Today’s lecture – hypertext and links

- We look beyond the content of documents
- We begin to look at the hyperlinks between them
- Address questions like
 - Do the links represent a conferral of authority to some pages? Is this useful for ranking?
 - How likely is it that a page pointed to by the CERN home page is about high energy physics
- Big application areas
 - The Web
 - Email
 - Social networks

Links are everywhere

- Powerful sources of authenticity and authority
 - Mail spam – which email accounts are spammers?
 - Host quality – which hosts are “bad”?
 - Phone call logs
- The Good, The Bad and The Unknown

Example 1: Good/Bad/Unknown

- The Good, The Bad and The Unknown
 - Good nodes won’t point to Bad nodes
 - All other combinations plausible

Simple iterative logic

- Good nodes won’t point to Bad nodes
 - If you point to a Bad node, you’re Bad
 - If a Good node points to you, you’re Good
Simple iterative logic

- Good nodes won’t point to Bad nodes
 - If you point to a Bad node, you’re Bad
 - If a Good node points to you, you’re Good

Sometimes need probabilistic analogs – e.g., mail spam

Many other examples of link analysis

- Social networks are a rich source of grouping behavior
 - E.g., Shoppers’ affinity – Goel+Goldstein 2010
 - Consumers whose friends spend a lot, spend a lot themselves
 - See cs224w

Our primary interest in this course

- Link analysis additions to IR functionality thus far based purely on text
 - Scoring and ranking
 - Link-based clustering – topical structure from links
 - Links as features in classification – documents that link to one another are likely to be on the same subject
- Crawling
 - Based on the links seen, where do we crawl next?

The Web as a Directed Graph

Hypothesis 1: A hyperlink between pages denotes a conferral of authority (quality signal)

Hypothesis 2: The text in the anchor of a hyperlink on page A describes the target page B

Assumption 1: reputed sites

Introduction to Information Retrieval
Assumption 2: annotation of target

For *ibm* how to distinguish between:
- IBM's home page (mostly graphical)
- IBM's copyright page (high term freq. for 'ibm')
- Rival's spam page (arbitrarily high term freq.)

A million pieces of anchor text with "ibm" send a strong signal

Indexing anchor text

- When indexing a document \(D \), include (with some weight) anchor text (and perhaps nearby surrounding text) from links pointing to \(D \).

Indexing anchor text

- Can sometimes have unexpected effects, e.g., spam, miserable failure
- Can score anchor text with weight depending on the authority of the anchor page's website
 - E.g., if we were to assume that content from cnn.com or yahoo.com is authoritative, then trust (more) the anchor text from them
 - Increase the weight of off-site anchors (non-nepotistic scoring)

Connectivity servers

Getting at all that link information inexpensively

Connectivity servers

- Support for fast queries on the web graph
 - Which URLs point to a given URL?
 - Which URLs does a given URL point to?

Stores mappings in memory from
- URL to outlinks, URL to inlinks

Applications
- Link analysis
- Web graph analysis
- Connectivity, crawl optimization
- Crawl control
Introduction to Information Retrieval

Boldi and Vigna 2004
- Webgraph – set of algorithms and a java implementation
- Fundamental goal – maintain node adjacency lists in memory
 - For this, compressing the adjacency lists is the critical component

Webgraph – set of algorithms and a java implementation

Fundamental goal – maintain node adjacency lists in memory
- For this, compressing the adjacency lists is the critical component

Adjacency lists
- The set of neighbors of a node
- Assume each URL represented by an integer
- E.g., for a 4 billion page web, need 32 bits per node ...
- and now there are definitely > 4B pages
- Naively, this demands 64 bits to represent each hyperlink
- Boldi/Vigna get down to an average of ~3 bits/link
 - Further work achieves 2 bits/link

Adjacency list compression
- Properties exploited in compression:
 - Similarity (between lists)
 - Locality (many links from a page go to “nearby” pages)
 - Use gap encoding in sorted lists
 - Distribution of gap values

Main ideas of Boldi/Vigna
- Consider lexicographically ordered list of all URLs, e.g.,
 - www.stanford.edu/alchemy
 - www.stanford.edu/biology
 - www.stanford.edu/biology/plant
 - www.stanford.edu/biology/plant/copyright
 - www.stanford.edu/biology/plant/people
 - www.stanford.edu/chemistry

Gap encodings
- Given a sorted list of integers x, y, z, ..., represent by x, y-x, z-y, ...
- Compress each integer using a code
 - γ code: Number of bits = 1 + 2 ⌈lg x⌉
 - δ code: ...
 - Information theoretic bound: 1 + ⌈lg x⌉ bits
 - ζ code: Works well for integers from a power law [Boldi, Vigna: Data Compression Conf. 2004]

