Introduction to

Information Retrieval

CS276
Information Retrieval and Web Search
Chris Manning and Pandu Nayak

Evaluation
Situation

Thanks to your stellar performance in CS276, you quickly rise to VP of Search at internet retail giant nozama.com. Your boss brings in her nephew Sergey, who claims to have built a better search engine for nozama. Do you

- Laugh derisively and send him to rival Tramlaw Labs?
- Counsel Sergey to go to Stanford and take CS276?
- Try a few queries on his engine and say “Not bad”?
- ... ?
What could you ask Sergey?

- How fast does it index?
 - Number of documents/hour
 - Incremental indexing – nozama adds 10K products/day
- How fast does it search?
 - Latency and CPU needs for nozama’s 5 million products
- Does it recommend related products?
- This is all good, but it says nothing about the quality of Sergey’s search
 - You want nozama’s users to be happy with the search experience
How do you tell if users are happy?

- Search returns products relevant to users
 - How do you assess this at scale?
- Search results get clicked a lot
 - Misleading titles/summaries can cause users to click
- Users buy after using the search engine
 - Or, users spend a lot of $ after using the search engine
- Repeat visitors/buyers
 - Do users leave soon after searching?
 - Do they come back within a week/month/...?
Happiness: elusive to measure

- Most common proxy: *relevance* of search results
 - But how do you measure relevance?
- Pioneered by Cyril Cleverdon in the Cranfield Experiments
Measuring relevance

- Three elements:
 1. A benchmark document collection
 2. A benchmark suite of queries
 3. An assessment of either Relevant or Nonrelevant for each query and each document
So you want to measure the quality of a new search algorithm

- Benchmark documents – nozama’s products
- Benchmark query suite – more on this
- Judgments of document relevance for each query

Relevance judgement

5 million nozama.com products

50000 sample queries
Relevance judgments

- Binary (relevant vs. non-relevant) in the simplest case, more nuanced (0, 1, 2, 3 ...) in others
- What are some issues already?
- 5 million times 50K takes us into the range of a quarter trillion judgments
 - If each judgment took a human 2.5 seconds, we’d still need 10^{11} seconds, or nearly 300 million if you pay people 10 per hour to assess
 - 10K new products per day
Crowd source relevance judgments?

- Present query-document pairs to low-cost labor on online crowd-sourcing platforms
 - Hope that this is cheaper than hiring qualified assessors
- Lots of literature on using crowd-sourcing for such tasks
- Main takeaway – you get some signal, but the variance in the resulting judgments is very high
Evaluating an IR system

- **Note:** user need is translated into a query
- Relevance is assessed relative to the user need, not the query
- E.g., Information need: My swimming pool bottom is becoming black and needs to be cleaned.
- **Query:** pool cleaner
- Assess whether the doc addresses the underlying need, not whether it has these words
What else?

- Still need test queries
 - Must be germane to docs available
 - Must be representative of actual user needs
 - Random query terms from the documents generally not a good idea
 - Sample from query logs if available

- Classically (non-Web)
 - Low query rates – not enough query logs
 - Experts hand-craft “user needs”
Some public test Collections

TABLE 4.3 Common Test Corpora

<table>
<thead>
<tr>
<th>Collection</th>
<th>NDocs</th>
<th>NQrys</th>
<th>Size (MB)</th>
<th>Term/Doc</th>
<th>Q-D RelAss</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADI</td>
<td>82</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIT</td>
<td>2109</td>
<td>14</td>
<td>2</td>
<td>400</td>
<td>>10,000</td>
</tr>
<tr>
<td>CACM</td>
<td>3204</td>
<td>64</td>
<td>2</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>CIST</td>
<td>1460</td>
<td>112</td>
<td>2</td>
<td>46.5</td>
<td></td>
</tr>
<tr>
<td>Cranfield</td>
<td>1400</td>
<td>225</td>
<td>2</td>
<td>53.1</td>
<td></td>
</tr>
<tr>
<td>LISA</td>
<td>5872</td>
<td>35</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medline</td>
<td>1033</td>
<td>30</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPL</td>
<td>11,429</td>
<td>93</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSHMED</td>
<td>34,856</td>
<td>106</td>
<td>400</td>
<td>250</td>
<td>16,140</td>
</tr>
<tr>
<td>Reuters</td>
<td>21,578</td>
<td>672</td>
<td>28</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>TREC</td>
<td>740,000</td>
<td>200</td>
<td>2000</td>
<td>89-3543</td>
<td>» 100,000</td>
</tr>
</tbody>
</table>

