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Abstract 

Given a protein's sequence, one may try to predict its structure by reference to basic 

physics or even by searching against some more pragmatic quasi-energy or score function. 

Threading attempts to solve what should be a simpler problem – looking through the set of 

currently known structures and identifying the ones which are most likely to be appropriate 

for the sequence of interest. Unlike pure sequence-based methods, the calculations should use 

known structural information. It remains to be seen if threading will be obsolesced by the best 

sequence based methods or the newest approaches which do not even use a template structure. 
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1. Introduction 

Theoreticians have been trying to predict protein structure based on sequence 

information for decades. Literally, more than a quarter century ago, there were optimistic 

reports that one could use simulation methods to calculate the structure of a small protein 

given only its sequence.(1,2) To this day, devotees of this approach persevere and may 

ultimately win over the problems with force fields and the enormous search space. In the 

meantime, a class of protein structure methods have developed travelling under names such as 

protein threading and fold recognition. 

In the most general case, protein structure prediction is a truly ferocious problem whose 

size can be made clear by a model calculation. Imagine that every peptide plane (ω) angle is 

fixed, planar and trans. At every residue, one still has the phi and psi (φ, ψ) backbone angles 

and there might be two or three preferred local conformations. Even in this unrealistically 

simple case, a protein of 100 residues has between 1030 (2100)  and 1047 (3100) conformations 

to be considered. These numbers come without even considering sidechains or the fact that 

backbone conformations are continuous variables and do not fall into two or three discrete 

locations. At the risk of being a doomsayer, one could also note that computers double their 

speed every few years, but the size of the computational problem doubles with every extra 

amino acid. If you can predict the structure of a 50 residue protein this year, it could be a few 

more years until you can do 51 residues. 

Rather than give up, one can look for a simpler version of the problem or a subset which 

might be solvable. Proteins probably do not manage to fold into every shape a polymer 

chemist could imagine(3). Instead, there may only be a finite number of protein folds in 

nature(4-12) and certain kinds of structure seem to be remarkably popular amongst apparently 

unrelated sequences.(13-20) This has an important consequence. Even when an 

experimentalist may not expect any similarity, the structure they are about to solve may be 

quite similar to one that is already known. In recent years, less than 15 % of structures 

deposited in the protein data bank (21) could even be considered new folds. This is the 

rationale for the entire area of threading or fold recognition. The protein sequence of interest 

may have no detectable sequence homology to anything of known structure, but there may 

well be some similar structure waiting to be recognised. If one can recognise the related 

structure and do a sequence to structure alignment calculation, one should produce a useful 

model. It would be even better if one could detect those cases where the method will fail and 
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the sequence will fold to a new structure. Unlike normal sequence comparison, the alignment 

method should take advantage of the structural information of each template. 

Some of the statements above are poorly quantified and no two groups may agree on 

what constitutes a new fold and how often one is found. At the same time, one can quote 

some findings on when sequence similarity is sufficient to infer similarity. It is often said that 

if a sequence has more than 30 % identity to a known structure, it is possible to build a 

reasonable model, but at 20 to 25 % the similarity may be purely coincidental. In practice, this 

rule of thumb should not be used. For example, Brenner et al give the example of a pair of 

proteins with 39 % sequence identity, but no detectable structural similarity.(22) Rather than 

look for a single number (sequence identity), one must look at the length of the proteins and 

aligned regions. Intuitively, it is obvious that 40 % similarity over a small peptide is much 

more likely to happen by chance than 40 % over 500 residues. This issue has been addressed 

by comparing large numbers of protein pairs.(22,23) Basically, for 50 residues, you would 

want 40 % sequence identity before deeming it reliable, but for 250 residues, 25 % might 

suffice. These numbers are purely statistical, so there is always the distinct possibility that a 

weak sequence identity does not reflect structural similarity. A better approach is to resist the 

temptation to concentrate on pairwise numbers. Sequence database searching programs such 

as FASTA (24) and BLAST(25) estimate the reliability of a sequence match by looking at it 

in the context of the whole library of sequence scores. More recent, iterated versions of 

BLAST(26), render the interpretation of pairwise sequence identity even more meaningless. 

Because programs such as PSI-BLAST work with a sequence profile, a database hit is often 

statistically reliable, even with less than 20 % sequence identity. 

