
CS265/CME309: Randomized Algorithms and
Probabilistic Analysis

Lecture #4: Markov and Chebyshev’s Inequalities, and a
Sampling-Based Median Algorithm

Gregory Valiant*, updated by Mary Wootters

October 4, 2023

1 Introduction
In the next few classes, we will cover some of the core tools of probability—Markov and Cheby-
shev’s inequalities, moment generating functions, and Chernoff bounds—and discuss several useful
randomized algorithms whose analyses use these tools. Markov’s inequality, Chebyshev’s inequal-
ity, and Chernoff bounds, all provide bounds on the probability that a real-valued random variable
deviates significantly from its expectation. In the case of Markov’s inequality, all we will need to
know about the random variable in question is its expectation (or a bound on its expectation) and
that the random variable only takes non-negative values. Chebyshev’s inequality will apply to any
real-valued random variable, provided we can bound its variance. Chernoff bounds, as we will see
next class, in some sense leverage the behavior of the “higher moments”, E[X t] for t > 2. For
many “nice” random variables, Chernoff bounds will give stronger tail bounds than Chebyshev’s
inequality , which give stronger bounds than Markov’s inequality. Still, we might see in class this
week, there are random variables for which Markov’s inequality and Chebyshev’s inequalities are
tight.

These tail bounds are used throughout the analysis of randomized algorithm, and are often ap-
plied to the random variable representing the runtime. (Since the runtime is non-negative, Markov’s
inequality will always apply.) As we have already seen, in many cases all we want from our algo-
rithm is a constant probability of success, since we can always repeat the algorithm a small number
of times to decrease the probability of failure exponentially. Hence, in such cases, even the very
simple Markov’s inequality can yield an acceptable bound.

2 Markov and Chebyshev
Markov’s inequality applies to a real-valued random variable that only takes non-negative values,
and gives a “tail bound” in terms of the expectation:

*©2023, Gregory Valiant. Not to be sold, published, or distributed without the authors’ consent.

1

Proposition 1 (Markov’s Inequality). Letting X denote a real-valued random variable that only
takes non-negative values, for any α > 0,

Pr[X ≥ α] ≤ E[X]

α
.

Proof. The expectation of X can we expressed as

E[X] = E[X|X ≥ α] · Pr[X ≥ α] + E[X|X < α] · Pr[X < α].

Since, by assumption, X ≥ 0, the second term is at least 0. Assuming for the sake of contradiction
that Pr[X ≥ α] > E[X]

α
, the contribution of this first term alone would exceed αE[X]

α
= E[X], which

is a contradiction.

I often think of Markov’s inequality as the following equivalent statement: For a random variable
X that takes non-negative values and any c > 0, Pr[X ≥ cE[X]] ≤ 1

c
.

Chebyshevs inequality states that for any real-valued random variable, the probability the random
variable is more than c standard deviations from its expectation is at most 1/c2:

Proposition 2 (Chebyshev’s Inequality). Letting X denote a real-valued random variable. For any
c > 0,

Pr[|X − E[X]| ≥ c
√
Var[X]] ≤ 1

c2
.

Proof. The proof follows by applying Markov’s inequality to the random variable Y = (X−E[X])2.
Y is a real-valued random variable, and because it is a square, it only takes non-negative values, and
hence we may apply Markov’s inequality. First, observe that the quantity we care about can be
related to a statement about Y :

Pr[|X − E[X]| ≥ c
√

Var[X]] = Pr
[
Y ≥ c2Var[X]

]
= Pr

[
Y ≥ c2E[Y]

]
≤ 1

c2
.

In the second equality, we used the fact that Var[X] = E[(X − E[X])2] = E[Y], and the final
inequality is from applying Markov’s inequality.

Note: Sometimes people re-write Chebyshev’s inequality as: Pr[|X − E[X]| ≥ α] ≤ Var[X]
α2 ,

which is equivalent to the statement above as can be seen by plugging in α = c
√

Var[X].

Remark 3. The names “Markov’s Inequality” and “Chebyshev’s Inequality” are standard, though
are historically inaccurate. Chebyshev was Markov’s instructor, and both Markov’s inequality and
Chebyshev’s inequality were known to Chebyshev around the time that Markov was born (1856).
(Further complicating historical matters, Chebyshev’s inequality was first formulated by Bienaymé,
though the first proof was likely due to Chebyshev.)

