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Ab Initio Protein Structure Prediction of CASP 111

Targets Using ROSETTA
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ABSTRACT To generate structures consistent
with both the local and nonlocal interactions respon-
sible for protein stability, 3 and 9 residue fragments
of known structures with local sequences similar to
the target sequence were assembled into complete
tertiary structures using a Monte Carlo simulated
annealing procedure (Simons et al., J Mol Biol 1997;
268:209-225). The scoring function used in the simu-
lated annealing procedure consists of sequence-
dependent terms representing hydrophobic burial
and specific pair interactions such as electrostatics
and disulfide bonding and sequence-independent
terms representing hard sphere packing, a-helix
and B-strand packing, and the collection of B-strands
in B-sheets (Simons et al., Proteins 1999;34:82-95).
For each of 21 small, ab initio targets, 1,200 final
structures were constructed, each the result of
100,000 attempted fragment substitutions. The five
structures submitted for the CASP III experiment
were chosen from the approximately 25 structures
with the lowest scores in the broadest minima (as-
sessed through the number of structural neighbors;
Shortle et al., Proc Natl Acad Sci USA 1998;95:1158-
1162). The results were encouraging: highlights of
the predictions include a 99-residue segment for
MarA with an rmsd of 6.4 A to the native structure, a
95-residue (full length) prediction for the EH2 do-
main of EPS15 with an rmsd of 6.0 A, a 75-residue
segment of DNAB helicase with an rmsd of 4.7 A, and
a 67-residue segment of ribosomal protein L30 with
an rmsd of 3.8 A. These results suggest that ab initio
methods may soon become useful for low-resolution
structure prediction for proteins that lack a close
homologue of known structure. Proteins Suppl
1999;3:171-176. © 1999 Wiley-Liss, Inc.

Key words: protein structure prediction; knowl-
edge-based scoring functions; fragment
assembly; critical assessment of struc-
ture prediction experiment (CASP)

INTRODUCTION

The picture of protein folding that motivates our ap-
proach to protein tertiary structure prediction is that

© 1999 WILEY-LISS, INC.

sequence-dependent local interactions bias segments of
the chain to sample distinct sets of local structures, and
that nonlocal interactions select the lowest free energy
tertiary structures from the many conformations compat-
ible with these local biases. In implementing the strategy
suggested by this picture, we use quite different models to
account for the local and nonlocal interactions. Rather
than attempting a physical model for local sequence
structure relationships, we turn to the protein database
and take the distribution of local structures adopted by
short sequence segments (less than 10 residues in length)
in known three-dimensional structures as an approxima-
tion to the distribution of structures sampled by isolated
peptides with the corresponding sequences. Nonlocal inter-
actions in proteins we assume can be reasonably well
modeled at the level required for folding without a detailed
representation of the side chains. The primary nonlocal
interactions we consider are hydrophobic burial, electro-
statics, disulfide bonding, main chain hydrogen bonding,
and excluded volume; because of uncertainties over param-
eter values we derive these from known protein structures
using a self-consistent Bayesian approach.! The lack of
detail in the model potentially facilitates identification of
the determinants of protein folding, and importantly,
makes ab initio structure prediction of small proteins
computationally feasible.

METHODS

Prediction of the structures of CASP 3 targets with
fewer than 160 residues began with a multiple sequence
alignment generated by PSI-BLAST? using default param-
eters. Sequences with less than 25% or more than 90%
sequence identity to the target were removed. Structure
prediction for those sequences obviously related to pro-
teins of known structure was not attempted (more than
25% sequence identity). The edited multiple sequence
alignments were sent to the PHD Web server,? and 25
fragments from known structures with sequences and
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TABLE 1. Evaluation of the CASP3 Structure Predictions’