With these results in mind, one is left with an unsatisfying, but practical way to decide 

whether or not a threading calculation is of interest. If a simple database search finds a 

reliable homologue of known structure for a sequence, it is the best way to build a model. If a 

careful, exhaustive, iterated database search cannot find a statistically reliable homologue or if 

you wish for a confirmation of your beliefs, a threading calculation is called for. 

2. Threading Overview 

For a threading calculation, there are some elements common to most programs. Firstly, 

you have a sequence of interest and a library of templates or known structures as shown in 

Fig  1. Presumably, these are protein data bank structures and the library contains all known 

protein folds. Next, one takes the sequence and "threads" it through each template in the 

library as shown in Fig. 2 . The word threading implies that one drags the sequence 
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(ACDEFG...) step by step through each location on each template, but really one is searching 

for the best arrangement of the sequence as measured by some score or quasi-energy function. 

In the third alignment in Fig. 2, the sequence of interest has been aligned so it skips over part 

of the template. Finding the best arrangement of residues, including these gaps and insertions 

is the problem of sequence to structure alignment, discussed below. Finally, all the candidate 

models with their scores are collected in Fig. 3. The best scoring (lowest energy) one is then 

taken as the structure prediction. 

Before considering technical details, this simple picture highlights some problems. 

Firstly, the result will depend on the size and details of the library at the first step. Typically, 

different groups will have libraries ranging from 500 to 5000 members and there is definitely 

no consensus as to the optimal size. On the one side, the library should be small. Threading 

calculations are often slow, so one may want to use the smallest possible library. At the same 

time, threading score functions are far from perfect. The closer a template is to the correct 

answer, the more likely the sequence is to score well on it. Thus libraries should be large. 

However, imagine you include 10 small variations on one particular protein fold, but one 

representative from another. Statistically, the well-represented fold is more likely to score 

well by chance. Thus, libraries should be small. Finally, there is no agreed way to select the 

particular members. 

One could argue that library members should be single chains or domains. One could 

argue that from a protein family, one should select the member that has the best quality 

coordinates or the one that is in some way most representative of the family of structures. 

Continuing in this vein, the idea of representative structures implies that one has already 

clustered all known proteins down to a set of families. This could be based on sequence 

identity or some measure of structural similarity. Finally, one is not even limited to simple 

PDB coordinates. Madej et al used a library based on extracted cores from proteins (27) and 

some have suggested that the structures in the library could be optimised so as to make the 

ranking of models statistically more reliable.(28) 

The simple set of pictures also introduce the next questions. One needs some way to 

score the sequences and structures and then one will need a way to find the best alignment of 

a sequence on a template structure. 

3. Score functions 

Much of computational chemistry is centred about finding the best conformation for 

some molecule. In protein calculations, this usually involves a classical atomistic model for 
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the potential energy of a system.(29-32) In the case of protein threading, one is not bound by 

this philosophy. One really just wants a score function which is capable of recognising correct 

arrangements of protein residues. It need not perform all the feats of a conventional force field 

or work in the same application areas. For example, in the procedure described so far, one 

need never take the derivative of score with respect to coordinates, although this would 

usually be an essential step in many energy minimisation schemes or dynamics simulations. 

Similarly, if a score function is only used in a threading context, it will never be faced with 

atoms hitting each other, stretched bonds, distorted angles or any of the other situations which 

might confront a normal force field. This should mean that it is easier to build a through-space, 

threading score function than a full force field for molecular mechanics calculations. 

Threading score functions are also usually more coarse-grained than those used in a real 

energy calculation. In a threading calculation, the sequence residues are placed on the 

backbone of the template structure and from there, one can calculate ideal coordinates for the 

Cβ atom. One does not know where the rest of the residue is so it will be extremely difficult to 

use a score function which uses the coordinates of all atoms. Consequently, a threading score 

function usually represents each residue by one or a few interaction sites. Often, most of the 

chemical identity of a residue comes from an interaction site located at the Cβ residue or a 

point closer to the sidechain centre of mass. 

 With this level of representation, it is not common to rely on pure physics. For 

example, a threading score function does not usually have a term like Coulombs law for 

electrostatics or a Lennard-Jones term for other atomic interactions. Instead, there are two 

common approaches to building a score function: (i) potentials of mean force and (ii) from an 

optimisation calculation. 

