1 Warm-Up

Go to http://PollEv.com/cs265 and answer the following question.

Group Work

Important: as you make progress on the question(s), one person in each room should record your progress on http://PollEv.com/cs265.

Let $G = (V, E)$ be a weighted, undirected graph, on n vertices with edge weights w_{uv} on the edge $\{u, v\} \in E$. Let $d : V \times V \to \mathbb{R}$ be the associated graph metric.

Explain how to efficiently find and apply a map $f : V \to \mathbb{R}^k$, for $k = O(\log^2 n)$, so that

$$\sum_{\{u,v\} \in E} \|f(u) - f(v)\|_1 \leq O(\log n) \sum_{\{u,v\} \in (V)^2} d(u, v)$$

holds with high probability. Above, $(V)^2$ refers to the set of all unordered pairs $\{u, v\}$ for $u, v \in V$ and $u \neq v$.

Group Work: Solutions

Let $f : V \to \mathbb{R}^k$ be the map given by Bourgain’s embedding. Then for all u, v, we have (for some constant b)

$$\frac{k}{b \log n} d(u, v) \leq \|f(u) - f(v)\|_1 \leq kd(u, v),$$

and so

$$\frac{\sum_{\{u,v\} \in E} d(u, v)}{\sum_{\{u,v\} \in (V)^2} d(u, v)} \geq \frac{\sum_{\{u,v\} \in E} \frac{1}{k} \|f(u) - f(v)\|_1}{\sum_{\{u,v\} \in (V)^2} \frac{b \log n}{k} \|f(u) - f(v)\|_1} = \frac{1}{b \log n \sum_{\{u,v\} \in (V)^2} \|f(u) - f(v)\|_1} \sum_{\{u,v\} \in E} \|f(u) - f(v)\|_1.$$

Multiplying both sides by $b \log n$ establishes the statement.

2 Announcements

- HW3 is out!
- Based on the feedback form, a few changes:
- Change in quiz policies:

 * **Quizzes are now collaborative,** with the same collaboration policy as HW. You must still submit your own quiz. As before, you can also ask about quizzes on Piazza and in OH. (But if your question might spoil it for someone else, please ask in a private Piazza post).

 * We may go over quiz material in class if there’s a particular problem that many people missed. It’s fine to ask about quizzes in class, and to discuss them in your small groups.

 * The late quiz policy remains unchanged. It’s okay to (re-)submit the quiz after class, as many times as you like, but you’ll incur a late penalty. It’s okay to submit late even if we talked about the answers in class, but not after you’ve looked at the answers on Gradescope.

- We might be a bit less ambitious about the amount of new stuff we get done in-class, and may spend more time on review (but not always...in particular, probably not today :))

- Based on your feedback, the Nooks developers have added a new way of doing text announcements that doesn’t suddenly interrupt your audio. So I’ll be using that for the “we’ll get started in just a minute” sort of announcements.

- Some people felt that their in-class groups were too large. I made a few of the rooms have group size limits. If you want a small group, go there! (Urad; Watercress; Xigua; Yam; Zucchini now have caps of 4 people and are marked “small.” If they end up being full I’ll make more small rooms).

- **Not policy changes, but some things to note:**

 - Unfortunately with Piazza’s autograding on the quizzes we can’t do partial credit on the multiple choice problems. :(But there are lots of quizzes! So each question is not worth very much.

 - **PLEASE CHAT US** if you’d like a member of the teaching team to come hang out in your room and talk things through with you. (Several people said that they wished TAs stopped by more often— you can make that happen!) You can either put in the global chat (eg, “Room XXX would like a TA!”) or else directly message one of us.

 - Want more practice problems? Check out “Probability and Computing” by Mitzenmacher and Upfal. (You can ask about solutions on Piazza/OH). Also, when watching the videos, pause and try to figure out the next step before I get there. That’s like a little practice problem every 30 seconds!

 - If you have a question about why the answer to a quiz question is what it is, please ask in OH or on Piazza!
3 Questions?

Any questions from the minilectures or warmup? (Metric Embeddings; Bourgain’s Embedding)

- Go into small groups and ask each other your questions.
- Ask any questions that the group can’t resolve in the chat, or DM one of the course staff and we’ll come to your room.

