
CS265/CME309: Randomized Algorithms and
Probabilistic Analysis

Lecture #5: Moment-Generating Functions, Chernoff
Bounds, and Randomized Routing on the Hypercube

Gregory Valiant*, updated by Mary Wootters

October 9, 2023

1 Introduction
Continuing the theme of tail bounds, in today’s class we will begin by proving some Chernoff
bounds. Chernoff bounds, in their most simple form, apply to sums of independent random variables,
and roughly state that the probability that the sum deviates from its expectation by more than c
standard deviations, decreases inverse exponentially with c2. To see the intuition for why we should
expect this, consider the Central Limit Theorem:

Theorem 1. Let X1, . . . , Xn be independent, identically distributed random variables with E[Xi] =

µ and Var[Xi] = σ2. Then, as n → ∞, the distribution of
1
n

∑n
i=1(Xi−µ)

σ
converges to the standard

Gaussian, N(0, 1).

The above central limit theorem implies that, for sufficiently large n, we would expect that
Pr

[
|
∑n

i=1Xi − nµ| ≥ c
√

Var[
∑

Xi]
]
≈ Pr[|Z| ≥ c] ≤ e−c2/2, where Z denotes a Gaussian

random variable with mean 0 and variance 1, and the e−x2/2 comes from the probability density
function of a Gaussian.

How can we make this sort of statement rigorous? The above analysis only holds in the limit,
as n approaches infinity, and we would like to make statements about the probability of deviations
from the expectation in concrete settings with finite n. Additionally, we might hope to make similar
statements in settings where the distribution we care about is not that similar to a Gaussian. Chernoff
bounds will provide a relatively easy approach to addressing both of these hopes.

2 Moment-Generating Functions
Chernoff bounds proceed by analyzing the moment-generating function of a random variable:

*©2019, Gregory Valiant. Not to be sold, published, or distributed without the authors’ consent.

1

Definition 1. The moment-generating function of a random variable, X , is a function MX : R→ R,
defined by MX(t) = E[etX].

These are referred to as moment-generating functions, because the derivatives of MX , evaluated
at 0, give the moments of X (provided MX exists in a neighborhood of 0). To see this, note that one
can switch the order of E and differentiation (provided the function in question is well-behaved), and
so the kth derivative of MX(t), evaluated at t = 0, is given by dkMX(t)

dtk
(0) = E[Xke0·X] = E[Xk].

The following fact asserts that the moment-generating function actually characterizes the distri-
bution of the variable in question, in the same sense that the Taylor expansion of a function at a point
uniquely defines the function, provided the function is “well-behaved” (i.e. is “analytic”).

Fact 2. Given random variables, X and Y , if there is some δ > 0 such that MX(t) = MY (t) for all
t ∈ (−δ, δ), then the distribution of X is the same as the distribution of Y .

Example 3. Let Z ← N(µ, σ2) denote a random variable distributed according to the Gaus-
sian of mean µ and variance σ2. Using the fact that the probability density function at value x

is 1
σ
√
2π
e−

(x−µ)2

2σ2 , we have that

MX(t) = E[etX] =

∫ ∞

−∞
etx

1

σ
√
2π

e−
(x−µ)2

2σ2 dx.

“Completing the square” in the exponent yields that the above is equal to:∫ ∞

−∞

1

σ
√
2π

e−
x2−2µx+µ2−2σ2tx

2σ2 dx =

∫ ∞

−∞

1

σ
√
2π

e−
(x−(µ+σ2t))2+µ2−(µ+σ2t)2

2σ2 dx

= e
(µ+σ2t)2−µ2

2σ2

∫ ∞

−∞

1

σ
√
2π

e−
(x−(µ+σ2t))2

2σ2 dx

= e
(µ+σ2t)2−µ2

2σ2 = eµt+
1
2
σ2t2 .

In the second from last line, we leveraged the fact that the integral is integrating a probability density
function of a Gaussian, and hence the integral will evaluate to the total amount of probability,
namely, 1.

