1 Announcements

- HW4 is out, due next Wednesday.
- Solutions for HW2 are posted (or will be posted very soon).

2 Lecture Recap and Questions?

Any questions from the mini-lectures or pre-class-quiz? (Metric Embeddings; Bourgain’s Embedding)

3 Warm-Up

Group Work

Let $G = (V, E)$ be a weighted, undirected graph, on n vertices with edge weights w_{uv} on the edge $\{u, v\} \in E$. Let $d : V \times V \to \mathbb{R}$ be the associated graph metric.

Explain how to efficiently find and apply a map $f : V \to \mathbb{R}^k$, for $k = O(\log^2 n)$, so that

$$\frac{\sum_{\{u,v\} \in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\} \in \binom{V}{2}} \|f(u) - f(v)\|_1} \leq O(\log n) \frac{\sum_{\{u,v\} \in E} d(u,v)}{\sum_{\{u,v\} \in \binom{V}{2}} d(u,v)}$$

holds with high probability. Above, $\binom{V}{2}$ refers to the set of all unordered pairs $\{u, v\}$ for $u, v \in V$ and $u \neq v$.

4 Minimum Cuts

[Will present on the whiteboards, summary is below]

For a graph $G = (V, E)$, define

$$\phi(G, S) = \frac{|E(S, \bar{S})|}{|S||\bar{S}|},$$

and

$$\phi(G) = \min_{S \subseteq V, S \neq \emptyset, V} \phi(G, S),$$
where above \(\overline{S} := V \setminus S \) denotes the complement of \(S \), and \(E(S, \overline{S}) \) denotes the set of edges that have one endpoint in \(S \) and one endpoint in \(\overline{S} \).

Intuitively, if \(\phi(G, S) \) is small, then \(S \) is pretty “disconnected” from \(\overline{S} \). Notice that the denominator, \(|S||\overline{S}|\), is the number of edges that would be between \(S \) and \(\overline{S} \) in the complete graph, so \(\phi(G, S) \) is the fraction of possible edges between \(S \) and \(\overline{S} \) that actually exist in \(G \).

Finding \(S \) to minimize \(\phi(G, S) \) is useful, for example, in clustering applications. However, it’s also NP-hard. Today we’ll see a randomized algorithm to find an \(S \) so that \(\phi(G, S) \) is approximately minimized. More precisely, we’ll find \(S \) so that \(\phi(S, G) \leq O(\log n) \phi(G) \).

Question: How is this definition of \(\phi(G) \) different/better than simply asking for the sparsest cut? (Recall we saw a randomized algorithm for the sparsest cut back in Week 1…)

4.1 Connection to metrics

Group Work

In this group work, you will show that

\[
\phi(G) = \min_f \frac{\sum_{\{u,v\} \in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\} \in (V)^2} \|f(u) - f(v)\|_1},
\]

where the minimum is over all functions \(f : V \to \mathbb{R}^k \) for some \(k \), so that \(f \) takes on at least two distinct values. (This last bit is needed so that the denominator doesn’t vanish).

1. Show that

\[
\phi(G) = \min_{f : V \to \{0,1\}} \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in (V)^2} |f(u) - f(v)|},
\]

where the minimum is over all functions \(f : V \to \{0,1\} \) so that \(f \) takes on both values 0 and 1. (The difference between this and the expression above is that \(f \) maps to \(\{0,1\} \) instead of \(\mathbb{R}^k \) for some \(k \)).

Hint: Consider mapping functions \(f \) to sets \(S \) by the relationship \(S = \{u : f(u) = 1\} \).

2. Think about why the above extends to show that

\[
\phi(G) = \inf_{f : V \to \mathbb{R}} \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in (V)^2} |f(u) - f(v)|},
\]

where now the minimum is over \(f : V \to \mathbb{R} \) instead of \(f : V \to \{0,1\} \).

