Introduction to

Information Retrieval

CS276
Information Retrieval and Web Search
Chris Manning and Pandu Nayak
Link analysis
Today’s lecture – hypertext and links

- We look beyond the *content* of documents
 - We begin to look at the hyperlinks between them

- Address questions like
 - Do the links represent a conferral of authority to some pages? Is this useful for ranking?
 - How likely is it that a page pointed to by the CERN home page is about high energy physics

- Big application areas
 - The Web
 - Email
 - Social networks
Links are everywhere

- Powerful sources of authenticity and authority
 - Mail spam – which email accounts are spammers?
 - Host quality – which hosts are “bad”?
 - Phone call logs

- The Good, The Bad and The Unknown
Example 1: Good/Bad/Unknown

- The **Good**, The **Bad** and The **Unknown**
 - **Good** nodes won’t point to **Bad** nodes
 - All other combinations plausible

![Diagram of Good/Bad/Unknown networks]

- Good
- ?
- ?
- ?
- ?
- Bad
Simple iterative logic

- **Good** nodes won’t point to **Bad** nodes
 - If you point to a **Bad** node, you’re **Bad**
 - If a **Good** node points to you, you’re **Good**
Simple iterative logic

- **Good** nodes won’t point to **Bad** nodes
 - If you point to a **Bad** node, you’re **Bad**
 - If a **Good** node points to you, you’re **Good**
Simple iterative logic

- **Good** nodes won’t point to **Bad** nodes
 - If you point to a **Bad** node, you’re **Bad**
 - If a **Good** node points to you, you’re **Good**

Sometimes need probabilistic analogs – e.g., mail spam
Example 2:
In-links to pages – unusual patterns 😊

Spammers violating power laws!
Many other examples of link analysis

- Social networks are a rich source of grouping behavior
- E.g., Shoppers’ affinity – Goel+Goldstein 2010
 - Consumers whose friends spend a lot, spend a lot themselves
Our primary interest in this course

- Link analysis for most IR functionality thus far based purely on text
 - Scoring and ranking
 - Link-based clustering – topical structure from links
 - Links as features in classification – documents that link to one another are likely to be on the same subject

- Crawling
 - Based on the links seen, where do we crawl next?
The Web as a Directed Graph

Hypothesis 1: A hyperlink between pages denotes a conferral of authority (quality signal)

Hypothesis 2: The text in the anchor of the hyperlink on page A describes the target page B
Assumption 1: reputed sites

This is the companion website for the following book:

Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, *Introduction to Information Retrieval*.

You can order this book at [CUP](http://www.cup.com) at your local bookstore or on the internet. The best search

The book aims to provide a modern approach to information retrieval from a computer science perspective.

University and at the [University of Stuttgart](http://www.uni-stuttgart.de).

We'd be pleased to get feedback about how this book works out as a textbook, what is missing or needs improvement, and so on, by sending comments to: informationretrieval (at) yahcogroups (dot) com
Assumption 2: annotation of target
Anchor Text

WWW Worm - McBryan [Mcbr94]

- For *ibm* how to distinguish between:
 - IBM’s home page (mostly graphical)
 - IBM’s copyright page (high term freq. for ‘ibm’)
 - Rival’s spam page (arbitrarily high term freq.)

A million pieces of anchor text with “ibm” send a strong signal
Indexing anchor text

- When indexing a document D, include (with some weight) anchor text from links pointing to D.

Armonk, NY-based computer giant IBM announced today

Joe’s computer hardware links

Sun
HP
IBM

Big Blue today announced record profits for the quarter

www.ibm.com
Indexing anchor text

- Can sometimes have unexpected effects, e.g., spam, miserable failure
- Can score anchor text with weight depending on the authority of the anchor page’s website
 - E.g., if we were to assume that content from cnn.com or yahoo.com is authoritative, then trust (more) the anchor text from them
 - Increase the weight of off-site anchors (non-nepotistic scoring)
Connectivity servers

Getting at all that link information
Inexpensively
Connectivity Server

- Support for fast queries on the web graph
 - Which URLs point to a given URL?
 - Which URLs does a given URL point to?

