Class 8

Locality Sensitive Hashing
Announcements

• HW3 due tomorrow!
• HW4 out now!
• Please fill out feedback form!
Recap

• Johnson-Lindenstrauss Transforms!
Recap

• Intro to Nearest Neighbor Search

<table>
<thead>
<tr>
<th>Method</th>
<th>Space</th>
<th>Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear scan</td>
<td>$O(nd)$</td>
<td>$O(nd)$</td>
</tr>
<tr>
<td>Various ways of generalizing the $d = 1$ solution</td>
<td>$n^{O(d)}$</td>
<td>$d^{O(1)} \log n$</td>
</tr>
<tr>
<td>Other heuristics</td>
<td>$O(nd)$</td>
<td>$\Omega(n)$ in the worst case</td>
</tr>
</tbody>
</table>
c-near neighbors

Given y, find x_j so that
$$
\| y - x_j \|_2 \leq c \left(\min_i \| y - x_i \|_2 \right)
$$

Goals:
- Space = $(d \cdot n)O(1)$
- Query time = $o(n)$

(For today all of our points live on the unit sphere.)
c-near-neighbors

Imagine that this slide is the surface of the unit sphere…

$$r = \min_{i} (\| x_i - y \|_2)$$

Okay to return this.
Today: \((r, c)\)-near-neighbors

(For today all of our points live on the unit sphere.)

\[S = \{ x_1, x_2, \ldots, x_n \} \subseteq S^d \]

Goals:
- Space = \((d \cdot n)^{O(1)}\)
- Query time = \(o(n)\)

Before:

Given \(y\), find \(x_j\) so that \(\| y - x_j \|_2 \leq c \left(\min_i \| y - x_i \|_2 \right) \)

Given \(y\) so that \(\min_i \| y - x_i \|_2 \leq r \)

find \(x_j\) so that \(\| y - x_j \|_2 \leq c \cdot r \)
(r, c)-near-neighbors

Imagine that this slide is the surface of the unit sphere....

Okay to return this.
c-NN vs (r, c)-NN

$r = \min (\|x_i - y\|_2)$
Fact

• If you can solve \((r, c)\)-nearest neighbors then you can (basically) solve \(c\)-nearest neighbors.

• (See lecture notes).
Goal for today

• A solution to (r, c)-approximate nearest neighbors.

• Tool: **Locality-Sensitive Hashing.**
 • Points that are near to each other have a good probability of colliding.
 • Points that are far from each other are unlikely to collide.

• Strategy:
 • Data structure: hash all the x_i
 • To query, hash y. Return anything in y’s bucket.

Our strategy will actually be slightly more complicated than this, but this is the basic idea...
Our Locality Sensitive Hashing Scheme
Our Locality Sensitive Hashing Scheme

• Let $A \in \mathbb{R}^{k \times d}$ have i.i.d. $N(0,1)$ entries.
 • Here, $k = \frac{\pi \log n}{2r}$ (we’ll see why later).
Our Locality Sensitive Hashing Scheme

• Let $A \in \mathbb{R}^{k \times d}$ have i.i.d. $N(0,1)$ entries.
 • Here, $k = \frac{\pi \log n}{2r}$ (we’ll see why later).
• Define $h(x) = \text{sign}(Ax)$

\[A \]
Our Locality Sensitive Hashing Scheme

• Let $A \in \mathbb{R}^{k \times d}$ have i.i.d. $N(0,1)$ entries.
 • Here, $k = \frac{\pi \log n}{2r}$ (we’ll see why later).
• Define $h(x) = \text{sign}(Ax)$
Our Locality Sensitive Hashing Scheme

- Let $A \in \mathbb{R}^{k \times d}$ have i.i.d. $N(0,1)$ entries.
 - Here, $k = \frac{\pi \log n}{2r}$ (we’ll see why later).
- Define $h(x) = \text{sign}(Ax)$
Actually choose s independent copies of this

- Choose $s = \sqrt{n}$
- Choose $k = \frac{\pi \log n}{2r}$
- For $i = 1, \ldots, s$:
 - Let $A_i \in \mathbb{R}^{k \times d}$ have i.i.d. $N(0,1)$ entries.
 - Define $h_i(x) = \text{sign}(A_ix)$
Outline of group work

• First (problems 1-5) you will show that:
 • If x, y are close, then probably there’s some i so that $h_i(x) = h_i(y)$
 • If x, y are far, then probably there’s no such i.

