Sampling-based Median

Finding the median of n things

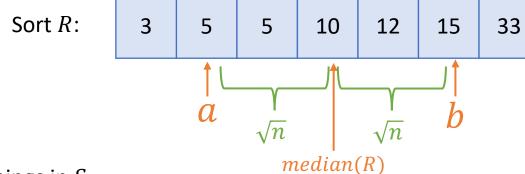
- You may have seen an O(n) time algorithm in CS161.
 - It was pretty complicated.
- Today: a simpler randomized algorithm!

Array S of n distinct	
numbers:	
Chaosa a sot P of size	`

9	5	34	1	2	33	12	4	15	3	6	8	10	18	0
---	---	----	---	---	----	----	---	----	---	---	---	----	----	---

n = 15 here.

Choose a set R of size $n^{3/4}$ by drawing that many things uniformly at random, independently.

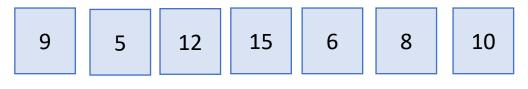


• We can see in time O(n) that there are 5 things in S less than a, and 3 things in S larger than b.

Find all the things in S between a and b (time O(n)), to form a list T:

If $|T| < 4n^{3/4}$, sort T:

(otherwise output FAIL)



5 6 8 9 10 12 15

- The median is the 8'th smallest thing in S, which is the 8-5=3'rd smallest thing in T.
- Return 8

If this calculation shows that the median is not in T, output FAIL. Group work...

2. Suppose that:

- With probability at least 0.9, the median of S is in T.
- With probability at least 0.9, |T| < 4t.
- Then the algorithm returns the correct answer with probability 0.8.

Array S of n distinct numbers:	9	5	34	1	2	2 3	3 1	.2	4	15	3
Choose a set R of size $n^{3/4}$ by drawing that many things uniformly at random, independently.		5		12		15		5		10	
Sort R:		3	5	5	10	12	15		33		
Find all the things in S			a	$\frac{1}{\sqrt{n}}$	nedian	$\frac{1}{\sqrt{n}}$ \sqrt{n} $n(R)$	b				
between a and b (time $O(n)$), to form a list T :	5	5	9	12	2	15	6	8	3	10	
If $ T < 4n^{3/4}$, sort T : (otherwise output FAIL)			6	8	9	10	12	1	5		

• We can see in time O(n) that there are 5 things in S less than a, and 3 things in S larger than b.

• The median is the 8'th smallest thing in S, which is the 8-5=3'rd smallest thing in T.

Return 8

6

8

If this calculation shows that the median is not in T, output FAIL.

n = 15

here.

0

18

10

33

2. Suppose that:

- With probability at least 0.9, the median of S is in T.
- With probability at least 0.9, |T| < 4t.
- Then the algorithm returns the correct answer with probability 0.8.

- If both events happen, then the algorithm never returns FAIL.
- If it doesn't return FAIL, then it returns the right answer by construction.

3. The running time is O(n) operations.

Array S of n distinct numbers:	9	5	34	1	2	33	12	4	15	3
Choose a set R of size $n^{3/4}$ by drawing the many things uniformly a random, independently	at at	5		12		15		5	10	
Sort P $O\left(n^{\frac{3}{4}}\log\left(n^{\frac{3}{4}}\right)\right) = $ operations.		3	5 ↑ <i>a</i>	$\int_{\sqrt{n}}$	10	$\frac{12}{\sqrt{n}}$	15 	33		
Find all the things in S	5			n	nedian	L(R)				
between a and b (time $O(n)$), to form a list T	2	5	9	12	1	.5	6	8	10	
If $ T < 4n^{3/4}$, sort T (otherwise output FAIL		5	6	8	9	10	12	15		

10 18 0 n = 15 here.

operations.

 $O(n^{3/4}) = o(n)$

• We can see in time O(n) that there are 5 things in S less than a, and 3 things in S larger than b.

6

3

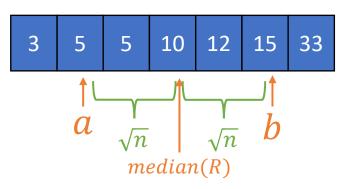
8

33

- The median is the 8'th smallest thing in S, which is the 8-5=3'rd smallest O(1) thing in T.
- Return 8 If this calculation shows that the median is not in T, output FAIL.