Why is the above useful? Well, suppose we want to know the distribution of the sum of two
independent Gaussians, X ← N(µ1, σ

2
1) and Y ← N(µ2, σ

2
2). By linearity of expectation, we know

E[X+Y] = µ1+µ2, and Var[X+Y] = Var[X]+Var[Y] = σ2
1 +σ2

2. But what is the distribution
of X + Y ? Well, lets consider the moment-generating function

MX+Y (t) = E[et(X+Y)] = E[etXetY] = E[etX]E[etY],

where we leveraged the assumption that X and Y are independent in this last equality. Plugging in
the moment-generating function for the Gaussian that we derived above, we have

MX+Y (t) = E[etX]E[etY] = eµ1t+
1
2
σ2
1t

2 · eµ2t+
1
2
σ2
2t

2

= e(µ1+µ2)t+
1
2
(σ2

1+σ2
2)t

2

.

This expression is exactly the moment generating function for a Gaussian with mean µ1 + µ2 and
variance σ2

1 + σ2
2 , hence by Fact 2, the sum of independent Gaussians must be Gaussian!

2

Not all moment generating functions are as annoying to compute as in Example 3. In particular,
because summations in the exponent turn into multiplications, the moment generating function of
a sum of independent random variables is the product of the moment generating functions. The
following example illustrates one important case we will use in our derivation of Chernoff bounds:

Example 4. Let Xi denote a 0/1 valued random variable that is 1 with probability pi, and assume
all the Xi’s are independent.

MXi
(t) = E[etXi] = pie

t·1 + (1− pi)e
t·0 = pie

t + (1− pi) = 1 + pi(e
t − 1).

Hence if X =
∑

i Xi, then

MX(t) = E[et
∑

i Xi] = E[
∏
i

etXi] =
∏
i

MXi
(t) =

∏
i

(
1 + pi(e

t − 1)
)
.

3 Chernoff Bounds
As mentioned in the introduction, Chernoff bounds give inverse exponential tail bounds to “nice”
random variables, such as those given by sums of independent random variables. One reason why
such tail bounds are so useful from an algorithmic standpoint, is that it will allow us to apply a union
bound over exponentially many such tail events. (We will explore one such example in Section 4.)

There are many different variants of Chernoff bounds, though they are all proved via the same
sort of approach: applying Markov’s inequality to the moment generating function of the random
variable in question. The approach to deriving a Chernoff bound proceeds from realizing that, for
any positive number t, a ≥ b if and only if ta ≥ tb which is true if and only if eta ≥ etb since the
exponential function is monotonically increasing. Similarly, if t < 0, then a ≤ b is equivalent to
ta ≥ tb. Hence, we have the following two statements, where the last inequality follows from apply
Markov’s inequality to the random variable etX :

• For any t > 0, Pr[X ≥ c] = Pr[etX ≥ etc] ≤ E[etX]
etc

.

• For any t < 0, Pr[X ≤ c] = Pr[etX ≥ etc] ≤ E[etX]
etc

.

The top statement corresponds to bounding the probability that X is too large, and the bottom
statement corresponds to bounding the probability that X is too small. The beauty of these statement
is that the top statement holds for any t > 0, and the bottom holds for any t < 0. Hence, to obtain the
best bounds possible, we will analyze the right hand side, and plug in the value of t that minimizes
these probabilities. Hence the only difference between proving upper tail bounds and lower tail
bounds, is that in one case we are restricted to positive t’s, and the other case we are restricted to
t < 0.

3.1 Sums of Independent 0/1 Random Variables
We now instantiate the above general approach for the special case where X is the sum of indepen-
dent 0/1 random variables. Specifically, let X =

∑n
i=1Xi, where Xi is an independent 0/1 valued

random variable, with Pr[Xi = 1] = pi. Let µ = E[X] =
∑

i pi.

3

Theorem 2. Let X =
∑n

i=1Xi, where Xi is an independent 0/1 valued random variable, with
Pr[Xi = 1] = pi.

• For any δ > 0, Pr[X ≥ (1 + δ)E[X]] ≤
(

eδ

(1+δ)1+δ

)E[X]

.

• For any δ ∈ (0, 1], Pr[X ≤ (1− δ)E[X]] ≤
(

e−δ

(1−δ)1−δ

)E[X]

.

