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Clustering of Proteins 

 
Introduction 
 
Numerous genome-sequencing projects have led to a huge growth in the size of 
protein databases. Manual annotation of the sequences found in these 
databases is expensive and not very feasible. Thus, there is a need for 
developing reliable algorithms that automate the functional classification of these 
sequences and the identification of protein families. Most of the methods that are 
currently used in practice employ evolutionary relationships between sequences 
to predict functional properties. Clustering of proteins is one such method for 
determining evolutionary relationships between proteins and thereby inferring 
functional properties. To perform a clustering on the proteins, we need an 
appropriate measure of distance between two protein sequences so that we have 
a distance matrix for the clustering algorithm. Since evolutionary relationships 
deal with how similar two organisms are, it is ideal to use the alignment score 
between two protein sequences as the distance measure between them because 
the alignments score itself implies how similar two sequences are. In fact it is 
widely accepted as a basis of functional assignment that proteins with high 
sequence similarity share a common evolutionary history (i.e. a common 
ancestor).  
 
All of the alignment scores, i.e. the distances, between every two sequences 
were generated using CLUSTALW, which is a global multiple sequence 
alignment tool that works for both DNA and protein sequences. CLUSTALW 
takes in two sequences as an input and outputs the alignment score along with 
the alignment. For this project, we focus on determining the effects of picking 
different clustering algorithms and the effects of choosing different methods 
within a clustering algorithm on the results. The two clustering algorithms that 
seemed interesting to work on for this purpose were hierarchical clustering and 
the neighbor joining method, both of which have their advantages and 
disadvantages. 
 
 
Hierarchical Clustering  
 
Algorithm:  
Let N be the number of protein sequences found in our dataset. Now our 
distance matrix will be an NxN matrix that's initially filled with the pair-wise 
alignment scores between every two sequences, as calculated by CLUSTALW.  
The algorithm begins by assigning every protein sequence in the dataset to its 
own cluster, thus leaving us with N clusters initially. Here the distance between 



any two clusters is equal to the distances between the protein sequences found 
in each cluster. Since we are using alignment scores as the distances, the higher 
the alignment score, the closer in distance the two clusters are. The algorithm 
sorts all the alignment scores (distances) initially in decreasing order, using 
merge sort, and stores it in an array �A�. 
 
Now at each step, we look for the pair of clusters that have the smallest distance 
between them, which is the pair with the largest alignment score in the distance 
matrix. So in other words, we find the first element in array A whose clusters 
haven�t already been merged in a previous step. We now merge the two clusters, 
whose element was found in array A, into a single new cluster, leaving us with 
one less cluster. We then re-compute the distances between this new cluster and 
every remaining cluster and update the distance matrix.  We also add these new 
distances to the array A, in sorted order. We repeat this process until there is 
only one cluster left that contains all the sequences. The output is a rooted tree 
showing how each protein clusters at each successive level.  We can cut off the 
tree at any level to generate a subset of clusters.  
 
The re-computing of the distances, in the algorithm above, can be done in a 
number of ways, which is what distinguishes the different types of hierarchical 
clustering methods. The three hierarchical methods used in this project were the 
single-linkage method, the average-linkage method and the complete-linkage 
method.  
 
Let Ci and Cj be the two clusters that were merged into the single cluster Cij for 
each of the following methods, 
 
Single-Linkage method:  
Now for every remaining cluster Ck in the distance matrix, we look at the 
distances between Ci & Ck and the distances between Cj & Ck, as given in the 
distance matrix, and we store the minimum of the two distances as the distance 
between Cij and Ck. This implies the distance between two clusters is the 
shortest distance from any member of one cluster to any member of the other 
cluster. Also since we store the minimum of the two distances, we are actually 
looking for the higher alignment score among Ci & Ck and Cj & Ck to store as the 
new distance between Cij and Ck. 
 
 
Average-Linkage method:  
Now for every remaining cluster Ck in the distance matrix, we calculate the 
distance between Cij and Ck using the following formula: 
 D(Cij. Ck) = |Ci| * D(Ci,Ck) + |Cj| * D(Cj,Ck)  
      |Ci| + |Cj| 
So in other words we are actually calculating the average distance between any 
member of one cluster to any member of the other cluster.  
 



Complete-Linkage method:  
Now for every remaining cluster Ck in the distance matrix, we look at the 
distances between Ci & Ck and the distances between Cj & Ck, as given in the 
distance matrix, and we store the maximum of the two distances as the distance 
between Cij and Ck. This implies the distance between two clusters is the longest 
distance from any member of one cluster to any member of the other cluster. 
Also since we store the maximum of the two distances, we are actually looking 
for the lower alignment score among Ci & Ck and Cj & Ck to store as the new 
distance between Cij and Ck. 
 