Stores mappings in memory from
- URL to outlinks, URL to inlinks

Applications
- Link analysis
- Web graph analysis
 - Connectivity, crawl optimization
- Crawl control
Boldi and Vigna 2004

- Webgraph – set of algorithms and a java implementation
- Fundamental goal – maintain node adjacency lists in memory
 - For this, compressing the adjacency lists is the critical component
Adjacency lists

- The set of neighbors of a node
- Assume each URL represented by an integer
- E.g., for a 4 billion page web, need 32 bits per node
- Naively, this demands 64 bits to represent each hyperlink
- Boldi/Vigna get down to an average of \(~3\) bits/link
 - Further work achieves 2 bits/link
Adjacency list compression

- Properties exploited in compression:
 - Similarity (between lists)
 - Locality (many links from a page go to “nearby” pages)
 - Use gap encodings in sorted lists
 - Distribution of gap values
Main ideas of Boldi/Vigna

- Consider lexicographically ordered list of all URLs, e.g.,
 - www.stanford.edu/alchemy
 - www.stanford.edu/biology
 - www.stanford.edu/biology/plant
 - www.stanford.edu/biology/plant/copyright
 - www.stanford.edu/biology/plant/people
 - www.stanford.edu/chemistry
Each of these URLs has an adjacency list

Main idea: due to templates, the adjacency list of a node is similar to one of the 7 preceding URLs in the lexicographic ordering

Express adjacency list in terms of one of these

E.g., consider these adjacency lists

- 1, 2, 4, 8, 16, 32, 64
- 1, 4, 9, 16, 25, 36, 49, 64
- 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
- 1, 4, 8, 16, 25, 36, 49, 64

Encode as (-2), remove 9, add 8
Gap encodings

- Given a sorted list of integers x, y, z, …, represent by x, y-x, z-y, …
- Compress each integer using a code
 - γ code - Number of bits = $1 + 2 \lfloor \lg x \rfloor$
 - δ code: ...
 - Information theoretic bound: $1 + \lfloor \lg x \rfloor$ bits
 - ζ code: Works well for integers from a power law Boldi Vigna DCC 2004
Main advantages of BV

- Depends only on locality in a canonical ordering
 - Lexicographic ordering works well for the web
- Adjacency queries can be answered very efficiently
 - To fetch out-neighbors, trace back the chain of prototypes
 - This chain is typically short in practice (since similarity is mostly intra-host)
 - Can also explicitly limit the length of the chain during encoding
- Easy to implement one-pass algorithm
Link analysis: Pagerank
Citation Analysis

- Citation frequency
- Bibliographic coupling frequency
 - Articles that co-cite the same articles are related
- Citation indexing
 - Who is this author cited by? (Garfield 1972)
- Pagerank preview: Pinsker and Narin ’60s
 - Asked: which journals are authoritative?
The web isn’t scholarly citation

- Millions of participants, each with self interests
- Spamming is widespread
- Once search engines began to use links for ranking (roughly 1998), link spam grew
 - You can join a *link farm* – a group of websites that heavily link to one another
Pagerank scoring

- Imagine a user doing a random walk on web pages:
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
 - “In the long run” each page has a long-term visit rate - use this as the page’s score.
Not quite enough

- The web is full of dead-ends.
 - Random walk can get stuck in dead-ends.
 - Makes no sense to talk about long-term visit rates.
Teleporting

- At a dead end, jump to a random web page.
- At any non-dead end, with probability 10%, jump to a random web page.
 - With remaining probability (90%), go out on a random link.
- 10% - a parameter.
Result of teleporting

- Now cannot get stuck locally.
- There is a long-term rate at which any page is visited (not obvious, will show this).
- How do we compute this visit rate?
Markov chains

- A Markov chain consists of \(n \) states, plus an \(n \times n \) transition probability matrix \(P \).
- At each step, we are in one of the states.
- For \(1 \leq i, j \leq n \), the matrix entry \(P_{ij} \) tells us the probability of \(j \) being the next state, given we are currently in state \(i \).

\[
P_{ii} > 0 \quad \text{is OK.}
\]

\[
\begin{array}{c}
\text{i} \\
\downarrow_{P_{ij}} \\
\text{j}
\end{array}
\]
Markov chains

- Clearly, for all i, $\sum_{j=1}^{n} P_{ij} = 1$.
- Markov chains are abstractions of random walks.
- **Exercise**: represent the teleporting random walk from 3 slides ago as a Markov chain, for this case:
Ergodic Markov chains

- For any *ergodic* Markov chain, there is a unique **long-term visit rate** for each state.
 - *Steady-state probability distribution.*
- Over a long time-period, we visit each state in proportion to this rate.
- It doesn’t matter where we start.
Probability vectors

- A probability (row) vector $\mathbf{x} = (x_1, \ldots, x_n)$ tells us where the walk is at any point.
- E.g., $(000\ldots1\ldots000)$ means we’re in state i.

More generally, the vector $\mathbf{x} = (x_1, \ldots, x_n)$ means the walk is in state i with probability x_i.

$$\sum_{i=1}^{n} x_i = 1.$$
Change in probability vector

- If the probability vector is $\mathbf{x} = (x_1, \ldots, x_n)$ at this step, what is it at the next step?