2.1 Illustrative Examples of Markov’s and Chebyshev’s Inequalities
Example 4. Let X denote the number of “heads” flipped as the result of n independent tosses of
a fair coin. E[X] = n/2, and since X ≥ 0, we may apply Markov’s inequality. For example
Pr[X ≥ 3n

4
] ≤ n/2

3n/4
= 2

3
. This is a pretty bad bound on this quantity, especially for large n.

2

Using the fact that the variance of a sum of independent random variables is the sum of the
variances, and the quick calculation that for a single coin toss, Y that lands heads with probability
p, the variance is Var[Y] = E[(Y − E[Y])2] = p(1 − p)2 + (1 − p)(0 − p)2 = p(1 − p), we have
that the Var[X] = n1

2
(1− 1

2
) = n/4. Hence Chebyshev’s inequality yields

Pr[X ≥ 3n

4
] < Pr[|X − E[X]| ≥ n

4
] ≤ Var[X]

(n/4)2
=

4

n
.

This is a much better bound than the 2/3 probability we got from Markov’s inequality, though its still
far from the inverse exponential in n we might expect based on the central limit theorem. As we’ll
see next class, Chernoff bounds will give the inverse exponential that reflects the actual probability
that we have such a significant deviation from the expectation.

Example 5. Consider the “Coupon Collector” setting: each day, we get one coupon, drawn uni-
formly at random from a set of n types of coupons. Let X denote the number of days until we have
at least one of every type. Letting Xi denote the number of days we spend waiting for the i + 1st
type of coupon (after we already have the i’th), we have X =

∑n−1
i=0 Xi. Once we have i coupons,

the probability we get our i+1st on each day is n−i
n

, as there are n− i new types of coupons that we
would be happy with. Hence Xi is distributed as a geometric random variable, with parameter n−i

n
,

and E[Xi] =
n

n−i
. By linearity of expectation, E[X] =

∑n−1
i=0 E[Xi] = n

∑n
j=1

1
j
= n log n+O(n).

What is the probability that we haven’t seen all n types of coupons after 2n log n days? By
Markov’s inequality, this is at most 1

2
+ o(1), where the o(1) term vanishes for large n and is from

the O(n) error term in our calculation of the expectation.
To apply Chebyshev’s inequality, we leverage the fact that the variance of a geometric random

variable with parameter p is 1−p
p2

, and use the fact that Xi and Xj are independent for i ̸= j, to
calculate the variance of X as the sum of the variances of the Xi’s:

Var[X] =
n−1∑
i=0

Var[Xi] =
n−1∑
i=0

1− n−i
n

(n− i)2/n2
= n

n−1∑
i=0

i

(n− i)2
.

To apply Chebyshev’s inequality, we just need an upper bound on the variance, so at the risk of
losing a constant factor, we can replace the numerator in the above with n, and simplify:

Var[X] < n2

n−1∑
i=0

1

(n− i)2
= n2

n∑
j=1

1

j2
< n2(

π2

6
),

where we used the fact that
∑

i≥1 1/i
2 = π2/6. Okay, so we’re ready to apply Chebyshev’s inequal-

ity:

Pr[X ≥ 2n log n] ≤ Pr[|X − E[X]| ≥ n log n+O(n)] ≤ V ar[X]

n2 log2 n+ o(n2 log2 n)

<
n2(π

6
)

n2 log2 n+ o(n2 log2 n)
= O(1/ log2 n).

At the very least, this bound does go to zero as n gets large, though we could still do even better.
The probability we have not seen a specific coupon by time t is (1 − 1/n)t < e−t/n. By a union
bound, the probability that we haven’t seen all the coupons by time t is at most ne−t/n. If we plug in
t = 2n log n, we get a probability of ne−2 logn = 1/n, which is quite a bit better than what Markov’s
or Chebyshev’s inequality was giving us.

3

At this point, you might be wondering, why would we ever want to use Markov’s or Chebyshev’s
inequalities? In the previous two examples, they don’t seem very good. The reason is that they are
very general—and in some cases, they can be tight.

Markov’s inequality can be a good idea when the random variables in question don’t have (easily
or nicely) bounded variance. Here’s a simple example of when this can happen.

Example 6. Let X be a random variable so that Pr[X = k] = c/k3 for k = 1, 2, 3, . . ., where
c = (

∑∞
k=1 1/k

3)
−1 is a normalizing constant. Then we have

E[X] =
∞∑
k=1

ck

k3
= c

∞∑
k=1

k−2 =
cπ2

6
,

while

E[X2] =
∞∑
k=1

ck2

k3
= c

∞∑
k=1

k−1,

which diverges. Thus, Var[X] = E[X2]−(EX)2 is unbounded. In this case, Chebyshev’s inequality
is out of the question, while Markov’s inequality at least tells us something:

Pr[X ≥ t] ≤ cπ2

6t
.