4 Minimum Cuts

[Slides with setup; summary is below]

For a graph $G = (V, E)$, define

$$\phi(G, S) = \frac{|E(S, \bar{S})|}{|S||\bar{S}|},$$

and

$$\phi(G) = \min_{S \subseteq V, S \neq \emptyset, \bar{S}} \phi(G, S),$$

where above $\bar{S} := V \setminus S$ denotes the complement of S, and $E(S, \bar{S})$ denotes the set of edges that have one endpoint in S and one endpoint in \bar{S}.

Intuitively, if $\phi(G, S)$ is small, then S is pretty “disconnected” from \bar{S}. Notice that the denominator, $|S||\bar{S}|$, is the number of edges that would be between S and \bar{S} in the complete graph, so $\phi(G, S)$ is the fraction of possible edges between S and \bar{S} that actually exist in G.

Finding S to minimize $\phi(G, S)$ is useful, for example, in clustering applications. However, it’s also NP-hard. Today we’ll see a randomized algorithm to find an S so that $\phi(G, S)$ is approximately minimized. More precisely, we’ll find S so that $\phi(S, G) \leq O(\log n)\phi(G)$.

4.1 Connection to metrics

Group Work

Important: as you make progress on the question(s), one person in each room should record your progress on http://PollEv.com/cs265.

In this group work, you will show that

$$\phi(G) = \min_f \frac{\sum_{\{u,v\} \in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\} \in \binom{V}{2}} \|f(u) - f(v)\|_1},$$

where the minimum is over all functions $f : V \to \mathbb{R}^k$ for some k, so that f takes on at least two distinct values. (This last bit is needed so that the denominator doesn’t vanish).
1. Show that

\[\phi(G) = \min_{f : V \to \{0,1\}} \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in (V^2)} |f(u) - f(v)|}, \]

where the minimum is over all functions \(f : V \to \{0,1\} \) so that \(f \) takes on both values 0 and 1. (The difference between this and the expression above is that \(f \) maps to \(\{0,1\} \) instead of \(\mathbb{R}^k \) for some \(k \)).

Hint: Consider mapping functions \(f \) to sets \(S \) by the relationship \(S = \{ u : f(u) = 1 \} \).

At this point, please record your progress on PollEverywhere. If you have time, try to answer the next two questions to extend part 1 to the statement (1), but at this point you’ve gotten the main intuition.

2. Think about why the above extends to show that

\[\phi(G) = \inf_{f : V \to \mathbb{R}} \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in (V^2)} |f(u) - f(v)|}, \]

where now the minimum is over \(f : V \to \mathbb{R} \) instead of \(f : V \to \{0,1\} \).

(Don’t worry about a formal proof here, just kind of convince yourself intuitively that this is true).

Hint: Using part (a), it suffices to show that the infemum over all \(f : V \to \mathbb{R} \) is actually attained by some \(f \) that maps vertices in \(V \) to \(\{0,1\} \). To see this, consider the following steps:

- Suppose that \(f : V \to \mathbb{R} \) takes on three distinct values, \(a < b < c \). Consider a new function \(f_x : V \to \mathbb{R} \), so that \(f_x(u) = x \) if \(f(u) = b \), and \(f_x(u) = f(u) \) otherwise. That is, \(f_x(u) \) just replaces the value \(b \) with \(x \). Show that either

\[R(f_a) \leq R(f) \quad \text{or} \quad R(f_c) \leq R(f), \]

where

\[R(f) = \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in (V^2)} |f(u) - f(v)|}. \]

(That is, by sliding the middle value \(b \) towards either \(a \) or \(c \), you can decrease this quantity.)

Sub-hint: when you vary \(x \in [a,c] \), you can get rid of the absolute values in \(R(f_x) \). Looking at a small example might be helpful.

- Argue that the above logic implies that there’s an \(f \) that attains the infemum that takes on only two values.