(Don’t worry about a formal proof here, just kind of convince yourself intuitively that this is true).
Hint: Using part (a), it suffices to show that the infimum over all $f : V \to \mathbb{R}$ is actually attained by some f that maps vertices in V to $\{0, 1\}$. To see this, consider the following steps:

- Suppose that $f : V \to \mathbb{R}$ takes on three distinct values, $a < b < c$. Consider a new function $f_x : V \to \mathbb{R}$, so that $f_x(u) = x$ if $f(u) = b$, and $f_x(u) = f(u)$ otherwise. That is, $f_x(u)$ just replaces the value b with x. Show that either

$$R(f_a) \leq R(f) \quad \text{or} \quad R(f_c) \leq R(f),$$

where

$$R(f) = \frac{\sum_{(u,v) \in E} |f(u) - f(v)|}{\sum_{(u,v) \in (V^2)} |f(u) - f(v)|}.$$

(That is, by sliding the middle value b towards either a or c, you can decrease this quantity.)

Sub-hint: when you vary $x \in [a, c]$, you can get rid of the absolute values in $R(f_x)$. Looking at a small example might be helpful.

- Argue that the above logic implies that there’s an f that attains the infemum that takes on only two values.

- Argue that those two values may as well be 0 and 1.

3. Think about why the above extends to show that

$$\phi(G) = \min_{f : V \to \mathbb{R}^k} \frac{\sum_{(u,v) \in E} \|f(u) - f(v)\|_1}{\sum_{(u,v) \in (V^2)} \|f(u) - f(v)\|_1},$$

where the minimum is over all functions $f : V \to \mathbb{R}^k$ for any k.

Hint: You may want to use the inequality that $\sum \frac{a_i b_i}{b_i} \geq \min_i \frac{a_i}{b_i}$ for $a_i, b_i > 0$.

4.2 A randomized algorithm

Group Work

1. First, all quietly read the following: Based on the result that we got in the first group work, we might think of the following approach:

Find $f : V \to \mathbb{R}^k$ to minimize

$$R(f) := \frac{\sum_{(u,v) \in E} \|f(u) - f(v)\|_1}{\sum_{(u,v) \in (V^2)} \|f(u) - f(v)\|_1}$$
Unfortunately, this doesn’t turn out to be an easy optimization problem to solve. Instead, we’ll consider the optimization problem:

Find values $d_{u,v} \in \mathbb{R}$ for all $u \neq v \in V$ to minimize

$$Q(d) := \sum_{\{u,v\} \in E} d_{u,v}$$

subject to:

- $d_{u,v} = d_{v,u} \geq 0$ for all u,v
- $d_{u,v} + d_{v,w} \geq d_{u,w}$ for all u,v,w
- $\sum_{\{u,v\} \in \binom{V}{2}} d_{u,v} = 1$

It turns out that this problem can be solved efficiently, using linear programming. (If you don’t know what that is, it’s okay, all that matters now is that we can find \vec{d} to minimize this efficiently).

2. Suppose that d^* is the minimizer of the problem above. Explain why $Q(d^*) \leq \phi(G)$.

3. Find a randomized algorithm to approximate $\phi(G)$. More precisely, give a randomized algorithm that finds $f : V \to \mathbb{R}^k$ so that, with high probability,

$$\frac{\sum_{\{u,v\} \in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\} \in \binom{V}{2}} \|f(u) - f(v)\|_1} \leq O(\log n) \phi(G).$$

Hint: Your warm-up exercise might be relevant.

Hint: If it comes up, you may assume that Bourgain’s embedding works just fine on pseudo-metrics, which are functions $d(u,v)$ that obey all of the axioms of metrics except that maybe $d(u,v) = 0$ for $u \neq v$.

4. Given f as in the previous part, explain how to efficiently find a set $S \subset V$ so that

$$\phi(G,S) \leq O(\log n) \phi(G).$$

Hint: Our proof in the first group-work was somewhat algorithmic...