1 Announcements

- HW6 due Friday! HW7 out Friday!

- Heads up for next week: Wednesday (Nov 4) is a "buffer" day, which means that we’ll just use it for catch-up and questions. This means:
 - No videos/quiz for Wednesday Nov 4.
 - You’ll actually get 2 weeks to do HW7 (which will be released this Friday).

- PSA: If you are eligible to vote (and haven’t voted already), make plans to vote! Hopefully having nothing due on Wednesday 11/4 will make it easier for you to vote by 11/3.

2 Questions?

Any questions from the minilectures and/or the quiz and/or the warm-up? (Definitions about Markov chains; fundamental theorem of Markov chains; Markov Chain Monte Carlo)

- Go into small groups and ask each other your questions.

- Go to https://pollev.com/cs265 and ask your questions/comments there, or else upvote others’ questions.

3 Queues

In this exercise we’ll practice setting up a Markov chain, and analyzing its stationary distribution.

Group Work

Important: as you make progress on the question(s), one person in each room should record your progress on http://PollEv.com/cs265.

Suppose that $\mu, \lambda \in (0, 1)$ so that $\mu + \lambda \leq 1$. Consider a queue of maximum length n, which works like this:

- If there are $< n$ items in the queue, then an item joins the queue with probability λ.

- If there are > 0 items in the queue, then an item gets served and leaves the queue with probability μ.
1. Let X_t be the length of the queue at time t, and suppose that $X_0 = 0$. Draw the diagram and transition matrix for the Markov chain X_0, X_1, \ldots.

2. What is the stationary distribution of this Markov chain, in terms of λ and μ?
 Hint: If π is the stationary distribution, and $X_t \sim \pi$, then for any partition of the states into two sets A and B, we have $\Pr[X_t \in A, X_{t+1} \in B] = \Pr[X_t \in B, X_{t+1} \in A]$. (That is, in the stationary distribution, the probability of crossing from A to B is the same as crossing from B to A... why?). Apply this for $A = \{0, 1, \ldots, i\}$ and $B = \{i+1, \ldots, n\}$ to show that for all i, $\pi_i \lambda = \pi_{i+1} \mu$.

3. What is the expected amount of time, starting with an empty queue, until the queue is empty again? How does this behave as $n \to \infty$ if (a) $\lambda < \mu$ and (b) $\lambda > \mu$?

4 **Gibbs Sampling**

In this exercise, we’ll explore a special case of MCMC, called “Gibbs Sampling.”

Group Work

Important: as you make progress on the question(s), one person in each room should record your progress on http://PollEv.com/cs265.

1. Suppose that π is a joint distribution on X and Y. Suppose that it is hard to sample from π, but relatively easy to sample from $\pi(X|Y = y)$ or $\pi(Y|X = x)$ for any x, y in the support of X and Y respectively.

 Consider the following way to set up a Markov chain $(X_0, Y_0), (X_1, Y_1), \ldots$:
 - Suppose $(X_t, Y_t) = (x, y)$.
 - Draw $x' \sim \pi(X|Y = y)$.
 - Draw $y' \sim \pi(Y|X = x')$.
 - Set $(X_{t+1}, Y_{t+1}) = (x', y')$.

 That is, we first condition on $Y = y$ and draw a new value x' for X, and then we condition on that value x' for X and draw a new value y' for Y.

 Show that π is a stationary distribution for this Markov chain. That is, if P is the transition matrix, show that $\pi P = \pi$.

2. Under what conditions on π does the Fundamental Theorem of Markov chains hold? (That is, what do you need to assume about π to ensure that π is the unique stationary distribution of the Markov chain above, and that the Markov chain will converge to π as $t \to \infty$?)

3. Assuming that those conditions are met, how would you interpret this result in the
context of Markov Chain Monte Carlo? Why might you ever want to set up this Markov chain?