Proof. For notational convenience, let µ denote E[X].From Example 4,

E[etX] =
∏
i

(
1 + pi(e

t − 1)
)
≤

∏
i

epi(e
t−1) = eµ(e

t−1),

where, in the last inequality, we used the fact that for any x > 0, 1 + x < ex.
Plugging this into the statements from the previous section, we have that for any t > 0,

Pr[X ≥ c] = Pr[etX ≥ etc] ≤ E[etX]

etc
≤ eµ(e

t−1)

etc
.

Plugging in c = (1 + δ)µ, this expression becomes eµ(e
t−1)

et(1+δ)µ = eµ((e
t−1)−t(1+δ)). Now we just need

to plug in a value of t that minimizes this expression, which is easy since this is minimized by
minimizing the exponent. Plugging in t = log(1 + δ) yields that et = 1 + δ, and this expression

becomes eµ(δ−log(1+δ)(1+δ)) =
(

eδ

(1+δ)1+δ

)µ

, as desired.
The proof of the lower bound is very similar: we have that for any t < 0,

Pr[X ≤ c] = Pr[etX ≥ etc] ≤ E[etX]

etc
≤ eµ(e

t−1)

etc
.

Plugging in c = (1− δ)µ, this expression becomes eµ(e
t−1)

et(1−δ)µ = eµ((e
t−1)−t(1−δ)). Now we just need to

plug in a (negative) value of t that minimizes this expression. Plugging in t = log(1− δ) (which is

negative) yields that this expression becomes eµ(−δ−log(1−δ)(1−δ)) =
(

e−δ

(1−δ)1−δ

)µ

as claimed.

The bounds given by Theorem 2 might be a bit tricky to parse, and the following easy corollaries
might be handier to apply.

Corollary 5. Let X =
∑n

i=1Xi, where Xi is an independent 0/1 valued random variable, with
Pr[Xi = 1] = pi, and µ =

∑
pi, the following bounds hold:

• For any δ ∈ (0, 1], Pr[X ≥ (1 + δ)µ] ≤ e−
µδ2

3 .

• For any δ ∈ (0, 1], Pr[X ≤ (1− δ)µ] ≤ e−
µδ2

2 .

• For any c ≥ 6, Pr[X ≥ cµ] ≤ 2−cµ.

Proof. For the first statement, note that eδ

(1+δ)1+δ = eδ−(1+δ) log(1+δ) ≤ e−δ2/3, which can be verified
by showing that the exponent δ − (1 + δ) log(1 + δ) ≤ −δ2/3 by analyzing the taylor expansion of
log(1 + δ). The proofs of the other two statements are similar—it’s a good exercise to work them
out!

4

The following corollary is also handy when all you have is a bound on the expectation in ques-
tion. This corollary basically says that if you are trying to bound the upper tail, you can just plug
in your upper bound on the expectation in place of the expectation, and analogously for lower tail
bounds.

Corollary 6.

For any δ > 0, and any c ≥ E[X], Pr[X ≥ (1 + δ)c] ≤
(

eδ

(1+δ)1+δ

)c

.

For any δ ∈ (0, 1], and any c ≤ E[X], Pr[X ≤ (1− δ)c] ≤
(

e−δ

(1−δ)1−δ

)c

.

Proof. To prove the first statement, note that you can define independent 0/1 random variables
Y1, . . . , Ym such that E[

∑
j Yj] = c − E[

∑
i Xi], and hence if you define the random variable

Z =
∑

i Xi +
∑

j Yj , then it is always true that X ≤ Z. Additionally, since E[Z] = c, Theo-
rem 2 applies to Z, and hence we have:

Pr[X > (1 + δ)c] ≤ Pr[Z > (1 + δ)c] ≤
(

eδ

(1 + δ)1+δ

)c

.

The proof of the second statement is similar. One can define independent 0/1 random variables
Y1, . . . , Yn such that if we set Z =

∑
i XiYi, then X ≥ Z, and E[Z] = c. [We can do this by setting

Pr[Yi = 1] = c/E[X] for all i. Since Z is a sum of independent 0/1 random variables, our Chernoff
bound of Theorem 2 applies, yielding:

Pr[X ≤ (1− δ)c] ≤ Pr[Z ≤ (1− δ)c] ≤
(

e−δ

(1− δ)1−δ

)c

.

