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Introduction

A protein’s 3D structure largely determines its functional properties.  As a result, 
knowledge of the 3D structure of a protein can yield useful information about the 
functional properties of the protein.  In particular, structural similarity between proteins is 
a very good predictor of functional similarity. 

Since a protein’s amino acid sequence determines 3D structure, which in turn determines 
protein function, one might think that sequence similarity is also very good predictor of 
functional similarity, but this turns out to be less the case than with structural similarity.   
Vastly different amino acid sequences can yield very different structures, and similar 
sequences can sometimes yield dissimilar structures.  Thus, sequence similarity is a far 
less reliable predictor of functional similarity than structural similarity is.

In this lecture, we discuss methods for protein structure acquisition, some key concepts in 
protein structure similarity comparison, and some applications of protein structure 
similarity comparison.
   
Tools for Structure Prediction and Determination

In order to classify proteins according to structure, we must first know the structures of 
the proteins in question.  Protein structure is acquired using both experimental methods 
and computational methods which predict 3D structure from sequence information, but at 
this time the computational methods lag far behind the experimental methods in terms of 
power.  However, experimental techniques can be costly, slow, and unusable for the 
acquisition of the structure of some proteins, so better computational techniques for 
predicting protein structure from sequence information are quite desirable.  Right now, 
only about 10% of known protein sequences have had their structures determined.

The Protein Data Bank (www.pdb.org) is a freely accessible database of 3-D protein 
structures.  Begun in 1971 with 7 structures, it now has nearly 40000 structures, with the 
yearly number of structures added to the database increasing each year.  In 2004 and 
2005 over 10000 new structures were added to the database.  As of relatively recently, of 
the structures in the PDB, only 3% were obtained using computational models.   

Computational Techniques for Structure Determination



The main computational structure prediction techniques are ab initio- techniques, 
homology modeling, and threading.  

Ab Initio Methods- These techniques attempt to determine protein structure from scratch 
by finding the global minimum of an energy function defined on the space of possible 
structural conformations of the protein.  With present methods these techniques are 
extremely computationally costly and thus have been used only for very small proteins.

Homology Modeling- is based on the reasonable assumption that two homologous
proteins will share very similar structures. Given the amino acid sequence of an unknown 
structure and the solved structure of a homologous protein, each amino acid in the solved 
structure is mutated, computationally, into the corresponding amino acid from the 
unknown structure. [Source of this description of Homology Modeling: Wikipedia]

Threading- Given the amino acid sequence of a protein of interest, one attempts to align 
the sequence to each amino acid sequence in a library of template proteins of known 
structure in such a way that a quasi-energy score or other score is minimized.  The score 
of an alignment is defined in such a way that the value of the score reflects the extent to 
which the given alignment predicts a structural similarity of the protein of interest to the 
template protein.  Best structural alignment scores are computed for template protein and 
the template with the best score amongst all templates is returned.  Threading relies on 
the fact that there are far more proteins than folds, so that a given protein of unknown 
structure is likely to have structure quite similar to that of a protein of known structure.  
See http://www.stanford.edu/class/cs273/refs/torda_chapter_proteomics.pdf for more 
info.

Experimental Techniques for Structure Determination

X-ray Diffraction Crystallography- This is the most widely used method for protein 
structure determination.  In this method the protein is crystallized and an X-ray beam is 
projected on the crystals. It interacts with the electronic cloud of the crystal to produce 
diffracted X-ray beams. The diffraction pattern is obtained on a phosphor screen and an 
electron density map is generated from it which is used to create the 3D structure of the 
protein from the map. The map tends to be fuzzy in some parts (due to the problem of 
phasing loops) but the software used can usually predict up to 90% of the structure 
correctly and the rest is computed manually. This method is expensive and takes time, 
sometimes longer than an year. It is useful for determining the structure of relatively 
large proteins but the proteins have to be folded. Also, it requires the protein in form of a 
crystal and not every protein can be crystallized.  82% of all structures in the Protein Data 
Bank were obtained with X-ray Diffraction Crystallography.

Nuclear Magnetic Resonance Spectroscopy- NMR spectroscopy allows structure 
determination in solution under conditions that approximate the physiological 
environment of a protein.  It is based on the observation of physical phenomena exhibited 
when nuclei absorb energy from a radio frequency source at certain characteristic 
frequencies in the presence of strong external magnetic fields.  The position of the nuclei 



in the molecule effects the electronic environment of the nucleus and thus affects the 
absorption frequency.  The frequency differences observed in the resultant spectrum can 
be used to determine the molecular structure of the sample.  NMR has low sensitivity and 
the data obtained is noisy. It is used for smaller proteins. [some of this section is adapted 
from http://www.process-nmr.com/process_nmr_faq.htm]

Key Definitions and Issues in Structural Similarity Comparison

Definition of 3D Molecular Structure: We represent the 3D molecular structure of a 
protein as a collection of (possibly typed) atoms or groups of atoms in some given 3D 
relative placement.  The placement of a group of atoms is defined by the position of a 
reference point (e.g. the center of a particular atom in the group) and the orientation of a 
reference direction.  When we say that the atoms or groups of atoms may be typed, we 
simply mean that we may choose to label each point representing an atom or group of 
atoms in the structure with a tag indicating what atom or group of atoms the point is 
representing. 

