Introduction to Information Retrieval

CS276: Information Retrieval and Web Search
Pandu Nayak and Prabhakar Raghavan

Lecture 5: Index Compression

Course work
- Problem set 1 due Thursday
- Programming exercise 1 will be handed out today

Last lecture – index construction
- Sort-based indexing
 - Naive in-memory inversion
 - Blocked Sort-Based Indexing
 - Merge sort is effective for disk-based sorting (avoid seeks!)
- Single-Pass In-Memory Indexing
 - No global dictionary
 - Generate separate dictionary for each block
 - Don’t sort postings
 - Accumulate postings in postings lists as they occur
- Distributed indexing using MapReduce
- Dynamic indexing: Multiple indices, logarithmic merge

Today
- Collection statistics in more detail (with RCV1)
 - How big will the dictionary and postings be?
- Dictionary compression
- Postings compression

Why compression (in general)?
- Use less disk space
 - Saves a little money
- Keep more stuff in memory
 - Increases speed
- Increase speed of data transfer from disk to memory
 - [read compressed data | decompress] is faster than [read uncompressed data]
- Premise: Decompression algorithms are fast
 - True of the decompression algorithms we use

Why compression for inverted indexes?
- Dictionary
 - Make it small enough to keep in main memory
 - Make it so small that you can keep some postings lists in main memory too
- Postings file(s)
 - Reduce disk space needed
 - Decrease time needed to read postings lists from disk
 - Large search engines keep a significant part of the postings in memory.
 - Compression lets you keep more in memory
- We will devise various IR-specific compression schemes
Recall Reuters RCV1

- symbol statistic value
- N documents 800,000
- L avg. # tokens per doc 200
- M terms (= word types) ~400,000
- avg. # bytes per token (incl. spaces/punct.) 6
- avg. # bytes per token (without spaces/punct.) 4.5
- avg. # bytes per term 7.5
- non-positional postings 100,000,000

Index parameters vs. what we index
(details IIR Table 5.1, p.80)

<table>
<thead>
<tr>
<th>Size of</th>
<th>word types (terms)</th>
<th>non-positional postings</th>
<th>positional postings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dictionary</td>
<td>non-positional index</td>
<td>positional index</td>
</tr>
<tr>
<td>Size (K)</td>
<td>∆%</td>
<td>cumul %</td>
<td>Size (K)</td>
</tr>
<tr>
<td>.Unfiltered</td>
<td>484</td>
<td>109,971</td>
<td>100,680</td>
</tr>
<tr>
<td>No numbers</td>
<td>474</td>
<td>-2</td>
<td>100,680</td>
</tr>
<tr>
<td>Case folding</td>
<td>392</td>
<td>-17</td>
<td>98,989</td>
</tr>
<tr>
<td>30 stopwords</td>
<td>391</td>
<td>-19</td>
<td>83,390</td>
</tr>
<tr>
<td>stemming</td>
<td>322</td>
<td>-17</td>
<td>63,812</td>
</tr>
</tbody>
</table>

Exercise: give intuitions for all the ‘0’ entries. Why do some zero entries correspond to big deltas in other columns?

Lossless vs. lossy compression

- Lossless compression: All information is preserved.
 - What we mostly do in IR.
- Lossy compression: Discard some information
- Several of the preprocessing steps can be viewed as lossy compression: case folding, stop words, stemming, number elimination.
- Chap/Lecture 7: Prune postings entries that are unlikely to turn up in the top k list for any query.
 - Almost no loss quality for top k list.

Vocabulary vs. collection size

- Heaps’ law: \(M = kT^b \)
- \(M \) is the size of the vocabulary, \(T \) is the number of tokens in the collection
- Typical values: 30 \(\leq k \leq 100 \) and \(b = 0.5 \)
- In a log-log plot of vocabulary size \(M \) vs. \(T \), Heaps’ law predicts a line with slope about \(0.5 \)
 - It is the simplest possible relationship between the two in log-log space
 - An empirical finding (“empirical law”)
Exercises

- What is the effect of including spelling errors, vs. automatically correcting spelling errors on Heaps' law?
- Compute the vocabulary size M for this scenario:
 - Looking at a collection of web pages, you find that there are 3000 different terms in the first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens.
 - Assume a search engine indexes a total of 2×10^{10} pages, containing 200 tokens on average
 - What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?