 Potentials of mean force are described in statistical mechanics textbooks, often based 

on the distributions of particles in simulations.(33) At a coarse-grained level, suitable for 

threading, there were parameterised in the 1970's, 1980's (34,35) and repeatedly since.(36,37) 

In the protein literature, they usually travel under names such as statistics- or Boltzmann-

based force fields or score functions and sometimes even knowledge-based force fields. The 

principle is easily illustrated by example. If we know the concentration of two species 

(particle types A and B), we can calculate how often they will be observed at a certain 

distance from each other by chance. If AB pairs are seen more often than expected at 5 Å, the 

system is behaving as if there is some kind of energy minimum between the particles at 5 Å. 

If the pairs of particles are seen less often than expected at that distance, it appears that the 

interaction is unfavourable at that distance. To formalise this, one must remember the words 
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of Herr Boltzmann and refer to some free energy, G which is a function of the distance rAB 

between particles of types A and B: 

( )
0ln
AB

AB

r

r
AB kTrG

ρ
ρ

=  

k and T have their normal meanings of Boltzmanns constant and temperature. 
ABrρ  is the 

observed frequency of AB pairs at distance r. 0
ABrρ is less obvious. It is the frequency of AB 

pairs at distance r you would expect to see by chance. This formulation is very general and is 

easy to apply to proteins. Instead of considering particles A and B, you might consider Cβ 

atoms on Ala and Trp residues. Then you could build a potential of mean force for Ala/Trp Cβ 

atoms and you could do this for every combination of amino acids. One could even 

parameterise this kind of function in terms of torsion angles or any other property that seems 

to be important for determining a protein's structure. 

 This framework relies on measuring 
ABrρ  and estimating 0

ABrρ . With protein structures, 

the best you can do for 
ABrρ is collect statistics from the protein data bank and pretend this is a 

statistical mechanical ensemble. For 0
ABrρ , the frequency you would expect by chance, one can 

use an analogy with chemistry, treat A and B as species in solution and consider the 

concentrations [A] and [B]. For proteins, you could treat the amino acid composition as if it 

was a mole fraction. 

In practice, it may not be valid to treat proteins as if they were disconnected solutions of 

amino acids.(38) There might be artefacts due to packing effects and problems with the 

fictitious statistical mechanics.(39,40) It is hard to see what kind of ensemble a survey of the 

PDB really is, but it has been argued that the resulting numbers are Helmholtz free energies. 

(41,42) Pragmatically, it may not matter much how close these statistical score functions are 

to free energies. They definitely do reflect statistical tendencies within proteins and this may 

be all one needs for a threading application.(43) Despite the debate over details, the approach 

is clear. One takes a large set of proteins, collects statistics and converts them to a score 

function. One then expects this function to work well for proteins not included in its 

parameterisation. 

If one believes the statistical mechanical basis for the statistics-based score functions, 

then one is dealing with a real energy which is properly calibrated against the rest of the world. 

There is, however, a quite different school of thought. If one is dealing with protein threading, 

or perhaps structure prediction in general, than maybe one need not be too concerned with 

real energies or reproducing the physics of protein folding. It is not important that a score 
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function represent every false minimum or kinetic trap which a protein visits when folding. 

Instead, one wants a function which can distinguish between a correct and incorrect structure. 

This function will usually have some adjustable parameters and perhaps these can be 

optimised for protein fold recognition. (44-49) The result may be a function which does not 

look like a conventional model for energy, but formally is still a force field. 

While this approach sounds attractive, it is not so simple to put in place. Firstly, one 

must select the underlying basis functions. In the literature, these have ranged from quasi-

Lennard-Jones terms(44,48) to various kinds of sigmoidal function.(47,50) Next, there is a 

problem with the question as posed. We want to distinguish between correct and incorrect 

structures. We can say that the correct structure is whatever is given in the protein data bank, 

but unfortunately, there is almost an infinity of incorrect structures for a sequence and one 

would like the score function to penalise all of them. One way to encode this idea is to adopt a 

statistical approach and try to consider the distribution of incorrect structures.(50-53) Imagine 

you have some score function which produces an energy, EX, for your sequence on a template 

structure X. If you generate a large number of incorrect or alternate structures, you can 

calculate their energies (Ealt). One convenient way is to take a sequence and put its residues 

onto every template you can find that is larger than the sequence. This guarantees that the 

alternative structures are protein-like. Next, you could plot out a histogram of the energies of 

the alternate structures as shown in Fig. 4(A). Empirically, the distribution of alternate 

energies (Ealt) looks like a Gaussian curve (50), and it can even be theoretically justified.(53). 