Definition of a Matching Between Two Structures
Two structures match if and only if we have:
1.Correspondence—There is a one to one map between elements of the structure
2.Alignment—There exists a rigid body transform T such that the RMSD between 
elements in A and those in T(B) is less than some threshold ε,

In practice a complete match of this sort between two proteins is rarely possible; in many 
cases of interest, two proteins may be only locally similar, may be of different sizes, or 
may differ structurally in other ways despite significant structurally similarity in other 
respects.  In these cases a complete match of the two proteins is clearly too much to ask 
for. We can, however, hope for a partial match of two proteins.

We say we have a partial matching between two proteins A and B when we have a 
substructure σ (A) of A and a substructure σ (B) of B such that there is a correspondence 
between σ (A) and σ (B) and an alignment T of A with B such that the RMSD between 
elements in σ (A)  and those in T(σ (B)) is less than some threshold ε.  We call the 
substructures σ (A) and σ (B) the supports of A and B, respectively.  When a support is 
small, we refer to it as a motif.  Generally, we do not require the support of a protein to 
be connected; the support may have two or more components which may not lie 
contiguously on the protein, and this can add to the challenge of the problem of finding a 
partial matching, as discussed below.  

In formulating the problem of partial matching as above, a problem dual to that of finding 
the transform which minimizes RMSD arises—namely that of choosing the supports of A 
and B.  Clearly there is a tradeoff between the allowed size of the supports of the two 
structures being aligned and the size of the RMSD.  A common solution is to declare at 
the outset some maximum value ε of the RMSD and to then find the largest supports of A 
and B such that the RMSD between A and B with respect to those supports is less than ε.



Beyond the size of the support and the RMSD calculated from a match, there are a 
number of other issues that should be considered in the development of a measure of 
partial similarity between two proteins.  For one, there may be multiple partial matches 
between substructures of 2 proteins.  Secondly, if non-contiguous supports are permitted, 
one must consider the matter of whether and how to penalize to penalize for gaps in the 
supports of A and B, such as that depicted in the partial match below.

Third, one must consider how and whether to penalize matches where a subreigon of the 
support of B has its orientation along the backbone of B flipped relative to the orientation 
along the backbone of A of the corresponding substructure on A , as in the picture below.

Third, one must consider how and whether to penalize matches where a subregion of the 
support of B has its orientation with respect to the backbone of B flipped relative to the 
orientation of the corresponding substructure of A with respect to the backbone of A, as 
in the picture below.

Fourth, we must decide to what extent our scoring method will adjust the score according 
to preference for type or backbone sequence matching.  Fifth, we may wish to weight 
correspondences along accessible parts of the protein surface more heavily, since on 
average the geometry of these parts is more responsible for functional properties of the 
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protein than the geometry of the occluded parts of the surface.  Sixth, we must decide 
whether our similarity measure should calculate a RMSD, or arrive at its score using 
another similarity measure. 

RMSD is by no means the only way to score similarity, and there is no consensus on 
what the best method is, but RMSD does have the advantage of being computationally 
very convenient.  To offer an example of an alternative measure of similarity, below the 
formula for RMSD is compared with a different similarity measure used by the structure 
comparison software STRUCTAL.  Note that RMSD is actually a dissimilarity measure 
(the more dissimilar the two structures being compared, the higher value it gives, so that 
in practice we’d want to take our measure of similarity to be 1/x, where x is the value 
output by RMSD).  STRUCTUAL’s measure, on the other hand, gives higher values 
when the two proteins being compared are more similar.

As the above discussion of the myriad issues the designer of a partial similarity measure 
must consider suggests, there are many ways to design such a measure.  See A.C.M. 
May. Toward more meaningful hierarchical classification of amino acids scoring 
functions. Protein Engineering, 12:707-712, 1999 for a review 37 different protein 
structure similarity measures. 

Computationally assessing protein structure similarity is a difficult problem.  The 
difficulty can be seen as reflection of the fact that measuring partial similarity is an ill-
posed problem; there are many ways in which two 3D structures can be similar, and 
depending on the application of interest, similarities between certain aspects of geometric 
structure may be of more interest than others.  The fact that there is no single way of 
deciding which aspects of structure to give importance to in choosing a quantitative 
measure of structural similarity accounts for much of the difficulty of comparing proteins 
according to structure.
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Whatever our choice of similarity measures, though, it is not likely to define a metric on 
protein structures; we cannot expect the triangle equality to be satisfied, as the picture 
below illustrates more clearly than words ever could.

                                                             X

It turns out that with respect to all partial similarity measures of interest, finding an 
optimal partial match between two proteins (i.e. a choice of supports, a correspondence 
between them, and a transformation aligning corresponding parts of the supports) is NP-
Hard.  Thus we must be satisfied with approximate/heuristic solutions to the problem.  
There is probably not a single best solution to computing partial matchings; rather, 
specific algorithms are best suited to specific applications.  But even so, there are general 
algorithmic principles that hold across different application areas.