• Question 4: want to show that $median(S) \in T$ w.h.p.

Sorted version of R:



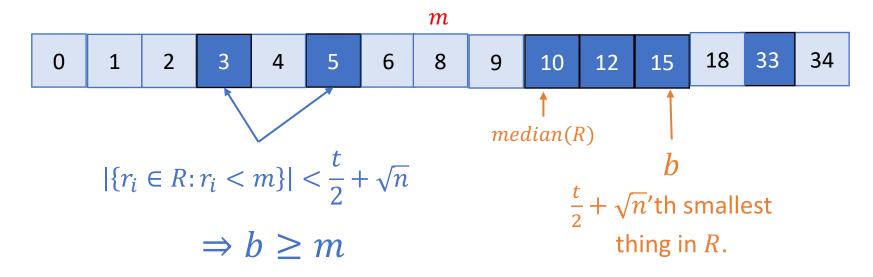
Solutions to group work

4a. Consider two events:

$$|\{r_i \in R: r_i < m\}| < \frac{t}{2} + \sqrt{n}$$

$$|\{r_i \in R: r_i > m\}| < \frac{t}{2} + \sqrt{n}$$

Sorted version of S:



4a. Consider two events:

$$|\{r_i \in R: r_i < m\}| < \frac{t}{2} + \sqrt{n} \qquad |\{r_i \in R: r_i > m\}| < \frac{t}{2} + \sqrt{n}$$

$$\Rightarrow b > m \qquad \Rightarrow a < m$$

• Then $a \le m \le b$, aka $m \in T$

4b. Let
$$X = |\{r_i \in R : r_i < m\}|$$

- Then $X = \sum_i X_i$ where $X_i = 1$ iff $r_i < m$ and 0 otherwise, for i = 1, ..., t
- $\mathbf{E}[X_i] = \Pr[r_i < m] \le \frac{1}{2},$
- $Var[X_i] \leq \frac{1}{4}$

•
$$\Pr\left[\sum_{i} X_{i} \ge \frac{t}{2} + \sqrt{n}\right] \le \Pr\left[\sum_{i} (X_{i} - \mathbf{E}X_{i}) \ge \sqrt{n}\right] \le \frac{t/4}{n} = \frac{1}{4n^{1/4}} = o(1)$$

4c. Consider two events:

$$|\{r_i \in R: r_i < m\}| < \frac{t}{2} + \sqrt{n}$$

$$\Rightarrow b \ge m$$

$$|\{r_i \in R: r_i > m\}| < \frac{t}{2} + \sqrt{n}$$

$$\Rightarrow a \le m$$

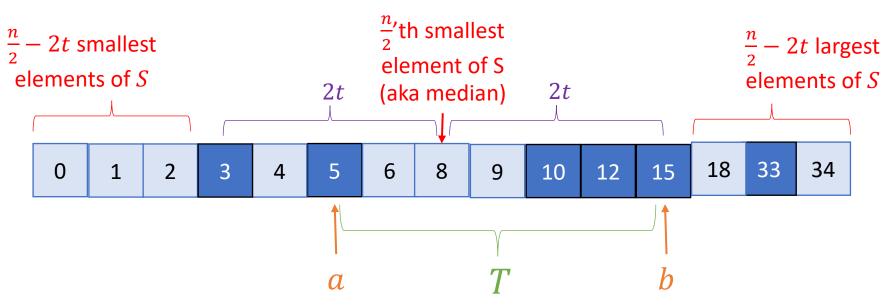
• Then $a \le m \le b$, aka $m \in T$

Both have probability at least $1 - O(n^{-1/4})$

$$\Pr[m \in T] \ge 1 - O(n^{-1/4})$$

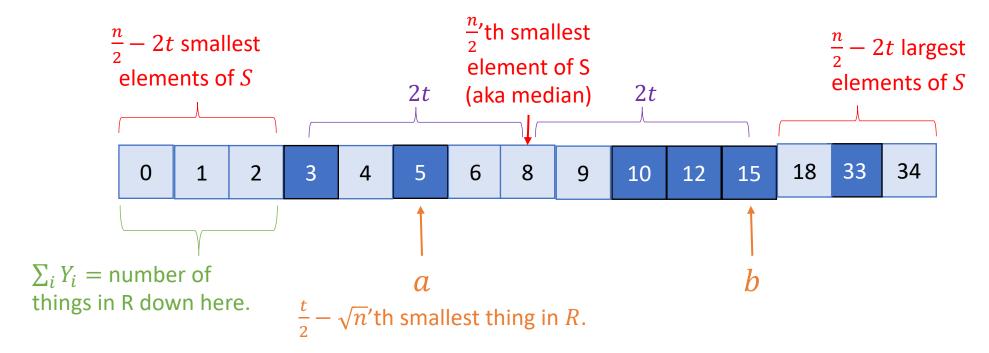
• Question 5: want to show that |T| < 4t w.h.p.

- 5(a). Say that a is not one of the $\frac{n}{2} 2t$ smallest elements of S
- Say that b is not one of the $\frac{n}{2} 2t$ largest elements of S



• Then |T| < 4t

• 5(b) Let $Y_i = 1$ iff r_i is in the $\frac{n}{2} - 2t$ smallest elements of S, 0 else



• $\sum_{i} Y_{i} \geq \frac{t}{2} - \sqrt{n} \iff a \text{ is among the } \frac{n}{2} - 2t \text{ smallest elements of } S$

• 5(b) Let $Y_i = 1$ iff r_i is in the $\frac{n}{2} - 2t$ smallest elements of S, 0 else.

•
$$\mathbf{E}Y_i = \frac{1}{2} - \frac{2t}{n} = \frac{1}{2} - \frac{2}{n^{1/4}}$$

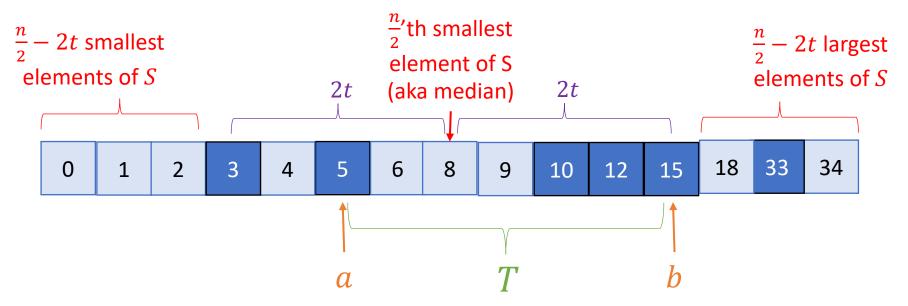
•
$$\Pr\left[\sum_{i} Y_{i} \geq \frac{t}{2} - \sqrt{n}\right] \leq \Pr\left[\sum_{i} (Y_{i} - \mathbf{E}Y_{i}) \geq \frac{2t}{n^{1/4}} - \sqrt{n}\right]$$

• $= \Pr\left[\sum_{i} (Y_{i} - \mathbf{E}Y_{i}) \geq \sqrt{n}\right]$
• $\leq \frac{\operatorname{Var}\left[\sum_{i} Y_{i}\right]}{n}$
• $\leq \frac{t}{4n} = \frac{1}{4n^{1/4}} = o(1)$

$$Var[\sum_i Y_i] = \sum_i Var[Y_i] \le \frac{t}{4}$$
.

Both have probability at least $1 - O(n^{-1/4})$

- 5(c). Say that a is not one of the $\frac{n}{2}-2t$ smallest elements of S
- Say that b is not one of the $\frac{n}{2} 2t$ largest elements of S^{\checkmark}



• Then |T| < 4t

$$\Rightarrow \Pr[|T| < 4t] \ge 1 - O(n^{-1/4})$$

All together:

- Question 2: To show that this algorithm works whp, it's enough to show that :
 - whp, $median(S) \in T$
 - whp, |T| < 4t
- Question 4: whp, $median(S) \in T$
- Question 5: whp, |T| < 4t
- (And Question 2: it runs in time O(n)).