- Recall that row i of the transition prob. Matrix \mathbf{P} tells us where we go next from state i.

- So from \mathbf{x}, our next state is distributed as \mathbf{xP}
 - The one after that is $\mathbf{xP^2}$, then $\mathbf{xP^3}$, etc.
 - (Where) Does this converge?
How do we compute this vector?

- Let $\mathbf{a} = (a_1, \ldots, a_n)$ denote the row vector of steady-state probabilities.
- If our current position is described by \mathbf{a}, then the next step is distributed as \mathbf{aP}.
- But \mathbf{a} is the steady state, so $\mathbf{a} = \mathbf{aP}$.
- Solving this matrix equation gives us \mathbf{a}.
 - So \mathbf{a} is the (left) eigenvector for \mathbf{P}.
 - (Corresponds to the “principal” eigenvector of \mathbf{P} with the largest eigenvalue.)
 - Transition probability matrices always have largest eigenvalue 1.
Link analysis: HITS
Hyperlink-Induced Topic Search (HITS)

- In response to a query, instead of an ordered list of pages each meeting the query, find two sets of interrelated pages:
 - *Hub pages* are good lists of links on a subject.
 - e.g., “Bob’s list of cancer-related links.”
 - *Authority pages* occur recurrently on good hubs for the subject.
- Best suited for “broad topic” queries rather than for page-finding queries.
- Gets at a broader slice of common opinion.
Hubs and Authorities

- Thus, a good hub page for a topic *points* to many authoritative pages for that topic.
- A good authority page for a topic is *pointed* to by many good hubs for that topic.
- Circular definition - will turn this into an iterative computation.
The hope

Mobile telecom companies
High-level scheme

- Extract from the web a base set of pages that could be good hubs or authorities.
- From these, identify a small set of top hub and authority pages; → iterative algorithm.
Base set

- Given text query (say \textit{browser}), use a text index to get all pages containing \textit{browser}.
 - Call this the root set of pages.
- Add in any page that either
 - points to a page in the root set, or
 - is pointed to by a page in the root set.
- Call this the base set.
Visualization

Get in-links (and out-links) from a connectivity server
Distilling hubs and authorities

- Compute, for each page \(x \) in the base set, a **hub score** \(h(x) \) and an **authority score** \(a(x) \).
- Initialize: for all \(x \), \(h(x) \leftarrow 1; \ a(x) \leftarrow 1 \);
- Iteratively update all \(h(x), a(x) \); \(\text{Key} \)
- After iterations
 - output pages with highest \(h() \) scores as top hubs
 - highest \(a() \) scores as top authorities.
Iterative update

- Repeat the following updates, for all x:

\[
\begin{align*}
 h(x) &\leftarrow \sum_{y \rightarrow x} a(y) \\
 a(x) &\leftarrow \sum_{y \rightarrow x} h(y)
\end{align*}
\]
Scaling

- To prevent the $h()$ and $a()$ values from getting too big, can scale down after each iteration.

- Scaling factor doesn’t really matter:
 - we only care about the *relative* values of the scores.
How many iterations?

- Claim: relative values of scores will converge after a few iterations:
 - in fact, suitably scaled, $h()$ and $a()$ scores settle into a steady state!
 - proof of this comes later.
- In practice, ~5 iterations get you close to stability.
Proof of convergence

- **n×n adjacency matrix** A:
 - each of the n pages in the base set has a row and column in the matrix.
 - Entry $A_{ij} = 1$ if page i links to page j, else $= 0$.

![Diagram of network and adjacency matrix](image-url)
Hub/authority vectors

- View the hub scores $h()$ and the authority scores $a()$ as vectors with n components.
- Recall the iterative updates

$$h(x) \leftarrow \sum_{y \rightarrow x} a(y)$$

$$a(x) \leftarrow \sum_{y \rightarrow x} h(y)$$
Rewrite in matrix form

- \(h = Aa \).
- \(a = A^t h \).

Recall \(A^t \) is the transpose of \(A \).

Substituting, \(h = AA^t h \) and \(a = A^t Aa \).

Thus, \(h \) is an eigenvector of \(AA^t \) and \(a \) is an eigenvector of \(A^t A \).

Further, our algorithm is a particular, known algorithm for computing eigenvectors: the *power iteration* method.

Guaranteed to converge.
Issues

- **Topic Drift**
 - Off-topic pages can cause off-topic “authorities” to be returned
 - E.g., the neighborhood graph can be about a “super topic”

- **Mutually Reinforcing Affiliates**
 - Affiliated pages/sites can boost each others’ scores
 - Linkage between affiliated pages is not a useful signal
Resources

- IIR Chap 21
- The WebGraph framework I: Compression techniques (Boldi et al. 2004)