Remark 7. It is possible to prove a variety of other Chernoff bounds, by making different choices
for how to simplify the moment-generating function E[etX] =

∏
i (pie

t + (1− pi)) . Rather than
expressing this as

∏
i (1 + pi(e

t − 1)) and bounding this by
∏

i e
pi(e

t−1) as we did above, we could
apply the arithmetic-mean geometric-mean (“AMGM”) inequality, to conclude that∏

i

(
pie

t + (1− pi)
)
≤

(
pet + (1− p)

)n
,

where p = 1
n

∑
i pi. If we had taken this route, and then optimized for t, we would have ended

up with a different set of perfectly reasonable Chernoff bounds, which would be even better than
those given in Theorem 2 in the case that the AMGM inequality is tight—namely if all the pi’s are
identical, or very similar.

There are also other Chernoff-like bounds that can be useful. For reference, here are a few of
them.

Hoeffding’s inequality allows you to apply the Chernoff bound to any bounded random variables,
not just 0/1-valued:

Theorem 3 (Hoeffding’s Inequality). Suppose that X1, . . . , Xn are independent random variables
with Xi ∈ [ai, bi] almost surely for all i. Then for any t > 0,

Pr

[∣∣∣∣∣∑
i

(Xi − EXi)

∣∣∣∣∣ ≥ t

]
≤ exp

(
−2t2∑

i(ai − bi)2

)
.

5

Bernstein’s inequality can give an even better bound if the Xi additionally have small variance:

Theorem 4 (Bernstein’s Inequality). Suppose that X1, . . . , Xn are independent mean-zero random
variables with |Xi| ≤M almost surely for all i. Then for any t > 0,

Pr

[∣∣∣∣∣∑
i

Xi

∣∣∣∣∣ ≥ t

]
≤ exp

(
−t2/2∑

i E[X2
i] +Mt/3

)
.

Note: At this point we are done with the material covered in the mini-lectures to be watched
before class. In Section 4 below, there are notes for an application to randomized routing that
we will discuss in class. These notes are here for reference after class.

4 Randomized Routing on the Hypercube
We will now investigate an extremely simple randomized routing scheme. The stylized setting we
will consider is as follows: There are N = 2n “nodes”, indexed 1 through N , and each of which
corresponds to one of the vertices of the n-dimensional hypercube. Every node has a packet that
must be routed to a distinct other node. We can think of this as the problem of routing a permutation,
π, of the N nodes, where node i wishes to send a packet to node π(i). We assume that each node has
direct connections to n other nodes, corresponding to the adjacent vertices in the hypercube (i.e. i, j
have a direct edge if i and j differ in exactly 1 bit in their binary representations). A valid routing
scheme is any way for getting all the packets to their destinations, such that the following rules are
upheld:

1. Time proceeds in discrete steps, and at each time step, at most one packet can traverse each
edge (in each direction).

2. Packets can queue at nodes. For simplicity, we will assume that nodes queue in a FIFO (first-
in-first-out) fashion.

Given these rules, the goal will be to route every packet to its destination in such a way that the
total number of timesteps is minimized. Note that since the diameter of the network is n, there are
permutations that trivially require n steps to route, even if there is no delay/congestion. How close
can we get to O(n) time routing?

Beyond minimizing the total routing time, ideally, the routing protocol will be oblivious, in the
sense that the route that each packet takes depends only on the source and destination of the packet
(and does not depend on the other packets).

Definition 8. An oblivious routing scheme is one where the route that the ith packet takes from node
i to node π(i) depends only on i and π(i).

The following theorem shows that there is no deterministic oblivious scheme that works well for
all routings, π. The proof is not too difficult, though we omit it (feel free to check out the original
reference).

Theorem 5 ([1]). For any deterministic, oblivious routing scheme on the hypercube, there exists a
set of source/destinations, π that require ≥ 2n/2

n
steps to successfully route.