As well as the distribution of Ealt, Fig. 4(A) shows Enat, the energy of the native structure. 

What we would like is to adjust the force field parameters so that Enat is well separated from 

the mean energy of all the wrong structures, altE . In other words, one wants to 

make altnat EE −

altE

 as large as possible, as shown in Fig. 4(B). At the same time, one does 

not want to simply scale the figure. Instead, one should keep the standard deviation of the 

distribution,σ  as small as possible. This idea is captured by the standard statistical term, 

the z-score, given by 

altE

altnat EE
z

σ
−

=− score  

So, with this philosophy, the aim is the find the score function which gives the greatest 

z-score. At the same time, the score function should not only work for one protein, it should 

work (ideally) for every protein it will ever be faced with. Then, the approach usually taken is 

to select a set of proteins for parameterisation and to adjust the force field to give the best 
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z-score over the whole set. Numerically, one has to take the expression for the z-score, expand 

it in terms of the underlying energy expressions and parameters and use a numerical 

optimisation method to adjust the parameters. Hopefully, the score function will then work 

well, even with proteins it has never faced before. 

4. Sequence to structure alignment 

Given some kind of score function, there are two areas where it will be applied. Firstly, 

one needs the best arrangement of sequence residues on the template (sequence to structure 

alignment). Secondly, one needs a score function to rank the final structures, discussed in 

section 5. As discussed below, this may really lead to two different score functions. 

Finding the best alignment of a sequence to a template structure is vital, but perhaps still 

a problem. In 1995, it was noted that sequence to structure alignments were typically error-

prone.(54) More recently, the problem has been re-examined along with the consequences for 

fold recognition.(55) One can see the severity of the problem even with tiny errors. The 

average distance between Cα atoms is 3.8 Å, so a single residue mis-alignment would be 

enough to render a model useless in an application like drug design, even if the template 

molecule is close to correct for the unknown structure. Next, a larger misalignment, putting a 

gap of several residues at the wrong location, could easily send β-strand residues to a piece of 

α-helix or random coil. In the context of fold recognition, the problem is worse. Looking at 

Fig. 3, one can see that if the alignments are wrong, the models and calculated scores are 

wrong and it makes no sense to rank them. 

There are two very clear reasons why sequence to structure alignment problems are 

difficult. The first is that the simple score functions commonly used are far from perfect. It is 

not practical to use the best atomistic force fields in the literature and the simpler, more 

coarse-grained ones cannot work as well. Next, the problem is formally difficult and in the 

most general case is NP-complete.(56) This can be explained by comparison with sequence to 

sequence comparison. Fig. 5A shows an alignment of "ACDEF" to some template which has 

both a sequence, "QRSTVW" and the structure shown. With the two gaps present, only three 

residues are aligned. If we consider a classic dynamic programming calculation for the 

alignment(57,58), we have to construct a scoring matrix as shown in Fig. 5B. The elements of 

the matrix reflect the similarity of amino acids. For example, the element indexed by "DR" 

comes from looking up the similarity of aspartate and arginine in a literature substitution 

matrix. The path marked on the score matrix corresponds to the alignment in part (A). 
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In contrast, consider the situation in Fig. 5(C). The same sequence is to be aligned, but 

now to a structure. One wants to construct a similar score matrix as shown on the right, but it 

is not possible. Looking again at the cell indexed by D2, one wants some kind of 

compatibility score. This implies the interactions shown on the left. While we can place 

residue D at position 2, the interactions with the other sites cannot be calculated since the 

other residues have not been aligned. For example, if one wants to calculate the interaction 

between sites 2 and 4, we may say that D is at place 2, but one does not know who it is 

interacting with at site 4. Clearly, sequence to structure alignments are routinely calculated so 

the problem is not impossible. It merely requires heuristics and approximations blending 

optimism, brute force and cunning. 

One approach is to give up on dynamic programming completely. One has a score 

function and a discrete space, so the score of a trial alignment can always be calculated. In 

that case, the problem seems well suited to Monte Carlo / simulated annealing.(59) This, 

however, does not alleviate the problem of the huge search space. Allowing gaps and 

insertions at any position and of any length leads to a combinatorial explosion of possibilities. 