Success Best submitted Best generated
Target Fold Length level rmsd Residues Model rmsd Residues
46 vy adaptin g 119 # 45 1-37 5 49 1-58
56 DNAB a 114 R 4.7 26-103 5 4.7 26-103
59 SMD3 B 71 5.3 5-30 4 4.5 5-35
61 HDEA «a 76 ok 4.0 25-85
63 IF5a op/B 135 HfE 54 83-138
64 SinR a 102 otk 3.0 1-63 2 2.0 1-63
65 Sinl a 31 otk 3.8 9-39 1 2.0 9-39
7Tlaadaptin  Plapa 125113 #/ 44 71-125
74 EPS15 «a 95 otk 6.0 6-100 2 3.8 9-100
75 ETS-1 o 110 * 5.3 32-54 4 3.9 57-108
77130 aPa 104 otk 3.8 14-80 4 3.8 14-80
79 MarA o 129 et 6.4 9-109 2 4.3 9-124
81 MGSA aBa 151 otk 5.5 23-83 2 3.0 65-114
83 Cyanase o/Ba 156 * 4.8 7-48 5 4.1 1-50

"The classification used in the “Success level” column is nothing correctly generated or submitted (no stars), large fragment
correct in a generated structure (*), globally correct generated structure (**), large fragment correct in a submitted
structure (¥**¥) and globally correct submitted structure (¥****¥). For each target, the longest low-rmsd segments (all rmsds
reported in this article are for standard sequence-dependent structural superpositions) in the five submitted and the 1,200
generated are described in the “Best submitted” and “Best generated” columns (for example, residues 1-37 in model 5 for
target 46 had an rmsd to native of 4.5 A). For target 66, only the portion of target 64 that interacts with target 65 was

considered.

secondary structures similar to the sequences and pre-
dicted secondary structure of each three- and nine-residue
segment of the target sequence were identified using a
scoring function similar to that of Fischer and Eisenberg.*
The secondary structure of the fragments is biased toward
but not constrained to that suggested by the secondary
structure prediction. Protein tertiary structures were gen-
erated from these sets of three- and nine-residue frag-
ments using the fragment insertion-simulated annealing
strategy described previously® with 100,000 attempted
fragment insertions per structure. The scoring function is
composed of sequence-dependent terms representing hydro-
phobic burial, electrostatics, and disulfide bonds and se-
quence-independent terms describing a-helix and B-strand
packing and the assembly of B-strands into B-sheets.2 A
term linear in the radius of gyration was added during the
annealing process to generate compact structures, but it
was not used in the final evaluation of the structures. For
each target, 1,200 structures were generated, for a protein
of 120 residues. This took approximately 2 days on five
workstations (Alpha 533 MHz). The top approximately 25
structures with the lowest scores and in the broadest
minima (as assessed by the number of the other 1,199
structures within 7 A rmsd®) were visually inspected for
single hydrophobic cores, few hydrophobic surface resi-
dues, unpaired buried polar amino acids, compactness,
and regular supersecondary structures, and the top five
structures were submitted. When the experimentally deter-
mined structures became available, the DALI Web server’
was used to identify structural similarity between these
structures and the five submitted structures. We call our
approach to ab initio structure prediction ROSETTA, after
the stone that allowed the deciphering of Egyptian hiero-
glyphics.8

RESULTS AND DISCUSSION

We predicted the structures of 21 of the 43 targets
available in CASP3 that did not have obvious homologues
with known structures. Of these targets, eighteen experi-
mentally determined structures, which cover the gamut of
secondary structure composition, are available for compari-
son to the predicted structures. When the experimentally
determined structures were made available before the
CASP3 meeting, we evaluated our predictions by search-
ing for native-like substructures using the DALI server® in
both the large set of 1,200 structures and the five submit-
ted structures. As indicated in Table I, significant struc-
tural matches were found for a number of the targets.
After the CASP3 meeting, the predictions made by other
groups provided a convenient reference point for evaluat-
ing the relative strengths and weaknesses of the method;
the comparison is perhaps the best way to take into
account the differences in the difficulties of the different
targets. We found the graphical summaries prepared by
Tim Hubbard® particularly useful for this purpose and
have reproduced his summaries in Figure 1. Each line in
the plots represents one prediction; our predictions are
shown in color (red indicates the first prediction).