- Argue that those two values may as well be 0 and 1.
3. Think about why the above extends to show that

$$\phi(G) = \min_{f : V \to \mathbb{R}^k} \frac{\sum_{\{u,v\} \in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\} \in (V^2)} \|f(u) - f(v)\|_1},$$

where the minimum is over all functions $f : V \to \mathbb{R}^k$ for any k.

Hint: You may want to use the inequality that $\sum_i a_i \sum_i b_i \geq \min_i a_i b_i$ for $a_i, b_i > 0$.

Group Work: Solutions

1. Using the connection in the hint, the numerator is exactly $|E(S, \bar{S})|$, and the denominator is the number of edges between S and \bar{S} in the complete graph, which is $|S||\bar{S}|$.

2. **Note:** this proof is a bit involved; there is an easier proof, but this one involves the least machinery and also is somewhat algorithmic, which will be useful later. I didn’t expect students to get all of the details of this proof in group work, I only wanted you to get some basic intuition.

For convenience, let

$$R(f) = \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in (V^2)} |f(u) - f(v)|}.$$

Notice that both the numerator and the denominator of $R(f_{b'})$ are linear in b', for $b' \in [a, c]$. This is because if both $f(u), f(v) = b$, then $|f_{b'}(u) - f_{b'}(v)| = |f(u) - f(v)| = 0$; if neither are equal to b, then the expression does not change; and if only one is equal to b (say WLOG that $f(u) = b$), then the other one is either $\leq a$ or $\geq c$ (say WLOG $\leq a$), meaning that $|f_{b'}(u) - f_{b'}(v)| = |b' - f(v)| = b' - f(v)$ is linear in b'.

Further, the denominator of $R(f_{b'})$ doesn’t vanish, since there’s at least one nonzero term in it (e.g., the term $|c - a|$). But then $R(f_{b'})$ is the ratio of linear functions in b', and the denominator never vanishes. It’s not too hard to see (e.g., with some calculus) that $R(f_{b'})$ is thus is either increasing or decreasing (or constant), and in particular it attains a minimum at one of the endpoints a or c of the relevant interval.

We could have done this for any f so that there are ≥ 3 distinct values in the range. By doing this repeatedly, we see that for any f with ≥ 3 distinct values, there is some f^* with only two values (say, a and b) so that $R(f^*) \leq R(f)$. But notice that $R(f^*)$ doesn’t change if we change the values of a and b to 0 and 1 respectively. (That is, replace $f^*(x)$ with $\frac{f^*(x)-a}{b-a}$).
This implies that \(\inf_{f:V \to \{0,1\}} R(f) \leq \inf_{f:V \to \mathbb{R}} R(f) \), and since there are only a finite number of functions \(f : V \to \{0,1\} \), the infimum is actually a minimum.

3. We have shown that \(\phi(G) = \min_{f:V \to \mathbb{R}} R(f) \). We clearly have

\[
\phi(G) = \min_{f:V \to \mathbb{R}} R(f) \geq \min_{f:V \to \mathbb{R}^k} R(f),
\]

since the set we are minimizing over on the right. On the other hand, for any \(f : V \to \mathbb{R}^k \), we can write \(f = (f_1, \ldots, f_k) \), and so

\[
R(f) = \frac{\sum_{\{u,v\} \in E} \sum_i |f_i(u) - f_i(v)|}{\sum_{\{u,v\} \in (V_2)} \sum_i |f_i(u) - f_i(v)|} = \frac{\sum_i \sum_{\{u,v\} \in E} |f_i(u) - f_i(v)|}{\sum_i \sum_{\{u,v\} \in (V_2)} |f_i(u) - f_i(v)|} \geq \min_i \frac{\sum_{\{u,v\} \in E} |f_i(u) - f_i(v)|}{\sum_{\{u,v\} \in (V_2)} |f_i(u) - f_i(v)|} = \min_i R(f_i) \geq \min_{g:V \to \mathbb{R}} R(g) = \phi(G).
\]

Since the above reasoning held for any \(f : V \to \mathbb{R}^k \), we conclude

\[
\min_{f:V \to \mathbb{R}^k} R(f) \geq \phi(G).
\]

4.2 A randomized algorithm

Group Work

Important: as you make progress on the question(s), one person in each room should record your progress on http://PollEv.com/cs265.