Zipf's law

- Heaps' law gives the vocabulary size in collections.
- We also study the relative frequencies of terms.
- In natural language, there are a few very frequent terms and very many very rare terms.
- Zipf's law: The ith most frequent term has frequency proportional to $1/i$.
 - $c_f \propto 1/i = K/i$ where K is a normalizing constant
 - c_f is collection frequency: the number of occurrences of the term t_i in the collection.

Zipf consequences

- If the most frequent term *(the)* occurs c_f times
 - then the second most frequent term *(of)* occurs $c_f/2$ times
 - the third most frequent term *(and)* occurs $c_f/3$ times ...
- Equivalent: $c_f = K/i$ where K is a normalizing factor, so
 - $\log c_f = \log K - \log i$
 - Linear relationship between $\log c_f$ and $\log i$
- Another power law relationship

Compression

- Now, we will consider compressing the space for the dictionary and postings
 - Basic Boolean index only
 - No study of positional indexes, etc.
 - We will consider compression schemes

DICTIONARY COMPRESSION
Why compress the dictionary?

- Search begins with the dictionary
- We want to keep it in memory
- Memory footprint competition with other applications
- Embedded/mobile devices may have very little memory
- Even if the dictionary isn’t in memory, we want it to be small for a fast search startup time
- So, compressing the dictionary is important

Dictionary storage - first cut

- Array of fixed-width entries
 - ~400,000 terms; 28 bytes/term = 11.2 MB.

Fixed-width terms are wasteful

- Most of the bytes in the Term column are wasted – we allot 20 bytes for 1 letter terms.
 - And we still can’t handle supercalifragilisticexpialidocious or hydrochlorofluorocarbons.
- Written English averages ~4.5 characters/word.
 - Exercise: Why is/isn’t this the number to use for estimating the dictionary size?
- Ave. dictionary word in English: ~8 characters
 - How do we use ~8 characters per dictionary term?
- Short words dominate token counts but not type average.

Compressing the term list: Dictionary-as-a-String

- Store dictionary as a (long) string of characters:
 - Pointer to next word shows end of current word
 - Hope to save up to 60% of dictionary space.

Space for dictionary as a string

- 4 bytes per term for Freq.
- 4 bytes per term for pointer to Postings.
- 3 bytes per term pointer
- Avg. 8 bytes per term in term string
- 400K terms x 19 -> 7.6 MB (against 11.2 MB for fixed width)
Introduc)on to Informa)on Retrieval

Net

- Example for block size $k = 4$
- Where we used 3 bytes/pointer without blocking
 - $3 \times 4 = 12$ bytes,
 now we use $3 + 4 = 7$ bytes.

Shaved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?

Exercise

- Estimate the space usage (and savings compared to
 7.6 MB) with blocking, for block sizes of $k = 4, 8$ and
 16.

Dictionary search without blocking

- Assuming each
dictionary term equally
likely in query (not really
so in practice!), average
number of comparisons

$= (1+2 \cdot 2+4 \cdot 3+4)/8 \approx 2.6$

Exercise: what if the frequencies
of query terms were non-uniform
but known, how would you
structure the dictionary search
tree?

Dictionary search with blocking

- Binary search down to 4-term block;
- Then linear search through terms in block.
- Blocks of 4 (binary tree), avg. $= (1+2+2+2+3+2+4+5)/8 = 3$ compares

Exercise

- Estimate the impact on search performance (and
 slowdown compared to $k=1$) with blocking, for block
 sizes of $k = 4, 8$ and 16.

Front coding

- Front-coding:
 - Sorted words commonly have long common prefix – store
differences only
 - (for last k-1 in a block of k)

$\text{automaton} \rightarrow 8 \text{automa}^{a} \text{tion}$

Encodes automat Extra length beyond automat.