6

We now describe an extremely simple randomized routing. In one sentence, each packet chooses
a node uniformly at random, and routes the packet to that intermediate node, and then routes from
that node to the destination. The randomization in the choice of the intermediate node ensures that,
with high probability, there is relatively little congestion. The specifics for how the packet gets from
the source to the intermediate node, and then from the intermediate node to the destination, does not
matter too much. For concreteness, we will specify that these two phases occur by “bit-fixing”.

Definition 9. The bit-fixing path from a node i to node j is a sequence of nodes, starting with i and
ending with j, where each successive node has a binary representation that differs from the previous
node in exactly one location, where that location is the leftmost bit on which the current node differs
from j. An example will clarify: suppose i = 001010 and j = 101001, the bit-fixing sequence from
i to j is

i = 001010→ 101010→ 101000→ 101001 = j.

Algorithm 10. RANDOMIZED ROUTING ON THE HYPERCUBE
Given permutation π : {1, . . . , N} → {1, . . . , N}, for N = 2n:

1. Each node, i, chooses an ‘‘intermediate node’’ δi uniformly at random
from {1, . . . , N}.

2. Phase 1: each packet is routed from i to δi via ‘‘bit-fixing’’, and
if a packet reaches δi before a total of 3n timesteps, the packet
waits at the node δi.

3. Phase 2: After 3n timesteps, if the ith packet is at δi, then it is
routed from δi to π(i) via ‘‘bit-fixing’’. If the ith packet is not at
δi after 4n timesteps, then send it to π(i) from wherever it is via the
‘‘bit-fixing’’ route.

Theorem 6. With probability at least 1− 2−3n+1, the above scheme will terminate after at most 6n
timesteps.

The high-level structure of the proof will be to focus on a single packet, i, and prove that the
probability that it does not reach π(i) by the claimed time is much less than 2−n, and hence we can
union bound over the N = 2n different packets. To get the inverse exponential probability that the
ith packet fails to reach its destination in time, we will use a Chernoff bound. The analysis will first
argue that Phase 1 successfully completes within the specified time of 4n, and then essentially the
same argument will show that, given that Phase 1 is successful, Phase 2 will also be successful with
high probability within an additional 4n timesteps.

We will conduct the analysis from the perspective of the packet routing from i to δi. Let D(i)
denote the “delay” of the ith packet, namely the number of timesteps that the packet spends waiting
in a queue (as opposed to traversing an edge). The following lemma asserts that D(i) is bounded by
the number of packets whose bit-fixing paths intersect packet i’s path from i to δi.

Lemma 11. Letting Pi = (e1, e2, . . . , ek) denote the bit-fixing path from i to δi, we claim that

D(i) ≤ |{j : Pj ∩ Pi ̸= ∅}| .

7

Proof. Although the lemma statement makes intuitive sense (if there are only 10 people that are
using our edges, we should expect to be delayed at most 10 timesteps), we need to rigorously assign
a unique intersecting packet to “blame” for each unit of delay that i experiences. To do this, we first
observe that every two paths Pi and Pj that intersect, must intersect in a single contiguous segment.
This is true because both paths are via bit-fixing orders, hence once the paths diverge, then can not
merge later on. One way to do this is to imagine that, at the time when packet i incurs delay ℓ, i
gives a certificate cℓ to whichever packet got to use the edge that caused i’s delay. Once a packet, j,
has a certificate, it carries it around, and will transfer the certificate to packet j′ if j experiences a
delay along path Pi caused by packet j′ using the edge that j was waiting for. First, trivially, there is
at most one certificate in existence for each unit of delay that i experiences. Now, we need to argue
that, at the end of the protocol, no packet can end up with more than one certificate. To see this, we
claim that, at any time step, the nodes in any one queue can in total either have 0 or 1 certificates.
This is true because once a certificate cℓ is assigned, at every subsequent timestep it will either leave
path Pi (never to return), or it will advance along path Pi by one node. In particular, the certificate
will never “wait” at a node, since if the packet carrying the certificate is forced to wait, it will transfer
that certificate to the packet using its desired edge. Hence, since no two packets originate at the same
place in Pi at the same time, and they travel along Pi in the same (bit-fixing) order, they can never
“collide” at a subsequent time, and hence no packet can get more than one certificate.