Boldi/Vigna
- Each of these URLs has an adjacency list
- Main idea: due to templates, the adjacency list of a node is similar to one of the 7 preceding URLs in the lexicographic ordering ... or else encoded anew
- Express adjacency list in terms of one of these
 - E.g., consider these adjacency lists
 - 1, 2, 4, 8, 16, 32, 64
 - 1, 4, 9, 16, 25, 36, 49, 64
 - 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
 - 1, 4, 5, 16, 25, 36, 49, 64
 - Encode as (~2), remove 9, add 8
Main advantages of BV

- Depends only on locality in a canonical ordering
 - Lexicographic ordering works well for the web
- Adjacency queries can be answered very efficiently
 - To fetch out-neighbors, trace back the chain of prototypes
 - This chain is typically short in practice (since similarity is mostly intra-host)
 - Can also explicitly limit the length of the chain during encoding
- Easy to implement one-pass algorithm

Link analysis: Pagerank

Citation Analysis

- Citation frequency
- Bibliographic coupling frequency
 - Articles that co-cite the same articles are related
- Citation indexing
 - Who is this author cited by? (Garfield 1972)
 - Pagerank preview: Pinsker and Narin ’60s
 - Asked: which journals are authoritative?

The web isn’t scholarly citation

- Millions of participants, each with self interests
- Spamming is widespread
- Once search engines began to use links for ranking (roughly 1998), link spam grew
 - You can join a link farm – a group of websites that heavily link to one another

Pagerank scoring

Imagine a user doing a random walk on web pages:

- Start at a random page
- At each step, go out of the current page along one of the links on that page, equiprobably
- “In the long run” each page has a long-term visit rate – use this as the page’s score

Variant: rather than equiprobable, use text and link information to have probability of following a link: intelligent surfer [Richardson and Domingos 2001]

Not quite enough

- The web is full of dead-ends.
 - Random walk can get stuck in dead-ends.
 - Makes no sense to talk about long-term visit rates.
Teleporting
- At a dead end, jump to a random web page.
- At any non-dead end, with probability 10%, jump to a random web page.
 - With remaining probability (90%), go out on a random link.
- 10% - a parameter.
 - "Teleportation" probability
 - Simulates a web users going somewhere else
 - Solves linear algebra problems...

Result of teleporting
- Now cannot get stuck locally.
- There is a long-term rate at which any page is visited (not obvious, will show this).
- How do we compute this visit rate?

Markov chains
- A Markov chain consists of n states, plus an $n \times n$ transition probability matrix P.
- At each step, we are in one of the states.
- For $1 \leq i, j \leq n$, the matrix entry P_{ij} tells us the probability of j being the next state, given we are currently in state i.

Markov chains
- Clearly, for all i, $\sum_{j=1}^{n} P_{ij} = 1$.
- Markov chains are abstractions of random walks.
- Exercise: represent the teleporting random walk from 3 slides ago as a Markov chain, for this case:

Ergodic Markov chains
- For any ergodic Markov chain, there is a unique long-term visit rate for each state.
 - Steady-state probability distribution.
 - Over a long time-period, we visit each state in proportion to this rate.
 - It doesn’t matter where we start.
- Ergodic: no periodic patterns
- Teleportation ensures ergodicity

Probability vectors
- A probability (row) vector $\mathbf{x} = (x_1, \ldots, x_n)$ tells us where the walk is at any point.
 - E.g., $\langle 0, 0, 1 \rangle$ means we’re in state 1.
 - $\sum_{i=1}^{n} x_i = 1$.
Change in probability vector

- If the probability vector is $x = (x_1, ..., x_n)$ at this step, what is it at the next step?
- Recall that row i of the transition prob. matrix P tells us where we go next from state i.
- So from x, our next state is distributed as xP
 - The one after that is xP^2, then xP^3, etc.
 - (Where) Does this converge?
- Running this and finding out is “the power method”
 - It's actually the method of choice, done with sparse P.

How do we compute this vector?

- Let $a = (a_1, ..., a_n)$ denote the row vector of steady-state probabilities.
- If our current position is described by a, then the next step is distributed as aP.
- But a is the steady state, so $a = aP$.
- Solving this matrix equation gives us a.
 - a is the (left) eigenvector for P.
 - Corresponds to the “principal” eigenvector of P with the largest eigenvalue. (See: Perron-Frobenius theorem.)
 - Transition probability matrices always have largest eigenvalue 1.

Example: Mini web graph

![Mini web graph diagram]

$P = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 1/2 & 1/2 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 \\
3 & 1/3 & 1/3 & 0 & 0 & 1/3 \\
4 & 0 & 0 & 0 & 1/2 & 1/2 \\
5 & 0 & 0 & 0 & 1/2 & 0 \\
6 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}$

Example: Fixing sinks and teleporting

$P = \begin{pmatrix}
0 & 1/2 & 1/2 & 0 & 0 & 0 \\
1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\
1/3 & 0 & 0 & 1/3 & 0 \\
0 & 0 & 0 & 1/2 & 1/2 \\
0 & 0 & 0 & 0 & 1/2 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}$

