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Ambiguity
§ Unlikely	that	a	short	query	can	unambiguously	
describe	a	user’s	information	need

§ For	example,	the	query	[chi]	can	mean
§ Calamos	Convertible	Opportunities	&	Income	Fund	quote
§ The	city	of	Chicago
§ Balancing	one’s	natural	energy	(or	ch’i)
§ Computer-human	interactions	
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Personalization
§ Ambiguity	means	that	a	single	ranking	is	unlikely	to	be	
optimal	for	all	users

§ Personalized	ranking	is	the	only	way	to	bridge	the	gap
§ Personalization	can	use

§ Long	term	behavior	to	identify	user	interests,	
e.g.,	a	long	term	interest	in	user	interface	research

§ Short	term	session	to	identify	current	task,
e.g.,	checking	on	a	series	of	stock	tickers

§ User	location,	e.g.,	MTA	in	New	York	vs	Baltimore
§ Social	network
§ …
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Potential	for	Personalization
[Teevan,	Dumais,	Horvitz	2010]
§How	much	can	personalization	improve	ranking?		How	
can	we	measure	this?

§Ask	raters	to	explicitly	rate	a	set	of	queries
§ But	rather	than	asking	them	to	guess	what	a	
user’s	information	need	might	be	…

§ ...	ask	which	results	they	would	personally	
consider	relevant

§ Use	self-generated	and	pre-generated	queries
4
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Computing	potential	for	personalization
§ For	each	query	q

§ Compute	average	rating	for	each	result
§ Let	Rq be	the	optimal	ranking	according	to	the	average	
rating

§ Compute	the	NDCG	value	of	ranking	Rq for	the	ratings	of	
each	rater	i

§ Let	Avgq be	the	average	of	the	NDCG	values	for	each	rater
§ Let	Avg	be	the	average	Avgq over	all	queries
§ Potential	for	personalization	is	(1	– Avg)
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Example:	NDCG	values	for	a	query
Result Rater	A Rater	B Average	rating

D1 1 0 0.5

D2 1 1 1

D3 0 1 0.5

D4 0 0 0
D5 0 0 0

D6 1 0 0.5

D7 1 2 1.5

D8 0 0 0

D9 0 0 0

D10 0 0 0

NDCG 0.88 0.65

6Average NDCG for raters: 0.77
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Example:	NDCG	values	for	optimal	
ranking	for	average	ratings

Result Rater	A Rater	B Average	rating

D7 1 2 1.5

D2 1 1 1

D1 1 0 0.5

D3 0 1 0.5
D6 1 0 0.5

D4 0 0 0

D5 0 0 0

D8 0 0 0

D9 0 0 0

D10 0 0 0

NDCG 0.98 0.96

7Average NDCG for raters: 0.97
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Example:	Potential	for	personalization
Result Rater	A Rater	B Average	rating

D7 1 2 1.5

D2 1 1 1

D1 1 0 0.5

D3 0 1 0.5
D6 1 0 0.5

D4 0 0 0

D5 0 0 0

D8 0 0 0

D9 0 0 0

D10 0 0 0

NDCG 0.98 0.96

8Potential for personalization: 0.03
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Potential	for	personalization	graph

9

Number of raters

N
D

C
G

Potential for 
personalization

Introduction	to	Information	Retrieval

PERSONALIZING	SEARCH
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Personalizing	search
[Pitkow	et	al.	2002]
§Two	general	ways	of	personalizing	search

§ Query	expansion
§ Modify	or	augment	user	query
§ E.g.,	query	term	“IR” can	be	augmented	with	either	“information	
retrieval” or	“Ingersoll-Rand” depending	on	user	interest

§ Ensures	that	there	are	enough	personalized	results

§ Reranking
§ Issue	the	same	query	and	fetch	the	same	results	…
§ …	but	rerank	the	results	based	on	a	user	profile
§ Allows	both	personalized	and	globally	relevant	results
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User	interests
§ Explicitly	provided	by	the	user

§ Sometimes	useful,	particularly	for	new	users
§ …	but	generally	doesn’t	work	well

§ Inferred	from	user	behavior	and	content
§ Previously	issued	search	queries
§ Previously	visited	Web	pages
§ Personal	documents
§ Emails