The calculation can be made tractable by restricting the search space and forbidding gaps 

except in recognised loops in template structures.(27,60)  

In contrast, a dynamic programming approach has the advantage that it is deterministic 

and there are at least three approximations which squeeze a pair-wise, through space 

calculation into the framework of Fig. 5. Firstly, one could use the sequence of the template 

structure to start a process. In Fig. 5(C), the template has been drawn without its original 

sequence. One can, instead, leave the template residues in place. Then, to fill out an element 

in the score matrix such as the D2 position, one knows the interaction partners. For example, 

the first interaction could be calculated as D at position 2 with an S at position 3 where the S 

comes from the template sequence. After calculating a first alignment, the residue identities 

could be taken from the correct sequence and another alignment calculated. This method, 

usually known as the frozen approximation can be iterated a fixed number of times or until 

convergence.(36,61,62) 

Another method for approximating the missing information was introduced by Jones et 

al in 1992 who used a second level of dynamic programming.(37) To continue to concentrate 

on one matrix element, one could conceptually place residue D at position 2 and then arrange 

the rest of the sequence to interact as favourably as possible. To score D at position 3, one 

would again recalculate the best arrangement of its sequence neighbours. This is still only an 
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approximation to the correct answer and has been described as finding the best arrangement 

for every residue that it could have.(63) 

Thirdly, one could modify the score function itself so as to make it suitable for a pairwise 

calculation. This can be done by using a score function which only uses the identity of one 

member of each interaction pair like DX, EX, FX, ... Furthermore, the score function can 

actually be optimised to work in this mean-field manner.(64) 

Given the approximations necessary to treat the alignment problem by dynamic 

programming, several groups have developed branch and bound methods. Working in the 

phenomenally complex space of possible alignments, they try to successively rule out regions 

which cannot contribute to the answer.(65-68) The only disadvantage is that they tend to be 

slow and difficult to implement. A most recent version appears to be both swift and 

remarkably effective.(69) If more people were capable of programming these approaches, 

they might displace the ugly approximations in common use.  

5. Fold recognition 

If the steps described so far have been successful, one has a library of protein templates which 

is comprehensive and representative. There is a score function and a fast method for 

producing the best possible sequence to structure alignments and thus the best models 

possible. Unfortunately, the problem is still not solved. Imagine one has a library of 1 000 

structures and only one of the templates is close to the correct answer. It is an act of faith to 

assume that the most correct model is the one that scored best during the alignment step. 

One can introduce the problem of fold recognition by comparing it with a sequence 

database search. In that case, one assumes that the more similar a sequence, the more similar 

residues will have been a aligned and the higher the score will be. In protein threading, one 

use similar reasoning and says that only a similar template will provide a framework which 

lets the sequence residues interact favourably, so templates will score better, the closer they 

are to the correct answer. Unfortunately, it has been pointed out that the argument is not 

strictly valid(70). A sequence to structure alignment allows residues to move along non-

physical degrees of freedom. In other words, a sequence to structure alignment may produce a 

favourable arrangement of residues in space, but it may not be one that occurs in nature. In 

practical terms, a good sequence to structure alignment method may arrange a sequence so 

that secondary structure is formed and hydrophobic residues will be close to each other, but 

on a completely wrong template. 
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Perhaps one should not even expect that one score function should be best for both 

arranging residues on a template and then ranking the models.(64,71) When calculating 

alignments, the score function is being asked which parts of a sequence are more suitable than 

other portions of the sequence for certain parts of a structure. When ranking models, one is 

asking a score function to rank the same sequence in different conformations. The situation, 

however, is even more interesting from a statistical point of view. 

Imagine a score function which is useful for both sequence to structure alignments and 

recognising correct models and has no systematic bias or error. The only failing it has is a 

susceptibility to some quasi-random noise. In this case you might take the scores of your 

models, plot out the distribution and count the number of standard deviations (σ) that separate 

your best scores from the mean of the distribution. If your best score is 10 σ from the mean, it 

is almost certainly not a chance occurrence. If it is one σ from the mean, there is a significant 

chance that it is simply coincidental. Unfortunately, this approach, which was popular some 

years ago, is woefully inaccurate. The scores, especially when gaps and insertions are allowed, 

will be far from Gaussian distributed. 