• Then (problems 6,7), you will show how to use this to get a (c, r)-near-neighbors scheme.
1. Consider a hash function $h_i : \mathbb{S}^d \to \{\pm 1\}^k$ as defined above. Explain why “$h_i(x) = h_i(y)$” has the following geometric meaning:

Imagine choosing k uniformly random hyperplanes in \mathbb{R}^d, and using them to slice up the sphere \mathbb{S}^d like this:

Then $h_i(x) = h_i(y)$ if and only if x and y are in the same “cell” of this slicing. For example, in the picture below $h_i(x) = h_i(y) \neq h_i(z)$.

2. Explain why, for $x, y \in \mathbb{S}^d$, and for any $i = 1, \ldots, s$,

$$\Pr[h_i(x) = h_i(y)] = \left(1 - \frac{\text{angle}(x, y)}{\pi}\right)^k,$$

where $\text{angle}(x, y) = \arccos(x^T y)$ is the arc-cosine of the dot product of x and y, aka, the angle between x and y.

Hint: Think about the geometric intuition in the plane spanned by x and y.

3. Suppose that $x, y \in \mathbb{S}^d$. Fill in the blank, using the previous part:

$$\Pr[\forall i \in \{1, \ldots, s\}, h_i(x) \neq h_i(y)] = \ldots$$

(Don’t worry about simplifying, you’ll do that in the next part).

4. Let $x, y \in \mathbb{S}^d$ and suppose that the angle between x and y is pretty small. Using our choices of s and k above, along with extremely liberal use of the approximation that $1 - x \approx e^{-x}$ for small x, convince yourself that

$$\Pr[\forall i \in \{1, \ldots, s\}, h_i(x) \neq h_i(y)] \approx \exp\left(-n^{1/2-\text{angle}(x,y)/(2\pi)}\right).$$

5. Fill in the blanks (assuming that your approximation from the previous step is valid):

 (a) If $\text{angle}(x, y) \leq r$, then

 $$\Pr[\exists i \in \{1, \ldots, s\} \text{ so that } h_i(x) = h_i(y)] \geq \ldots$$

 (b) If $\text{angle}(x, y) \geq 5r$, then

 $$\Pr[\exists i \in \{1, \ldots, s\} \text{ so that } h_i(x) = h_i(y)] \leq \ldots$$
Question 1

Interpreting “h(x) = h(y)”
Question 1

• For each row a^T of A, we have a hyperplane $\{x \in \mathbb{R}^d : a^T x = 0\}$.

\[
\begin{bmatrix}
0.2 \\
-1.3 \\
0.7 \\
3.2 \\
-50 \\
0.01
\end{bmatrix}
\begin{bmatrix}
0.2 \\
-1.3 \\
0.7 \\
3.2 \\
-50 \\
0.01
\end{bmatrix}
=
\begin{bmatrix}
+1 \\
-1 \\
+1 \\
+1 \\
-1 \\
+1
\end{bmatrix}

Interpreting “$h(x) = h(y)$”
Question 1

• For each row a^T of A, we have a hyperplane $\{x \in \mathbb{R}^d : a^T x = 0\}$.

• If the corresponding coordinate of Ax is negative, then x lies on one side of the hyperplane, else x lies on the other.

Interpreting “$h(x) = h(y)$”
Question 1

• For each row a^T of A, we have a hyperplane $\{x \in \mathbb{R}^d : a^T x = 0\}$.

• If the corresponding coordinate of Ax is negative, then x lies on one side of the hyperplane, else x lies on the other.