One place where Chebyshev’s inequality can be a good idea is when you are dealing with a sum
of pairwise independent random variables. We say that X1, . . . , Xn are pairwise independent if Xi

and Xj are independent for all i ̸= j. In this case, it’s very easy to apply Chebyshev’s inequality to∑
i Xi, since

Var

[∑
i

Xi

]
=

∑
i

Var[Xi].

Example 7. Consider the family of hash functions H = {ha,b : a ∈ Zk
p, b ∈ Zp, where p is a prime,

and where ha,b : Zk
p → Zp is given by ha,b(x) = a · x + b mod p. (You may have seen universal

hash families similar to this one in CS161). Given vectors x1,x2, . . . ,xn from the universe
Zk

p , we will choose a random hash function h ∈ H (that is, we will choose a random a and b), and
we will hash these vectors into p buckets using h. The hope is that about 1/p of the items end up in
each bucket. We can use Chebyshev’s inequality to bound the probability that this doesn’t happen.

Fix y ∈ Zp, and let Xi be the indicator function that is 1 if h(xi) = y. You can check that

E[Xi] = 1/p and Var[Xi] =
1
p

(
1− 1

p

)
.

Claim 8. The Xi’s are pairwise independent.

Proof. To do this, we’ll compute the probability that h(xi) = y and h(xj) = y. We’d like this to be
(1/p)2. We can write these equations as matrices by:

[
−− xi −−
−− xj −−

]
·

 |
a
|

+

[
b
b

]
=

[
y
y

]
.

4

Suppose first that neither of xi,xj are zero. Since they are distinct, the first 2× k matrix is full rank,
which means that if we choose a random vector x ∈ Zk

p, the matrix vector product

[
−− xi −−
−− xj −−

]
·

 |
a
|


is uniformly distributed in Z2

p. (Here, we are using the fact that linear algebra “works” over Zp,
which implicitly uses the fact that p is prime...you don’t need to understand the details for this class,
but feel free to work them out as a fun exercise!). Adding the vector (b, b)T doesn’t change the fact
that our output is uniformly random, so the left hand side is uniformly random. Thus, in this case,
the probability that we get (y, y) as output is 1/p2.

Now consider the case where xi (say) is equal to zero. In this case, xj ̸= 0, since they are
distinct. Then the matrix vector product

[
−− xi −−
−− xj −−

]
·

 |
a
|


is equal to (0, z)T , where z is a uniformly random element of Zp. After adding (b, b)T , we get
(b, b + z)T . Since b and z are independent, and b is uniform, this vector is again uniform in F2

p, and
so the probability that it is equal to (y, y) is again 1/p2.

Thus, we can apply Chebyshev’s inequality to bound the probability that any given bucket y has
too many elements in it to bound the probability that any given bucket y has too many elements in it.

Pr

[∑
i

Xi ≥
(
1

p
+ ϵ

)
n

]
≤ Var [

∑
i Xi]

(ϵn)2
=

∑
i Var[Xi]

(ϵn)2
=

(1/p)(1− 1/p)

ϵ2n
.

Union bounding over all p buckets shows that

Pr

[
∃y ∈ Zp so that there are more than

(
1

p
+ ϵ

)
n elements in bucket y

]
≤ 1− 1/p

ϵ2n
≤ 1

ϵ2n
.

Thus, as n → ∞, it’s very likely that about a 1/p fraction of the xi’s will land in any bucket.

Note: At this point, we are done with the material covered in the recorded mini-lectures.
Section 3 gives an application of these tools that we will work through in class. The notes below
are meant for reference after Class 4.

3 Sampling-Based Median Algorithm
We now describe a sampling based algorithm for computing the median of a set of n numbers. In
CS161 you might have seen a different randomized algorithm for computing the median (a recursive
algorithm that resembles quick-sort with a random pivot), and also a deterministic O(n) comparison

5

algorithm. Our sampling-based algorithm will be extremely simple, and will require only 3
2
n+ o(n)

pairwise comparisons—a better constant factor than the other algorithms, and shockingly close to
the trivial lower-bound of n comparisons. For simplicity, we describe the algorithm in the case
that all the numbers are distinct, and n is odd, though a simple modification will work beyond this
setting.

The idea that really enables the following sampling based median algorithm is the following:
we can take a relatively small sample of the elements such that 1) the sample is small enough that
we can thoroughly analyze/inspect the sample, without spending much time, and 2) the information
we get from the sample lets us fine-tune how we interact with the full set of numbers, allowing us
to efficiently pluck out a smallish set of candidate medians that we will then closely inspect. (And,
as you might guess, there are a number of other algorithmic problems for which analogs of this
sampling-based approach are successful.)