In pure sequence comparison, a mixture of theory and empiricism has been applied to 

assessing the significance of scores by estimating p-values (probability of a score occurring 

by chance) and e-values (expected number of times the score will be seen given the size of the 

database). For ungapped sequence comparisons, one can assume an extreme-value or Gumbel 

distribution(72-75). For gapped alignments, this is a useful approximation, but may not be 

absolutely correct.(76). For sequence to structure alignments, the problem is worse. As you 

add residues to a sequence, the score does not grow linearly. Instead, each residue you add 

may interact with its N-1 neighbours, so one might expect scores to grow with N 2. 

Unfortunately, the use of interaction cutoffs means that a conventional pair-wise interaction 

score is expected to grow as Nk where k is between 1 and 2, but varies depending on protein 

size. This means that the analytical formulae or regression approaches used in sequence 

comparison will not work with sequence to structure alignments. 

Sommer et al actually had some success treating sequence to structure scores as if they 

followed a known distribution (77), but there is a different philosophy available. If one does 

not know what are the most important features of a reliable model are, one could instead take 

the likely descriptors and use a machine learning method to see what is useful. These would 

include the length of the sequence and template, the length of the alignment and various score 

function components.(78-81) As is common in neural networks, the approach is often 

effective, but not transparent. It is interesting that this could be interpreted as an example of 
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using one function for sequence to structure alignments and a different one for ranking the 

resulting models. 

With all these caveats, it is interesting to note that automatic prediction servers do give 

estimates of confidence in predictions. One should bear in mind that these are approximations 

and probably not as accurate as the statistical estimates for pure sequence comparison 

produced by programs such as BLAST, PSI-BLAST or FASTA(24-26). 

 

6. Threading implementations and the broader context 

To devotees, pure threading has an intellectual appeal. By using structural information, 

one should be able to detect similarities which are too weak to find by sequence based 

methods. With structural information, one would hope to find similarities even when there is 

no obvious evolutionary connection between a target sequence and close template. In practice, 

none of this may be true. Only a very brave spectator would name the best method for 

alignment and fold recognition, but it would be hard to argue that pure sequence-based 

methods are not amongst the very best. It is true that a simple sequence comparison method 

does not work well with weak homology, but current methods are much more advanced. Both 

PSI-BLAST(26) and the hidden Markov model methods(82-84) use families of related 

sequences, take advantage of the site-specific information found in a sequence alignment and 

the fact that although proteins A and B are not obviously similar, they are both reliably related 

to some protein C. 

This probably does not spell the end of threading approaches. Instead, most threading 

approaches now incorporate information beyond pure through-space scoring information. For 

example, consider again Fig. 5 which shows a score matrix for some sequence against a 

template of known sequence and structure. Fig 5(B) and (C) show different score matrices 

from the sequence-sequence and sequence-structure terms. If they offer independent 

information, there is no reason they cannot be combined. This implies some weighting of the 

different terms either by trial and error (85) or even by applying a numerical optimisation 

method.(86). Rather than simply add in a sequence term, one can take advantage of the 

profiles of sequences related to the sequence of interest, the library template or both.(81,85,87) 

Obviously, combining sequence to sequence and sequence to structure terms is only useful if 

they contain independent information, but all the proponents would assert that they do. 

This idea can be extended to other kinds of information. The secondary structure of a 

template is easily calculated. If one could reliably predict the secondary structure of a 
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sequence, one could match it to the template. Even without perfect secondary structure 

predictions, they certainly provide more signal than noise and are routinely added to threading 

calculations.(78,81,87-95) 

7. Context, application and obsolescence 

Given the selection of methods in the literature, threading means different things to 

different groups. Whatever the definition, is it ever useful and are there places where it should 

be avoided ? For the sake of argument, one can call threading some method which 

implements a through-space scoring function, combined with some of the terms from section 

6 and performs sequence to structure alignments. 

 Firstly, one can say that threading must produce better alignments than methods using 

only sequence information. This is true, because structure only adds information. If it is not 

true in practice, it means that implementations are not optimal or one is not making a fair 

comparison. Pure sequence based methods with profiles are extremely sensitive in finding 

remote homologues. Pure outdated threading methods are not as sensitive. Newer threading 

methods use sequence profiles and have absorbed many of the methods of sequence analysis. 

They certainly should not do worse than any other method. 