What Went Wrong

For a number of targets (81, 83a, 54, 46, and 61) our
predictions were poor compared with those of other groups.
Most of these were larger proteins that turned out to be
threading targets; in these cases our de novo conforma-
tional searching method could not compete with the vast
reduction in the size of the search space implicit in
threading methods. Improvement in the search strategy is
clearly necessary for proteins of more than 100 residues.
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Fig. 1. Graphical analysis of the predictions of CASP3. Each predic-
tion for each target is indicated by a line; the x axis is the maximum
number of residues that can be superimposed on the native structure for a
given rmsd threshold (y axis). Good models have large numbers of
residues superimposable on the native structure for relatively low rmsd
cutoffs and thus are represented by the lines closest to the x axis. Black,
all models submitted by other groups; red, our model 1; yellow, our
models 2-5. Axis labels were omitted to avoid cluttering the figure; fully
labeled versions of these figures are available at the CASP3 Web site:
http://predictioncenter.linl.gov/casp3/results/.

The method may also work less well for proteins with
atypical local sequence features; for target 52, for example,
the local structure prediction was quite poor.

For four targets—cyanovirin (target 52), HPPK (target
43), the second prediction of RLZ (target 84), and VanX
(target 54)—variations on the standard method were used
to try to incorporate additional information. These were
largely unsuccessful; a method for using such additional
information is clearly an area for future work.

In cases in which successful predictions were made, our
subjective ranking system failed to identify the best predic-
tions in the five submitted structures; the number one
predictions were usually relatively poor. This was particu-
larly dramatic for MarA, target 79, in which models 2-5
were all much better than model 1 (we choose model 1
because it was more compact). Better results would prob-
ably have been obtained if we had resisted the temptation
to intervene at the last step and completely automated the
selection procedure.

What Went Wrong on an Absolute Scale But Not so
Bad on a Relative Scale

Our internal evaluation before the meeting and the post-
meeting evaluation in light of the predictions of other groups
were generally in accordance with regard to the most
successful predictions but differed with regard to the next
tier of predictions. The latter set of targets includes 83b,
T1a, 43, 59, 71b, 75, 65, 63a, and 66. We considered these
predictions poor, but they turned out to be acceptable when
the difficulty of the target was considered and measures
other than contiguous superimposable residue matching
were used (Fig. 1). Thus, the method appears to capture
some nontrivial features of these structures even when
long, contiguous, low-rmsd fragments were not generated.

What Went Right

Particularly good predictions were made for four tar-
gets. The submitted structures were selected on the basis
of the number of other structures within 7 A rmsd and the
score. As shown in Figure 2, both measures turned out to
be moderately correlated with the rmsd to the native
structure. The correlation between rmsd and score (Fig. 2,
left panels) is reasonably good given the performance of
the scoring function in recognizing native-like structures
in large decoy sets? (the scoring function was extensively
optimized in the structure-generation procedure, and thus,
many structures in low-scoring false minima could have
been generated). The use of the “number of structural
neighbors” statistic to assess the breadth of the free energy
minimum populated by a structure’ proved to have been
useful in this blind ab initio structure prediction context:
the lowest rmsd structures almost always had a large
number of structural neighbors (Fig. 2, right panels).

For two of the four targets, large fragments were pre-
dicted reasonably well. For target 77 (L30), the best
predicted structure (model 4), which was the third most
common topology among the low-energy structures, had a
67-residue fragment with an rmsd to the experimentally
determined structure of 3.8 A (Fig. 3). This and an
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Fig. 2. Score and neighbor density versus rmsd to native. The score
using the function minimized in the simulated annealing protocol (left
panels) and the number of neighbors within 7 A rmsd (right panels) for the

excellent prediction by the Skolnick group were competi-
tive with the predictions made for target 77 using thread-
ing methods (Fig. 1, target 77).