Begins to resemble general string compression.

RCV1 dictionary compression summary

<table>
<thead>
<tr>
<th>Technique</th>
<th>Size in MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed width</td>
<td>11.2</td>
</tr>
<tr>
<td>Dictionary-as-String with pointers to every term</td>
<td>7.6</td>
</tr>
<tr>
<td>Also, blocking (k = 4)</td>
<td>7.1</td>
</tr>
<tr>
<td>Also, Blocking + front coding</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Postings compression

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly.
- A posting for our purposes is a docID.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use \(\log_2 800,000 \approx 20 \) bits per docID.
- Our goal: use far fewer than 20 bits per docID.

Postings: two conflicting forces

- A term like *arachnocentric* occurs in maybe one doc out of a million – we would like to store this posting using \(\log_2 1M \approx 20 \) bits.
- A term like *the* occurs in virtually every doc, so 20 bits/posting is too expensive.
- Prefer 0/1 bitmap vector in this case.

Postings file entry

- We store the list of docs containing a term in increasing order of docID.
 - *computer*: \(33,47,54,159,202 \ldots \)
 - *Consequence*: it suffices to store gaps.
 - \(33,14,10,5,43 \ldots \)
- *Hope*: most gaps can be encoded/stored with far fewer than 20 bits.

Three postings entries

<table>
<thead>
<tr>
<th>Term</th>
<th>Docs</th>
<th>Gaps</th>
<th>posting list</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>203042</td>
<td>1</td>
<td>203043 203044 283045 \ldots</td>
</tr>
<tr>
<td>COMPUTER</td>
<td>203047</td>
<td>203154 203159 283202 \ldots</td>
<td></td>
</tr>
<tr>
<td>MACROCEPHALIC</td>
<td>282900</td>
<td>500100 284010</td>
<td></td>
</tr>
</tbody>
</table>
Variable length encoding

- **Aim:**
 - For *arachnocentric*, we will use ~20 bits/gap entry.
 - For *the*, we will use ~1 bit/gap entry.
- If the average gap for a term is \(G \), we want to use \(~\log_2 G\) bits/gap entry.
- **Key challenge:** encode every integer (gap) with about as few bits as needed for that integer.
- This requires a *variable length encoding*.

Variable Byte (VB) codes

- For a gap value \(G \), we want to use close to the fewest bytes needed to hold \(\log_2 G \) bits.
- Begin with one byte to store \(G \) and dedicate 1 bit in it to be a *continuation* bit \(c \).
- If \(G \leq 127 \), binary-encode it in the 7 available bits and set \(c = 1 \).
- Else encode \(G \)'s lower-order 7 bits and then use additional bytes to encode the higher order bits using the same algorithm.
- At the end set the continuation bit of the last byte to 1 (\(c = 1 \)) – and for the other bytes \(c = 0 \).

Example

<table>
<thead>
<tr>
<th>docIDs</th>
<th>824</th>
<th>829</th>
<th>215406</th>
</tr>
</thead>
<tbody>
<tr>
<td>gaps</td>
<td>00000110</td>
<td>10111000</td>
<td>10000101</td>
</tr>
<tr>
<td>VB code</td>
<td>000001101011100010000101000011010000110010110001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Postings stored as the byte concatenation:

\[000001101011100010000101000011010000110010110001 \]

Key property: VB-encoded postings are uniquely prefix-decodable.

For a small gap (5), VB uses a whole byte.

Other variable unit codes

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles).
- Variable byte alignment wastes space if you have many small gaps – nibbles do better in such cases.
- Variable byte codes:
 - Used by many commercial/research systems.
 - Good low-tech blend of variable-length coding and sensitivity to computer memory alignment matches (vs. bit-level codes, which we look at next).
- There is also recent work on word-aligned codes that pack a variable number of gaps into one word.