Next, can one define areas where threading should be the technique of choice ? The ideal 

problem for a threading-partisan is 

· a sequence of unknown structure 

· the sequence should have no detectable homology to anything of known structure 

· there should be a known structure which is very similar to the unknown 

· there should be no functional clues as to the structural class, otherwise a biochemist may 

recognise the similarity 

This situation can occur and it is not always recognised. A more likely scenario is that the 

borders are blurred and the thresholds uncertain. There may be some functional information 

about a sequence, but a chemist would like confirmation of beliefs or reassurance from a 

calculation. Sequence searches may have suggested plausible homologues of known structure, 

but with too little statistical confidence to be reliable. 

One may not be obliged to follow a threading procedure as a fixed recipe. If sequence 

searches have suggested structural templates, but of very low sequence identity, then a 

sequence to structure alignment may be a useful step in building a model. This would not 

count as a threading calculation, but would use methods developed under the methodological 

umbrella of threading. 
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Changing viewpoint, can one identify times when threading should be avoided ? If a 

sequence has very high homology to something of known structure, then threading should not 

do any harm, but may be a waste of time. Occasionally, however, the additional information 

from through-space score functions will not be helpful. If a protein has unusual structural 

properties, they may not be well modelled in the simple scoring functions commonly used. 

For example, calculations on a protein which seems to have no structure in the absence of a 

cofactor or prosthetic group may produce a disaster. Membrane bound proteins are also a 

special problem, since most low resolution force fields implicitly assume water is the solvent. 

Even simple factors such as size may be important. Small proteins may be disulfide rich or 

problematic simply because of their large surface to volume ratio. 

Maybe the question of when to thread is not really a problem. Threading calculations 

should be cheap and one does not have to use or believe the results. They are also not difficult 

to run. One can either find a relevant code and run it locally or use one of the web sites which 

provide an interface to several methods and even an assessment of the different 

implementations.(96-98) 

If one is worried about the reliability of answers, one can also look for an area where 

some errors are tolerated. If you are interested in genome scale applications, it is a natural 

consequence that you will accept a finite error rate, perhaps using threading calculations as 

just part of a larger computational pipeline for screening sequences.(81,99,100) Furthermore, 

there will even be applications where the exact structure is not important. If one wants to pick 

targets for structural genomics, one may try to find those sequences whose structure is most 

difficult to predict. Again, protein threading may be one of the tools used.(101) 

Since threading has already changed since the early implementations, it is also clear that 

the methods will continue to evolve. Some techniques combine elements of threading with 

methods for de novo structure prediction(102-105). This holds the promise of being able to 

predict structures unlike any previously solved. Threading may also be applied in new 

contexts such as macromolecular interactions and multimolecular assemblies.(100,106)  

In the absence of any intellectual progress, the simple accumulation of experimental data 

makes prediction methods work better. The raw bulk of sequence data means that sequence 

profiles built now are almost always better than a year ago. This alone helps threading 

calculations which use sequence profiles. At the same time, the growth of the protein data 

bank means that there is an ever increasing chance of a structural homologue existing for the 

sequence of interest. 
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 Probably the most frightening prospect for an advocate of pure threading has been the 

occasional success of some fragment assembly methods and their remarkable predictions, 

even for previously unseen folds.(107-110) If methods for ab initio or de novo structure 

prediction become reliable, protein threading will be obsolesced without ever really having 

had a phase of glory. 
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Figure Captions 

 
Fig.  1. A sequence of unknown structure and a template library (collection of known 
structures) 
 
Fig. 2. Threading and aligning a sequence through a template library. 
 
Fig. 3. Set of candidate structures for sequence. Models correspond to alignments from Fig. 2 
 

Fig. 4. Z-score optimisation for force field construction. Ealt is the energy of an alternative 

conformation; Enat the energy of the native (correct) structure; <Ealt> the mean of the 

alternative conformation energies; Nalt the number of alternative conformations of a given 

energy. In (B), 
altEσ is the standard deviation of the Ealt distribution; Enat - <Ealt> is the 

difference between the energy of the native conformation and the average of alternate 

conformation energies. 

 

Fig. 5. Comparison of sequence to sequence and sequence to structure alignments. 
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Figure 1, Torda chapter, proteomics handbook 
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Figure 2, Torda chapter, Proteomics Handbook 
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Figure 3, Torda chapter, Proteomics Handbook 

 

 

 

 

 

 

 
. . . 

candidate structures

quasi-energy 767 487 200 ... 

best energy / predicted structure 
 



 31

Figure 4 , Torda chapter, Proteomics Handbook 
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Figure 5 , Torda chapter, Proteomics Handbook 
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