1. First, all quietly read the following: Based on the result that we got in the first group work, we might think of the following approach:

 Find \(f : V \to \mathbb{R}^k \) to minimize

 \[
 R(f) := \frac{\sum_{\{u,v\} \in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\} \in (V_2)} \|f(u) - f(v)\|_1}
 \]
Unfortunately, this doesn’t turn out to be an easy optimization problem to solve. Instead, we’ll consider the optimization problem:

Find values $d_{u,v} \in \mathbb{R}$ for all $u \neq v \in V$ to minimize

$$Q(d) := \sum_{\{u,v\} \in E} d_{u,v}$$

subject to:

- $d_{u,v} = d_{v,u} \geq 0$ for all u,v
- $d_{u,v} + d_{v,w} \geq d_{u,w}$ for all u,v,w
- $\sum_{\{u,v\} \in \binom{V}{2}} d_{u,v} = 1$

It turns out that this problem can be solved efficiently, using linear programming. (If you don’t know what that is, it’s okay; all that matters now is that we can find \tilde{d} to minimize this efficiently).

2. Suppose that d^* is the minimizer of the problem above.
 Explain why $Q(d^*) \leq \phi(G)$.

 (At this point, please record your progress on PollEverywhere)

3. Find a randomized algorithm to approximate $\phi(G)$. More precisely, give a randomized algorithm that finds $f : V \to \mathbb{R}^k$ so that, with high probability,

$$\frac{\sum_{\{u,v\} \in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\} \in \binom{V}{2}} \|f(u) - f(v)\|_1} \leq O(\log n)\phi(G).$$

 Hint: Your warm-up exercise might be relevant.

 Hint: If it comes up, you may assume that Bourgain’s embedding works just fine on pseudo-metrics, which are functions $d(u,v)$ that obey all of the axioms of metrics except that maybe $d(u,v) = 0$ for $u \neq v$.

 (At this point, please record your progress on PollEverywhere)

4. Given f as in the previous part, explain how to efficiently find a set $S \subset V$ so that

$$\phi(G,S) \leq O(\log n)\phi(G).$$

 Hint: Our proof in the first group-work was somewhat algorithmic...

 (At this point, please record your progress on PollEverywhere)
1. Notice that because of the final constraint, and the fact that the \(\ell_1 \) norm satisfies
\[
\| c(f(u) - f(v)) \|_1 = c \| f(u) - f(v) \|_1 ,
\]

\[R(f) = Q(d_f) , \]

where
\[d_f(u, v) = \frac{\| f(u) - f(v) \|_1}{\sum_{u', v' \in (V')^2} \| f(u') - f(v') \|_1} . \]

But \(Q(d^*) \) is the minimum over all (pseudo-)metrics (aka, distances \(d \) that satisfy
\(d(u, v) = d(v, u) \geq 0 \) and also satisfy the triangle inequality), so in particular \(d_f \) is
in the domain that we are minimizing over. Thus, \(Q(d^*) \leq Q(d_f) = R(f) . \)
Since this holds for any \(f , \)
\[Q(d^*) \leq \min_f R(f) = \phi(G) \]
using the previous group work.

2. Apply Bourgain’s embedding to the metric \(d^* \) to get some embedding \(f \). The
warm-up exercise exactly implies that
\[
\frac{\sum_{\{u,v\} \in E} \| f(u) - f(v) \|_1}{\sum_{\{u,v\} \in (V')^2} \| f(u) - f(v) \|_1} \leq O(\log n)Q(d^*) \leq O(\log n)\phi(G) .
\]

3. Given \(f : V \to \mathbb{R}^k \), we saw that we can just find the coordinate \(f_i \) of \(f \) with the
smallest \(R(f_i) \) value and that will have \(R(f_i) \leq R(f) . \) From there, if \(f \) takes on
more than two values, we can “push” any intermediate value to one of its two
neighbors. Repeating this leaves us with \(f \) taking on only two values, and then we
can renormalize \(f \) to take on values that are only 0 and 1. Then we let \(S \leftarrow \text{Supp}(f) . \)