• Same cell = same side of every hyperplane = same sign in every coordinate.

Interpreting “$h(x) = h(y)$”
Question 2
\[\Pr[h_i(x) = h_i(x)] = \left(1 - \frac{\text{angle}(x, y)}{\pi}\right)^k \]
Question 2

\[\Pr[h_i(x) = h_i(x)] = (1 - \frac{\text{angle}(x, y)}{\pi})^k \]
Question 2

\[\Pr[h_i(x) = h_i(y)] = (1 - \frac{\text{angle}(x, y)}{\pi})^k \]
Question 2
\[\Pr[h_i(x) = h_i(y)] = (1 - \frac{\text{angle}(x, y)}{\pi})^k \]
Question 3

Q2: \(\Pr[\forall i \in \{1, \ldots, s\}, h_i(x) \neq h_i(y)] = \ldots \)

\(\Pr[h_i(x) = h_i(x)] = (1 - \text{angle}(x, y)/\pi)^k \)
Question 3

\[\Pr \left\{ \forall i, h_i(x) \neq h_i(y) \right\} = \left(1 - \left(1 - \frac{\text{angle}(x_i, y)}{n} \right)^k \right)^s \]

- \(\Pr[h_i(x) = h_i(y)] \) for any one \(i \)
- \(\Pr[h_i(x) \neq h_i(y)] \) for any one \(i \)
- \(\Pr[h_i(x) \neq h_i(y)] \) for all \(s \) values of \(i \)
Question 4
Question 4

With our choice of $s = \sqrt{n}$, $k = \frac{11 \log n}{2r}$,

$$
\mathbb{P}\left\{ \forall i, h_i(x) = h_i(y) \right\} = \left(1 - \left(1 - \frac{\text{angle}(x,y)}{\pi} \right)^k\right)^s \\
\approx \left(1 - \exp\left(-\log(n) \cdot \frac{\text{angle}(x,y)}{2r}\right)\right)^s \\
\approx \exp\left(-n \cdot n^{\text{angle}(x,y)/2r}\right) \\
= \exp\left(-n^{1/2} \cdot \text{angle}(x,y)/2r\right)
$$
Question 5(a)
Question 5(a)

If \(\angle(x, y) \leq r \),

\[
\mathbb{P}\{ \forall i, \ h_i(x) + h_i(y) \} \leq \exp\left(-n \frac{1}{2} \angle(x, y) r \right) \geq \exp(-1)
\]

\[
\mathbb{P}\{ \exists i, \ h_i(x) = h_i(y) \} \geq 1 - e^{-1}.
\]
Question 5(b)
Question 5(b)

If \(\text{angle}(x, y) \geq 5r \),

\[
\exp\left(-n^{\frac{1}{2} - \text{angle}(x, y)/2r}\right) \leq \exp\left(-n^{\frac{1}{2} - 5/2}\right)
\]

\[= \exp\left(-n^{-2}\right)\]

\[\approx 1 - \frac{1}{n^2}\]

\[P\{\exists i, h_i(x) = h_i(y)\} \leq \frac{1}{n^2}\]
Question 6
Question 6

• Query Algorithm:
 • For $i = 1, 2, \ldots, s$:
 • Compute $h_i(y)$
 • If there’s some x_j so that $h_i(x_j) = h_i(y)$, return it.
Question 6

• Query Algorithm:
 • For $i = 1, 2, \ldots, s$:
 • Compute $h_i(y)$
 • If there’s some x_j so that $h_i(x_j) = h_i(y)$, return it.

• If $\text{angle}(y, x_\ell) \leq r$, then with decent probability there’s some i so that $h_i(x_\ell) = h_i(y)$.
 • In particular, the algorithm will return something.
Question 6

• Query Algorithm:
 • For $i = 1, 2, ..., s$:
 • Compute $h_i(y)$
 • If there’s some x_j so that $h_i(x_j) = h_i(y)$, return it.