One of our predictions for target 56 (DNABS®), a true ab
initio target (no similar structures are found in the PDB
using DALI® or VAST!), was quite good over a fairly large
segment (Fig. 1 and Fig. 3). This substructure occurred
frequently in the set of 1,200 simulated structures (Fig. 2),
but surprisingly no globally correct structures were gener-
ated. Either the fragment set consistently turns the chain
in the wrong direction after the blue helix in Figure 3, or
native-like structures are not as low scoring as the alterna-
tives. The secondary structure was known for this target in
advance of the prediction, but this information was not used
in the generation of the structure shown in Figure 3. As is
clear from Figure 1, this prediction is better than any of the
other predictions made by us or by others for this target.

For two targets, good predictions were made over almost
the entire length of the protein. A large portion of target

generated structures are plotted versus the rmsd to native. The rmsd is
measured over 67 residues for target 77, 75 residues for target 56, 95
residues for target 74, and 99 residues for target 79.

74, the EH domain of EPS152 (Fig. 3), is structurally
similar to a number of calcium-binding proteins; thus, it
was a relatively easy threading target. Although this
information was not used explicitly in the fragment selec-
tion, fragments of EF-hand motifs from known structures
contributed to the fragment library and undoubtedly im-
proved the tertiary structure prediction. Our prediction
has several interesting features. First, the relative position-
ing of the helices is better than that of many of the
templates used for threading. Second, a rare variant of an
EF-hand motif found between the yellow and green helices

Fig. 3. Cartoons of native structures and successful predictions.
Molscript'* and raster3d®® were used to create ribbon diagrams of target
77 (67 residues of 104 total), target 56 (75 residues of 114 total), target 74
(all 95 residues) and target 79 (all 116 residues). From N- to C-terminal,
the order of secondary structures in the structural comparisons is red,
yellow, orange, green, blue, and purple. The colored segments are
specified by the native secondary structure.
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is well modeled. Finally, the structurally unique C-terminal
portion of the structure is reasonably well positioned (blue
colored segment; the threading predictions are truncated
because the C-terminal part of the molecule is not found in
previously determined structures). Our success on this
target suggests that a combination of our method and
conventional threading/homology modeling methods may
be quite useful for predicting structures in cases in which a
subset of the protein is clearly related to a protein of
known structure.

Our most successful prediction was for target 79, the
transcriptional activator MarA.? The correct fold occurred
very frequently in the set of simulated structures (Fig. 2);
our failure to rank it number one attests to the weakness
of our “visual inspection” based ranking of the top five
structures. Models 2 and 4 were considerably better than
any of the other predictions made for this target, both over
the entire length and throughout the first domain (Fig. 1,
targets 79 and 79a). Importantly, our predictions for this
target are good enough to have functional implications; the
two domains contain helix-loop-helix motifs that are spaced
appropriately to bind DNA (as pointed out by Alexey
Murzin, this should have made it obvious that models 2-5
were better than model 1). Fragments of DNA-binding
proteins appear not to have contributed to the final
conformations: the twenty largest contributors of frag-
ments are not DNA-binding proteins.

What We Learned and Future Directions

1. Low-resolution structure prediction can succeed with-
out explicit representation of side chains and side chain-
side chain packing. However, modeling of side chains may
help improve the selection and generation of better pre-
dicted structures.

2. Human intervention can be bad (cftarget 79); all steps
of the method should be completely automated.

3. At the CASP3 meeting there were complaints that the
method was “nonphysical.” We strayed from the physically
plausible picture of folding described in the introduction
by using multiple sequence information in the fragment
selection. It is unclear how much multiple sequence infor-
mation contributed to the predictions, but future work
aimed at modeling folding will clearly have to start with
single sequences and preferably reduce the reliance on the
protein database as a source of parameter estimates.

4. The target 74 and 79 results suggest that the method,
perhaps with additional information from threading/
sequence searches implemented in the form of pseudo-
potentials or by fixing large substructures, potentially can
be useful for threading/homology modeling in cases of very
low sequence similarity and for large insertions/extensions
not included in the template structure.
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