We now finish the proof of Theorem 6.

Proof of Theorem 6. From Lemma 11, the number of time units that packet i spends waiting during
Phase 1 is bounded by the number of other paths that intersect path Pi from i to δi. To bound this, fix
path Pi = (e1, . . . , ek), and consider the expected number of paths Pj that intersect it. For each j ̸= i,
let Xj denote the 0/1 random variable representing the event that Pj intersects Pi. These random
variables are not identically distributed, but they are independent, conditional on Pi, since once δi is
fixed, Xj depends only on the randomness of δj . To bound E[

∑
j Xj], consider the expected number

of paths that will use a given edge, e, in the hypercube. By symmetry, this expected number will be
equal, for all edges, and hence it must be bounded by

expected total sum of lengths of all paths
number edges in hypercube

=
(n/2)2n

2n · n
= 1/2,

where the numerator follows from the expected distance between j and δj is n/2 since in expectation
half the bits will differ, and there are 2n paths, and the denominator is because each of the 2n nodes
has out degree n (again, we are imagining a directed edge between every pair of adjacent nodes).

Since Pi has at most n edges, and each of these edges, in expectation, intersects 1/2 paths,
E[

∑
j Xj] ≤ n · 1

2
. Since

∑
j Xj is the sum of independent 0/1 random variables, Chernoff bounds

apply, and we can conclude by Corollary 6 that

Pr[
∑
j

Xj > 3n] ≤ Pr[
∑
j

Xj > (1 + 5)n/2] ≤
(

e5

(1 + 5)1+5

)n/2

≤ (1/28)n/2 ≤ 2−4n.

A union bound over the 2n nodes yields that the probability that Phase 1 of algorithm does not
successfully terminate after 3n timesteps is at most 2−3n. The analysis that Phase 2 of the algorithm
will also successfully resolve after at most this number of steps is identical, yielding the desired
theorem.

8

Remark 12. You might wonder what would have happened if the algorithm routes packet i to δi, and
then immediately routes from δi to π(i), without waiting for the initial phase to finish. Intuitively,
this sort of scheme seems quite reasonable, and my guess would be that it also would successfully
terminate with high probability after O(n) time steps, though the analysis is certainly more difficult.

4.1 Beyond the Hypercube
Stepping back, you might wonder why routing a permutation on the hypercube is a question worth
thinking about. Whether you are thinking about designing a set of network routers (e.g. for the stan-
ford network), or designing connections between processors on a parallel computer, this settings is
not too much of a caricature. For example, in the case of a parallel computer, after each operation,
perhaps each processor might want to send its information to a different processor. Obviously if
everyone wants to send their information to a single processor, there will be a bottleneck, and we
should probably re-think whatever algorithm we are designing for the parallel computer. So, sup-
pose we do have an algorithm which, after every local computation, allows processors to transmit a
packet to another processor, subject to the condition that no processor is planning to receive more
than one (for example) packets. How can we connect up the processors to allow for this sort of
communication, and how efficiently can this communication be routed? From the previous section,
we get the following punchline: If we have N = 2n processors, we then we can get away with only
logN wires leaving each processor (e.g. a degree logN network), and the communication can be
accomplished via a very simple randomized scheme that takes time only O(logN).

Can we hope to do any better? Is it conceivable that we could do this routing with degree
O(log n) in much less than O(logN) time? No–any graph with degree at most logN will have
two nodes with distance nearly logN , and hence we shouldnt hope for this. What about improving
on the number of wires? Can we hope for a graph with constant degree, that allows for routing in
time O(logN)? Yes!! There is a family of graphs, known as butterfly networks, which have constant
degree, logarithmic diameter, and support a randomized routing procedure similar to the randomized
routing of the hypercube that we saw above.

References
[1] C. Kaklamanis, D. Krizanc, and T. Tsantilas. Tight bounds for oblivious routing in the hy-

percube. In Proceedings of the Second Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’90, pages 31–36, New York, NY, USA, 1990. ACM.

9