$\hat{P} = \alpha P + (1 - \alpha)ee^T/n = \begin{pmatrix}
1/60 & 7/15 & 7/15 & 1/60 & 1/60 & 1/60 \\
1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\
19/60 & 19/60 & 1/60 & 1/60 & 1/60 & 1/60 \\
1/60 & 1/60 & 1/60 & 7/15 & 7/15 & 7/15 \\
1/60 & 1/60 & 1/60 & 11/12 & 1/60 & 1/60 \\
1/60 & 1/60 & 1/60 & 1/60 & 1/60 & 1/60
\end{pmatrix}$

Example: Doing power iteration

![Example code for power iteration]

Link analysis: HITS

Kleinberg (1999)
Hyperlink-Induced Topic Search (HITS)

- In response to a query, instead of an ordered list of pages each meeting the query, find two sets of interrelated pages:
 - **Hub pages** are good lists of links on a subject
 - e.g., "Bob's list of cancer-related links.”
 - **Authority pages** occur recurrently on good hubs for the subject
- Best suited for “broad topic” queries rather than for page-finding queries
- Gets at a broader slice of common opinion

Hubs and Authorities

- Thus, a good hub page for a topic **points** to many authoritative pages for that topic.
- A good authority page for a topic is **pointed to** by many good hubs for that topic.
- Circular definition – will turn this into an iterative computation.

The hope

![Diagram showing Hubs and Authorities]

High-level scheme

- Extract from the web a **base set** of pages that **could** be good hubs or authorities.
- From these, identify a small set of top hub and authority pages; → iterative algorithm.

Base set

- Given text query (say **browser**), use a text index to get all pages containing **browser**.
 - Call this the **root set** of pages.
- **Add in any page that either**
 - points to a page in the root set, or
 - is pointed to by a page in the root set.
 - Call this the **base set**.

Visualization

![Diagram showing Base set and Connectivity server]
Distilling hubs and authorities

- Compute, for each page \(x \) in the base set, a hub score \(h(x) \) and an authority score \(a(x) \).
- Initialize: for all \(x \), \(h(x) \leftarrow 1; a(x) \leftarrow 1 \).
- Iteratively update all \(h(x), a(x) \); Key
- After iterations
 - output pages with highest \(h() \) scores as top hubs
 - highest \(a() \) scores as top authorities.

Iterative update

- Repeat the following updates, for all \(x \):
 \[h(x) \leftarrow \sum_{x \to y} a(y) \]
 \[a(x) \leftarrow \sum_{y \to x} h(y) \]

Scaling

- To prevent the \(h() \) and \(a() \) values from getting too big, can scale down after each iteration.
- Scaling factor doesn’t really matter:
 - we only care about the relative values of the scores.

How many iterations?

- Claim: relative values of scores will converge after a few iterations:
 - in fact, suitably scaled, \(h() \) and \(a() \) scores settle into a steady state!
 - proof of this comes later.
- In practice, “5 iterations get you close to stability.”

Proof of convergence

- \(n \times n \) adjacency matrix \(A \):
 - each of the \(n \) pages in the base set has a row and column in the matrix.
 - Entry \(A_{ij} = 1 \) if page \(i \) links to page \(j \), else = 0.

Hub/authority vectors

- View the hub scores \(h() \) and the authority scores \(a() \) as vectors with \(n \) components.
- Recall the iterative updates
 \[h(x) \leftarrow \sum_{x \to y} a(y) \]
 \[a(x) \leftarrow \sum_{y \to x} h(y) \]
Rewrite in matrix form

- $h = Aa$
- $a = A^T h$

Recall A^T is the transpose of A.

Substituting, $h = AA^T h$ and $a = A^T A a$.

Thus, h is an eigenvector of AA^T and a is an eigenvector of $A^T A$.

Further, our algorithm is a particular, known algorithm for computing eigenvectors: again, the power iteration method.

Guaranteed to converge.

Example authorities found

- (java) Authorities
 - .328 http://www.gamelan.com/ Gamelan
 - .190 http://www.digitalfocus.com/... Java Developer: How Do I ...
 - .190 http://lightyear.ncsa.uiuc.edu/srp/java/ javabooks.html
 - .183 http://sunsite.unc.edu/javafaq/javafaq.html comp.lang.java FAQ

- (censorship) Authorities
 - .378 http://www.eff.org/ EFFweb—The Electronic Frontier Foundation
 - .344 http://www.eff.org/blueribbon.html The Blue Ribbon Campaign for Online Free Speech
 - .238 http://www.cdt.org/ The Center for Democracy and Technology
 - .235 http://www.vtw.org/ Voters Telecommunications Watch
 - .218 http://www.aclu.org/ ACLU: American Civil Liberties Union

Issues

- Topic Drift
 - Off-topic pages can cause off-topic “authorities” to be returned
 - E.g., the neighborhood graph can be about a “super topic”
- Mutually Reinforcing Affiliates
 - Affiliated pages/sites can boost each others’ scores
 - Linkage between affiliated pages is not a useful signal

Resources

- IIR Chap 21
 - The WebGraph framework I: Compression techniques (Boldi et al. 2004)