Admittedly, I don’t have a great track record for calculations in class...

In this next part, you’ll generalize what you saw above to larger cycles.

Group Work

Important: as you make progress on the question(s), one person in each room should record your progress on http://PollEv.com/cs265.

1. Consider the analogous Markov chain to the 4-state one that you saw before, except that it has \(n \) states. That is, it looks like this:

Let \(P \in \mathbb{R}^{n \times n} \) be the transition matrix for this Markov chain. Here is a fact:

\[P = F_n D F_n^* \]

where \(D \) is a diagonal matrix whose \(j \)'th entry is

\[D_{j,j} = \frac{1 + 2 \cos(2 \pi j/n)}{3} \]
where \(j = 0, \ldots, n - 1 \). (Importantly, \(j \) is zero-indexed here!) Above, \(F_n \) is the \(n \times n \) DFT, so
\[
(F_n)_{j,k} = \frac{1}{\sqrt{n}} e^{-2\pi i j k / n}.
\]

(There is no question here, just acknowledge it.)

Note: As before, you can work this out for yourself if you feel like. As a hint, check that the columns of \(F \) are eigenvectors of \(P \) with the appropriate eigenvalues. You may find it helpful that \(2 \cos(x) = e^x + e^{-x} \).

2. Come up with an expression for \(\Pr[X_t = 0 | X_0 = 0] \). You should get a kind of nasty sum involving some cosines, but it shouldn’t be too nasty.

3. Convince yourself that as \(t \to \infty \), \(\Pr[X_t = 0 | X_0 = 0] \to 1/n \).

4. Try to think about how fast this convergence is. That is, how large does \(t \) have to be before \(\Pr[X_t = 0 | X_0 = 0] = \frac{1+o(1)}{n} \)? (Don’t try to come up with a formal proof, just some back-of-the-envelope calculations).

Hint: You may find the Taylor expansion \(\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \cdots \) of \(\cos(x) \) about zero helpful. In particular, when \(x \) is small, \(\cos(x) \approx 1 - \frac{x^2}{2} \). You may also want to use the approximation \(1 - x \approx e^{-x} \) for small \(x \) liberally.

At this point, please register your thoughts on PollEverywhere.

A final note to ponder: suppose that your transition matrix \(P \) is diagonalizable. What do \(P \)'s eigenvalues tell you about how the distribution of \(X_t \) behaves for large \(t \)?