To close this section, we’ll mention that though we often are interested in using a 
similarity measure more sophisticated than RMSD in computing a partial matching of 
two proteins, one useful method is to compute a preliminary approximate matching using 
RMSD and then adjust the computed transform to maximize the score of the more 
sophisticated similarity measure.  Methods for computing similarity will be discussed in 
more detail next lecture.

Applications of Structure Similarity Analysis

Though all structural similarity algorithms have a similar goal at their core, there are 
several different particular applications in biology today that call for somewhat different 
approaches.

Problem #1: Matching of Protein Structures
Given two molecules A and B, we seek substructures between A and B as large as 
possible while at the same time being “similar” (typically measured in RMSD). 



Though the problem is stated as comparing one molecule to another, often this algorithm 
is used in one-to-many searches for similarity. For example, given a particular molecule, 
we might want to search all known proteins in the Protein Data Bank (PDB) for 
similarities. Or, we may want to group proteins in the PDB by doing many-to-many 
comparisons and clustering based on similarities.

Problem #2: Protein Classification
Besides finding similar substructures, proteins can be compared by their overall structure, 
i.e. classifying proteins into a hierarchy to determine similarities. Traditionally, these 
classifications are done manually with the aid of some automated tools, and take into 
account information that biologists have on the function and origin of the proteins. An 
example of this is the Structural Classification of Proteins (SCOP) database.  It is felt that 
the SCOP database does a better job of classifying proteins according to structure than 
automated methods have been able to thus far.  However, as the number of known 
structures is growing rapidly, we are approaching the point  where the number of new 
structures will be to many to be classified by hand, so good automatic methods for 
structure comparison and identification are becoming increasingly important.

Several automated classifiers have been designed, among them are CATH (Class, 
Architecture, Topology, and Homologous superfamily) and FSSP (Families of 
Structurally Similar Proteins). As an example of how these work, the CATH protein 
hierarchy separates proteins at level 1 by “class” (i.e. whether the protein contains only 
alpha helices or beta strands or both), at level 2 by “architecture” (the gross orientation of 
secondary structures, currently done manually), at level 3 by “topology” (the connections 
between and numbers of secondary structures), and at the lowest level by “homologous 
superfamilies” (which takes into account structural and functional similarities between 
proteins).

One thing to note is that hierarchies obtained by automatic methods may be quite 
different from classifications designed manually because of the additional depth of 
knowledge that biologists have in relating proteins. Also, the splitting in the hierarchies is 
determined by our set of known proteins and so might by biased because there are only 
some proteins that we have currently been able to crystallize (i.e. determine the positions 
of the atoms in the molecule).

Problem #3: Finding Motif in Protein Structure
This problem aims to determine whether a motif, consisting of a small collection of 
atoms, matches anywhere in a very large protein. Note that the pieces of the motif are not 
necessarily connected, so we may not be able to constrain the search to consecutive 
atoms in the protein.

Often times it is difficult to isolate such a small motif, so we augment our search by using 
feature “types” (i.e. requiring that we have matches between types of atoms or between 
types groups of atoms as well as between locations of atoms). This dramatically 
simplifies our problem since there are much fewer candidate sites in the protein that 
matches that combination of atom types.



Problem #4: Finding Pharmacaphore in Ligands
A ligand is a molecule that binds to another molecule to form a larger compound. For 
proteins, this can have the effect of inhibiting the proteins function or catalyzing its 
activities. Therefore, ligands are important in drug design.
Given a set of ligands that are known to have the same activity (i.e. they all have the 
same effect on a protein or bind to the same site), we would like to find a substructure 
common to all the ligands (a pharmacaphore).  Ligands are typically flexible molecules, 
meaning they might be in one of several conformations when they bind to the protein. 
Thus, for each ligand we give a set of low-energy conformations (which are more likely 
to react with the protein) and require that the pharmacaphore exist in at least one 
conformation for each ligand.  

This problem is one of the key problems in drug design: if we observe that a set of 
ligands produce the desired activity, solving this problem will hopefully elucidate the 
essence of the interacting substructure and allow us to design better drugs.

Problem #5: Search for Ligands Containing a Pharmacaphore
This problem is related to the previous, but now we are already given the pharmacaphore 
and would like to find all the ligands in a database that contain it. Pharmaceutical 
companies typically have databases of 100,000s of flexible ligands and some of their 
low-energy conformations. By searching for pharmacaphores with known interaction 
properties with a protein, we can potentially find ligands that are better. This process 
gives chemists a better starting point for trying to improve drugs.

For your reference, here is a list of existing software for computing partial matches 
between protein structures.
Cα atoms:
DALI [Holm and Sander, 1993]
STRUCTAL [Gerstein and Levitt, 1996]
MINAREA [Falicov and Cohen, 1996]
CE [Shindyalov and Bourne, 1998]
ProtDex [Aung,Fu and Tan, 2003]

Secondary structure elements and Cα atoms:
VAST [Gibrat et al., 1996]
LOCK [Singh and Brutlag, 1996]
3dSEARCH [Singh and Brutlag, 1999]