Algorithm 9. SAMPLING-BASED MEDIAN
Given list S of n distinct numbers:

1. Sample a list R = r1, . . . , rn3/4 by independently drawing ri uniformly at
random from the set S.

2. Sort list R. Henceforth, we assume that r1 ≤ r2 ≤ . . . rn3/4 .

3. Define a = rn3/4/2−
√
n and b = rn3/4/2+

√
n.

4. We now form a list of candidate medians: for each element x ∈ S,
compare it to a and b, and form the list T = {x ∈ S : a ≤ x ≤ b}, counting
the number of elements that are less than a and the number that are
greater than b. Let N<a denote the number of elements of S that are
less than a, and N>b denote the number that are greater than b.

5. If median(S) ∈ T (i.e. N<a, N>b ≤ n/2) and |T | < 4n3/4, sort the list
T, and return the ith smallest element of T, where i = (n + 1)/2 − N<a,
otherwise return ‘‘FAIL’’.

Theorem 1. If the algorithm does not output FAIL, then it correctly outputs the median. The prob-
ability the algorithm returns FAIL is at most O(1/n1/4) (and hence we can repeat until success
without any significant increase in expected runtime) and the algorithm performs at most 2n+ o(n)
pairwise comparisons.

Before proving the above theorem, I wanted to note that this runtime can actually be improved
to 3n/2 + o(n) expected pairwise comparisons if in Step 4, we first compare each number to a, and
then only compare it to b if the number was greater than a. This takes one or two lines of reasoning
similar to the reasoning that will occur in the proof below.

Proof. The first statement in the theorem is true by construction. Step 2 and 5 require sorting two
lists each of size at most 4n3/4, which requires O(n3/4 log n) = o(n) pairwise comparisons. Step 4
trivially requires ≤ 2n pairwise comparisons.

The meat of the proof is bounding the probability of failure. Let m denote the true median of
set S. The algorithm succeeds provided the following three conditions hold, where the first two
conditions together guarantee that the true median lies between a and b, and hence will be in the set
T .

6

1. |{ri ∈ R : ri < m}| < n3/4

2
+
√
n.

2. |{ri ∈ R : ri > m}| < n3/4

2
+
√
n.

3. |T | ≤ 4n3/4.

By symmetry, the probability of the first two conditions are equal to each other. To bound the
probability that the first condition is not met, let Xi denote the 0/1 random variable that is 1 if the
ith element selected to be in set R is less than the median, m. Condition 1 holds unless

∑
Xi ≥

n3/4/2 +
√
n. Since E[Xi] ≤ 1/2, this probability is at most the probability that a fair coin flipped

n3/4 times lands heads more than n3/4/2 +
√
n times. Since Var[

∑
Xi] ≤ n3/4/4, by Chebyshev’s

inequality we have that this probability is at most

Pr

∣∣∣∣∣∣
n3/4∑
i=1

Xi − n3/4/2

∣∣∣∣∣∣ ≥ √
n

 ≤ Var[
∑

Xi]√
n
2 ≤ n3/4/4

n
= O(1/n1/4).

We now bound the probability that the third condition is not satisfied. The third condition is
satisfied if a is not one of the n/2−2n3/4 smallest elements of S, and if b is not one of the n/2−2n3/4

largest elements of S. [If both of those conditions are true then there will be at most 4n3/4 elements
of S between a and b.] By symmetry, these two probabilities are equal, so we will just focus on
bounding the probability that a is one of the smallest n/2 − 2n3/4 elements of S. The probability
of this is the probability that set R ends up with more than n3/4/2−

√
n elements from the smallest

n/2 − 2n3/4 elements of S. Letting Xi denote the event that the ith element selected to be in R is
in this smallest batch of elements of S, we have that Pr[Xi = 1] = (n/2 − 2n3/4)/n = 1

2
− 2

n1/4 .

Hence E[
∑n3/4

i=1 Xi] = n3/4/2− 2
√
n, and the probability that we end up with too many such small

elements in R is at most:

Pr[a too small] = Pr

n3/4∑
i=1

Xi ≥ n3/4/2−
√
n


≤ Pr

[∣∣∣∑Xi − E[
∑

Xi]
∣∣∣ ≥ √

n
]

≤ n3/4/4
√
n
2

= O(1/n1/4),

where the last inequality is from applying Chebyshev’s inequality.

7