Typical TREC
Now we have the basics of a benchmark

- Let’s review some evaluation measures
 - Precision
 - Recall
 - NDCG
 - ...

Unranked retrieval evaluation: Precision and Recall – recap from IIR 8/video

- **Binary assessments**

Precision: fraction of retrieved docs that are relevant = \(P(\text{relevant} | \text{retrieved}) \)

Recall: fraction of relevant docs that are retrieved

= \(P(\text{retrieved} | \text{relevant}) \)

<table>
<thead>
<tr>
<th></th>
<th>Relevant</th>
<th>Nonrelevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieved</td>
<td>tp</td>
<td>fp</td>
</tr>
<tr>
<td>Not Retrieved</td>
<td>fn</td>
<td>tn</td>
</tr>
</tbody>
</table>

- Precision \(P = \frac{tp}{tp + fp} \)
- Recall \(R = \frac{tp}{tp + fn} \)
Rank-Based Measures

- Binary relevance
 - Precision@K (P@K)
 - Mean Average Precision (MAP)
 - Mean Reciprocal Rank (MRR)

- Multiple levels of relevance
 - Normalized Discounted Cumulative Gain (NDCG)
Precision@K

- Set a rank threshold K
- Compute % relevant in top K
- Ignores documents ranked lower than K

Ex:
- Prec@3 of 2/3
- Prec@4 of 2/4
- Prec@5 of 3/5

In similar fashion we have Recall@K
A precision-recall curve

Lots more detail on this in the Coursera video
Mean Average Precision

- Consider rank position of each **relevant** doc
 - $K_1, K_2, \ldots K_R$

- Compute Precision@K for each $K_1, K_2, \ldots K_R$

- Average precision = average of P@K

- Ex: has AvgPrec of $\frac{1}{3} \cdot \left(\frac{1}{1} + \frac{2}{3} + \frac{3}{5} \right) \approx 0.76$

- MAP is Average Precision across multiple queries/rankings
Average Precision

Ranking #1: \(\frac{(1.0 + 0.67 + 0.75 + 0.8 + 0.83 + 0.6)}{6} = 0.78 \)

Ranking #2: \(\frac{(0.5 + 0.4 + 0.5 + 0.57 + 0.56 + 0.6)}{6} = 0.52 \)
MAP

<table>
<thead>
<tr>
<th>Relevant documents for query 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Ranking #1

| Recall | 0.2 | 0.2 | 0.4 | 0.4 | 0.4 | 0.6 | 0.6 | 0.6 | 0.8 | 1.0 |
| Precision | 1.0 | 0.5 | 0.67 | 0.5 | 0.4 | 0.5 | 0.43 | 0.38 | 0.44 | 0.5 |

<table>
<thead>
<tr>
<th>Relevant documents for query 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Ranking #2

| Recall | 0.0 | 0.33 | 0.33 | 0.33 | 0.67 | 0.67 | 1.0 | 1.0 | 1.0 | 1.0 |
| Precision | 0.0 | 0.5 | 0.33 | 0.25 | 0.4 | 0.33 | 0.43 | 0.38 | 0.33 | 0.3 |

average precision query 1 \(= \frac{1.0 + 0.67 + 0.5 + 0.44 + 0.5}{5} = 0.62\)

average precision query 2 \(= \frac{0.5 + 0.4 + 0.43}{3} = 0.44\)

mean average precision \(= \frac{0.62 + 0.44}{2} = 0.53\)
Mean average precision

- If a relevant document never gets retrieved, we assume the precision corresponding to that relevant doc to be zero
- MAP is macro-averaging: each query counts equally
- Now perhaps most commonly used measure in research papers
- Good for web search?
- MAP assumes user is interested in finding many relevant documents for each query
- MAP requires many relevance judgments in text collection
BEYOND BINARY RELEVANCE
Discounted Cumulative Gain