Complexity: 
The initial merge sort takes O(N2 logN) for sorting N2 elements. During each 
iteration, merging the two clusters takes O(1) time while adding a new distance to 
the array A takes O(logN). Since we have to find the distance from each new 
cluster to every other cluster, the total time for adding every new distance to the 
array takes O(N logN). Finally these iterations runs N times until all clusters have 
been merged, which implies a total running time of O(NlogN * N). So this entire 
algorithm takes O(N2 logN + N logN * N) which equals O(N2 logN).  
 
 
 
Neighbor Joining Method 
 
Algorithm:  
Let N be the number of protein sequences found in our dataset. Now our 
distance matrix will be identical to the one used in hierarchical clustering, that is 
an NxN matrix that's initially filled with the pair-wise alignment scores between 
every two sequences, as calculated by CLUSTALW. However, here we initialize 
each sequence to be a leaf of a tree T. Let dij be the value found between pair i, j 
in the distance matrix. Now let�s define the terms Dij and ri, such that 

Dij = dij � (ri + rj)  and    ri =  _ 1     Σ dik.  
        |T| - 2 
 
At each step, we first calculate ri and Dij for all i and j.  We then pick a pair i, j in 
T for which Dij is minimal. Since we are working with alignment scores, we 
actually look for the Dij that has the largest score (largest value). Next we assign 
a new node k and set  

dkm = (dim + djm � dij)/2, for all m in T.   
Finally we remove the leaves i and j from the tree T and add the node k to it. We 
repeat this process until two leaves are remaining and we join these two leaves. 
This method guarantees that Dij is minimal for leaves i, j if they are neighboring 
leaves. The output for this algorithm is an unrooted tree with showing how each 
protein clusters with each other.  
 
 
Complexity: 



 At each step, we reevaluate the values ri and Dij among all remaining 
leaves. So this takes O(N2). Since we run through each step N times in order to 
join all the N leaves, the total running time of this algorithm is O(N3). 
 
Results 
 
90 Protein Sequences were used as the dataset in this project. So the distance 
matrix, generated by CLUSTALW, had a size of 90x90. I passed in this matrix as 
a parameter into each of the four algorithms that I had written and generated 
trees to represent the output of these algorithms, shown in figures 1-4. 
  
From the algorithms dealing with different methods within hierarchical clustering, 
the single-linkage method seemed to fare the worst. It actually had a cascading 
effect of adding one protein at a time to a cluster while the other two seemed to 
have a more balanced tree as shown below in figures 1, 2 and 3. Due to this 
cascading effect, we weren�t able to obtain any useful information from splitting 
the tree into smaller clusters.  

 
 
Figure 1: Single-Linkage Clustering  

 
Between the average-linkage and complete-linkage methods, both methods 
actually did pretty good when looking at the clusters at the lower level that 
contained around 4-6 proteins. For example, they both found similar groups that 
were classified by PDB for oxidoreductase, nitrite reductase and ligase. 
However, when looking at larger clusters, these smaller clusters were actually 
clustered next to different groups of proteins in both methods, thus yielding 
different results overall for each method. It was hard to judge how well overall 
both clustering algorithms did but ideally, average linkage should have performed 
better since complete-linkage clustering is too strict a measure because of 
always picking the worse score as compared to average-linkage clustering that 
will pick the average of the scores of the clusters that were merged.   



 
   Figure 2: Average-Linkage Clustering 

 
   Figure 3: Complete-Linkage Clustering 
 
 
Both Average-Linkage clustering and Neighbor Joining method are good 
methods to use when the data given is imperfect, that is, when we don�t have 
ultrametric trees that follow the molecular clock. Even though according to the 
results neighbor joining had some cascading effects, we cannot judge it by that 
because of the fact that it outputs us an unrooted tree. Until we find a protein that 
is further away from all these 90 proteins than any of these 90 proteins are from 
themselves, in order to find the root, we cannot judge the overall nature of this 
tree. However, when looking at the smaller clusters generated at the lower levels 
(5-6 proteins), we see comparable results with the average-linkage method, that 
is, similar groups of proteins were clustered together in both. Ideally, however, 
the neighbor joining method is a better method to use since it reevaluates the 
distances from each node to every other node at each step while average-
linkage is always biased towards larger clusters. However, hierarchical clustering 
does produce rooted trees which is easier to read and understand, so there is a 
tradeoff between ease in reading results and efficiency. Also since the data is 
imperfect, we are not guaranteed to obtain the optimal solution for either of the 
algorithms 
 

 
 
   Figure 4: Neighbor Joining Method 