Unary code

- Represent \(n \) as \(n \) 1s with a final 0.
- Unary code for 3 is 1110.
- Unary code for 40 is
 \[110 \]
- Unary code for 80 is:
 \[1110 \]
- This doesn't look promising, but....

Gamma codes

- We can compress better with *bit-level codes*.
 - The Gamma code is the best known of these.
- Represent a gap \(G \) as a pair *length* and *offset*.
 - *offset* is \(G \) in binary, with the leading bit cut off.
 - For example 13 \(\rightarrow \) 1101 \(\rightarrow \) 101.
 - *length* is the length of *offset*.
 - For 13 (offset 101), this is 3.
- We encode *length* with *unary code*: 1110.
- Gamma code of 13 is the concatenation of *length* and *offset*: 1110101.
Gamma code examples

<table>
<thead>
<tr>
<th>number</th>
<th>length</th>
<th>offset</th>
<th>γ-code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0</td>
<td>10,0</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>1</td>
<td>10,1</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
<td>0</td>
<td>110,00</td>
</tr>
<tr>
<td>9</td>
<td>1110</td>
<td>00</td>
<td>1110,001</td>
</tr>
<tr>
<td>13</td>
<td>1110</td>
<td>101</td>
<td>1110,101</td>
</tr>
<tr>
<td>24</td>
<td>11110</td>
<td>1000</td>
<td>11110,1000</td>
</tr>
<tr>
<td>511</td>
<td>111111110</td>
<td>11111111</td>
<td>111111110,111111111</td>
</tr>
<tr>
<td>1025</td>
<td>11111111110</td>
<td>0000000001</td>
<td>11111111110,00000000001</td>
</tr>
</tbody>
</table>

Gamma code properties

- \(G \) is encoded using \(2 \lfloor \log G \rfloor + 1 \) bits
 - Length of offset is \(\lfloor \log G \rfloor \) bits
 - Length of length is \(\lfloor \log G \rfloor + 1 \) bits
- All gamma codes have an odd number of bits
- Almost within a factor of 2 of best possible, \(\log_2 G \)
- Gamma code is uniquely prefix-decodable, like VB
- Gamma code can be used for any distribution
- Gamma code is parameter-free

Gamma seldom used in practice

- Machines have word boundaries – 8, 16, 32, 64 bits
 - Operations that cross word boundaries are slower
- Compressing and manipulating at the granularity of bits can be slow
- Variable byte encoding is aligned and thus potentially more efficient
- Regardless of efficiency, variable byte is conceptually simpler at little additional space cost

RCV1 compression

<table>
<thead>
<tr>
<th>Data structure</th>
<th>Size in MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>dictionary, fixed-width</td>
<td>11.2</td>
</tr>
<tr>
<td>dictionary, term pointers into string</td>
<td>7.6</td>
</tr>
<tr>
<td>with blocking, (k = 4)</td>
<td>7.1</td>
</tr>
<tr>
<td>with blocking & front coding</td>
<td>5.9</td>
</tr>
<tr>
<td>collection (text, xml markup etc)</td>
<td>3,600.0</td>
</tr>
<tr>
<td>collection (text)</td>
<td>960.0</td>
</tr>
<tr>
<td>Term-doc incidence matrix</td>
<td>40,000.0</td>
</tr>
<tr>
<td>postings, uncompressed (32-bit words)</td>
<td>400.0</td>
</tr>
<tr>
<td>postings, uncompressed (20 bits)</td>
<td>250.0</td>
</tr>
<tr>
<td>postings, variable byte encoded</td>
<td>116.0</td>
</tr>
<tr>
<td>postings, (\gamma)-encoded</td>
<td>101.0</td>
</tr>
</tbody>
</table>

Index compression summary

- We can now create an index for highly efficient Boolean retrieval that is very space efficient
- Only 4% of the total size of the collection
- Only 10-15% of the total size of the text in the collection
- However, we’ve ignored positional information
- Hence, space savings are less for indexes used in practice
 - But techniques substantially the same.

Resources for today’s lecture

- IIR 5
- MG 3.3, 3.4.
 - Variable byte codes
 - Word aligned codes