- Popular measure for evaluating web search and related tasks

- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant documents
 - the lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined
Discounted Cumulative Gain

- Uses graded relevance as a measure of usefulness, or gain, from examining a document
- Gain is accumulated starting at the top of the ranking and may be reduced, or discounted, at lower ranks
- Typical discount is $1/\log(rank)$
 - With base 2, the discount at rank 4 is $1/2$, and at rank 8 it is $1/3$
Summarize a Ranking: DCG

- What if relevance judgments are in a scale of $[0,r]$? $r>2$

- Cumulative Gain (CG) at rank n
 - Let the ratings of the n documents be $r_1, r_2, \ldots r_n$ (in ranked order)
 - $CG = r_1 + r_2 + \ldots + r_n$

- Discounted Cumulative Gain (DCG) at rank n
 - $DCG = r_1 + \frac{r_2}{\log_2 2} + \frac{r_3}{\log_2 3} + \ldots + \frac{r_n}{\log_2 n}$
 - We may use any base for the logarithm
Discounted Cumulative Gain

- DCG is the total gain accumulated at a particular rank p:

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

- Alternative formulation:

$$DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{\log(1+i)}$$

- used by some web search companies
- emphasis on retrieving highly relevant documents
DCG Example

- 10 ranked documents judged on 0-3 relevance scale:
 3, 2, 3, 0, 0, 1, 2, 2, 3, 0
- discounted gain:
 3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0
 = 3, 2, 1.89, 0, 0, 0.39, 0.71, 0.67, 0.95, 0
- DCG:
 3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61
Summarize a Ranking: NDCG

- Normalized Discounted Cumulative Gain (NDCG) at rank \(n \)
 - Normalize DCG at rank \(n \) by the DCG value at rank \(n \) of the ideal ranking
 - The ideal ranking would first return the documents with the highest relevance level, then the next highest relevance level, etc

- Normalization useful for contrasting queries with varying numbers of relevant results

- NDCG is now quite popular in evaluating Web search
NDCG - Example

4 documents: d_1, d_2, d_3, d_4

<table>
<thead>
<tr>
<th>i</th>
<th>Ground Truth</th>
<th>Ranking Function$_1$</th>
<th>Ranking Function$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Document Order</td>
<td>r_i</td>
<td>Document Order</td>
</tr>
<tr>
<td>1</td>
<td>d4</td>
<td>2</td>
<td>d3</td>
</tr>
<tr>
<td>2</td>
<td>d3</td>
<td>2</td>
<td>d4</td>
</tr>
<tr>
<td>3</td>
<td>d2</td>
<td>1</td>
<td>d2</td>
</tr>
<tr>
<td>4</td>
<td>d1</td>
<td>0</td>
<td>d1</td>
</tr>
</tbody>
</table>

$\text{NDCG}_{GT} = 1.00$ \quad $\text{NDCG}_{RF1} = 1.00$ \quad $\text{NDCG}_{RF2} = 0.9203$

\[
\begin{align*}
\text{DCG}_{GT} &= 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4} \right) = 4.6309 \\
\text{DCG}_{RF1} &= 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4} \right) = 4.6309 \\
\text{DCG}_{RF2} &= 2 + \left(\frac{1}{\log_2 2} + \frac{2}{\log_2 3} + \frac{0}{\log_2 4} \right) = 4.2619 \\
\end{align*}
\]

$\text{MaxDCG} = \text{DCG}_{GT} = 4.6309$
What if the results are not in a list?