• If $\text{angle}(y, x_\ell) \leq r$, then with decent probability there’s some i so that $h_i(x_\ell) = h_i(y)$.
 • In particular, the algorithm will return something.

• If the algorithm returns x_j then with high probability $\text{angle}(y, x_j) \leq 5r$.
 • If $\text{angle}(y, x_j) > 5r$, $\Pr[\exists i, h_i(x_j) = h_i(y)] \leq \frac{1}{n^2}$, and we can union bound over all x_j to say that never happens whp.
Question 7
Question 7

Using $\frac{2}{\pi} \angle(x, y) \leq ||x - y||_2 \leq \angle(x, y)$, we can conclude:

- If $\angle(x, y) \leq r$, $\mathbb{P}\{ \exists i, h_i(x) = h_i(y) \} \geq 1 - \frac{1}{n}$.

 $||x - y||_2 \leq \frac{\pi}{2} \cdot r$

- If $\angle(x, y) \geq 5r$, $\mathbb{P}\{ \exists i, h_i(x) = h_i(y) \} \leq \frac{1}{n^2}$

 $||x - y||_2 \geq 5r$

So just fiddle with the value of “c” and the same analysis will still work.
Wrapping up: Time and Space

• Space:

 \[k = O(\log n) \]
 \[s = \sqrt{n} \]

• Update time:
Wrapping up: Time and Space

• Space:
 • s different $k \times d$ matrices A_i: $O(d \cdot \sqrt{n} \cdot \log n)$
 • s hash tables, each with 2^k buckets: $O\left(\sqrt{n} \cdot 2^{O(\log n)}\right) = n^{O(1)}$
 • The elements of S themselves: $O(nd)$

• Update time:
Wrapping up: Time and Space

• Space: $n^{O(1)}$
 • s different $k \times d$ matrices A_i: $O(d \cdot \sqrt{n} \cdot \log n)$
 • s hash tables, each with 2^k buckets: $O\left(\sqrt{n} \cdot 2^{O(\log n)}\right) = n^{O(1)}$
 • The elements of S themselves: $O(nd)$

• Update time:
Wrapping up: Time and Space

• Space: \(n^O(1) \)
 - \(s \) different \(k \times d \) matrices \(A_i \): \(O(d \cdot \sqrt{n} \cdot \log n) \)
 - \(s \) hash tables, each with \(2^k \) buckets: \(O(\sqrt{n} \cdot 2^O(\log n)) = n^O(1) \)
 - The elements of \(S \) themselves: \(O(nd) \)

• Update time:
 - \(s \) different \(k \times d \) matrix-vector multiplies: \(O(s \cdot k \cdot d) = O(d \sqrt{n} \cdot \log n) \)
 - Going through all \(s \) hash tables and look in \(h_i(y) \)'s bucket to see if there's anything else: \(O(s) = O(\sqrt{n}) \)

\[k = O(\log n) \]
\[s = \sqrt{n} \]
Wrapping up: Time and Space

- **Space:** \(n^{O(1)} \)
 - \(s \) different \(k \times d \) matrices \(A_i \): \(O(d \cdot \sqrt{n} \cdot \log n) \)
 - \(s \) hash tables, each with \(2^k \) buckets: \(O(\sqrt{n} \cdot 2^{O(\log n)}) = n^{O(1)} \)
 - The elements of \(S \) themselves: \(O(nd) \)

- **Update time:** \(O(d \cdot \sqrt{n} \cdot \log n) = o(n) \) when \(d \) isn’t too big.
 - \(s \) different \(k \times d \) matrix-vector multiplies: \(O(s \cdot k \cdot d) = O(d \sqrt{n} \cdot \log n) \)
 - Going through all \(s \) hash tables and look in \(h_i(y) \)’s bucket to see if there’s anything else: \(O(s) = O(\sqrt{n}) \)
Recap

• We can use dimension reduction (that smells a bit like JL) to make an efficient c-near-neighbors algorithm!