- Suppose there’s only one Relevant Document
- Scenarios:
 - known-item search
 - navigational queries
 - looking for a fact
- Search duration ~ Rank of the answer
 - measures a user’s effort
Mean Reciprocal Rank

- Consider rank position, K, of first relevant doc
 - Could be – only clicked doc

- Reciprocal Rank score = $\frac{1}{K}$

- MRR is the mean RR across multiple queries
Human judgments are

- Expensive
- Inconsistent
 - Between raters
 - Over time
- Decay in value as documents/query mix evolves
- Not always representative of “real users”
 - Rating vis-à-vis query, vs underlying need
- So – what alternatives do we have?
USING USER CLICKS
What do clicks tell us?

Strong position bias, so absolute click rates unreliable.
Relative vs absolute ratings

Hard to conclude $\text{Result1} > \text{Result3}$
Probably can conclude $\text{Result3} > \text{Result2}$
Pairwise relative ratings

- Pairs of the form: DocA better than DocB for a query
 - Doesn’t mean that DocA relevant to query
- Now, rather than assess a rank-ordering wrt per-doc relevance assessments
- Assess in terms of conformance with historical pairwise preferences recorded from user clicks
A/B testing at web search engines

- **Purpose:** Test a single innovation
- **Prerequisite:** You have a large search engine up and running.
- **Have most users use old system**
- **Divert a small proportion of traffic (e.g., 1%) to an experiment to evaluate an innovation**
 - Full page experiment
 - Interleaved experiment
Comparing two rankings via clicks (Joachims 2002)

Query: [support vector machines]

Ranking A
- Kernel machines
- SVM-light
- Lucent SVM demo
- Royal Holl. SVM
- SVM software
- SVM tutorial

Ranking B
- Kernel machines
- SVMs
- Intro to SVMs
- Archives of SVM
- SVM-light
- SVM software
Interleave the two rankings

This interleaving starts with B
Remove duplicate results

<table>
<thead>
<tr>
<th>Kernel machines</th>
<th>SVMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel machines</td>
<td>SVM-light</td>
</tr>
<tr>
<td>Intro to SVMs</td>
<td>Lucent SVM demo</td>
</tr>
<tr>
<td>Archives of SVM</td>
<td>Royal Holl. SVM</td>
</tr>
<tr>
<td>SVM-light</td>
<td>...</td>
</tr>
</tbody>
</table>
Count user clicks

Ranking A: 3
Ranking B: 1
Interleaved ranking

- Present interleaved ranking to users
 - Start randomly with ranking A or ranking B to evens out presentation bias

- Count clicks on results from A versus results from B

- Better ranking will (on average) get more clicks
Facts/entities (what happens to clicks?)

Google search for "mount everest height"

29,029' (8,848 m)
Mount Everest, Elevation

Mount Everest - Wikipedia, the free encyclopedia
By the same measure of base to summit, Mount McKinley, in Alaska, is also taller than Everest. Despite its height above sea level of only 6,193.6 m (20,230 ft), ... List of deaths on eight - List of people who died ... - Timeline of climbing Mount

Mount Everest
Mountain
Mount Everest is the Earth’s highest mountain, with a peak at 8,848 metres above sea level and the 5th tallest mountain measured from the centre of the Earth. It is located in the Mahalangur section of the Himalayas. Wikipedia

Elevation: 29,029' (8,848 m)
First ascent: May 29, 1953
Prominence: 29,029' (8,848 m)
Comparing two rankings to a baseline ranking

- Given a set of pairwise preferences P
- We want to measure two rankings A and B
- Define a proximity measure between A and P
 - And likewise, between B and P
- Want to declare the ranking with better proximity to be the winner
- Proximity measure should reward agreements with P and penalize disagreements
Kendall tau distance

- Let X be the number of agreements between a ranking (say A) and P
- Let Y be the number of disagreements
- Then the Kendall tau distance between A and P is $(X-Y)/(X+Y)$
- Say $P = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$ and $A=(1,3,2,4)$
- Then $X=5$, $Y=1$...
- (What are the minimum and maximum possible values of the Kendall tau distance?)
Recap

- Benchmarks consist of
 - Document collection
 - Query set
 - Assessment methodology

- Assessment methodology can use raters, user clicks, or a combination
 - These get quantized into a *goodness measure* – Precision/NDCG etc.
 - Different engines/algorithms compared on a benchmark together with a *goodness measure*