§ Ensuring	privacy	and	user	control	is	very	important
12
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Relevance	feedback	perspective
[Teevan,	Dumais,	Horvitz	2005]
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Binary	Independence	Model
• Estimating	RSV	coefficients	in	theory
• For	each	term	i look	at	this	table	of	document	counts:

Documents 
 

Relevant Non-Relevant Total 

xi=1 si ni-si ni 
xi=0 S-si N-ni-S+si N-ni 
Total S N-S N 

 

 

pi ≈
si
S

ri ≈
(ni − si )
(N − S)

ci ≈ K(N,ni,S, si ) = log
si (S − si )

(ni − si ) (N − ni − S + si )

• Estimates: For now,
assume no
zero terms.
See later
lecture.
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Personalization	as	relevance	feedback
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Reranking
§ BM25	scoring

§ Use	updated	weight	ci in	BM25

𝑐" = log
(𝑠" + 0.5)

(𝑆 − 𝑠" + 0.5)
(𝑁 − 𝑛" + 0.5)
(𝑛" + 0.5)

≈ log
(𝑠" + 0.5)

(𝑆 − 𝑠" + 0.5)
+ 𝐼𝐷𝐹"

where	we	have	used
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ci∑ × tfi

ʹN = N + S
ʹni = ni + si
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Corpus	representation
§ Estimating	N and	ni

§ Many	possibilities
§ N:	All	documents,	query	relevant	documents,	result	set
§ ni:	Full	text,	only	titles	and	snippets

§ Practical	strategy
§ Approximate	corpus	statistics	from	result	set
§ …	and	just	the	title	and	snippets
§ Empirically	seems	to	work	the	best!
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User	representation
§ Estimating	S and	si

§ Estimated	from	a	local	search	index	containing
§ Web	pages	the	user	has	viewed
§ Email	messages	that	were	viewed	or	sent
§ Calendar	items
§ Documents	stored	on	the	client	machine

§ Best	performance	when
§ S is	the	number	of	local	documents	matching	the	query
§ si is	the	number	that	also	contains	term	i 18



4

Introduction	to	Information	Retrieval

Document	and	query	representation
§ Document	represented	by	the	title	and	snippets

§ Query	is	expanded	to	contain	words	near	query	
terms	(in	titles	and	snippets)
§ For	the	query	[cancer]	add	underlined	terms

The	American Cancer Society is	dedicated	to	eliminating cancer as	a	
major health	problem	by	preventing cancer,	saving lives,	and	
diminishing	suffering	through	…

§ This	combination	of	corpus,	user,	document,	and	
query	representations	seem	to	work	well 19
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LOCATION
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User	location
§ User	location	is	one	of	the	most	important	features	
for	personalization
§ Country

§ Query	[football]	in	the	US	vs	the	UK

§ State/Metro/City
§ Queries	like	[zoo],	[craigslist],	[giants]

§ Fine-grained	location
§ Queries	like	[pizza],	[restaurants],	[coffee	shops]
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Challenges
§ Not	all	queries	are	location	sensitive

§ [facebook]	is	not	asking	for	the	closest	Facebook	office
§ [seaworld]	is	not	necessarily	asking	for	the	closest	SeaWorld

§ Different	parts	of	a	site	may	be	more	or	less	location	
sensitive
§ NYTimes	home	page	vs	NYTimes	Local	section

§ Addresses	on	a	page	don’t	always	tell	us	how	location	
sensitive	the	page	is
§ Stanford	home	page	has	address,	but	not	location	sensitive
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Key	idea
[Bennett	et	al.	2011]
§ Usage	statistics,	rather	than	locations	mentioned	in	a	
document,	best	represent	where	it	is	relevant
§ I.e.,	if	users	in	a	location	tend	to	click	on	that	document,	
then	it	is	relevant	in	that	location

§ User	location	data	is	acquired	from	anonymized logs	
(with	user	consent,	e.g.,	from	a	widely	distributed	
browser	extension)
§ User	IP	addresses	are	resolved	into	geographic	location	
information
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Location	interest	model
§ Use	the	logs	data	to	estimate	the	probability	of	the	
location	of	the	user	given	they	viewed	this	URL

24

P(location = x |URL)
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Location	interest	model
§ Use	the	logs	data	to	estimate	the	probability	of	the	
location	of	the	user	given	they	viewed	this	URL

25

P(location = x |URL)
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Learning	the	location	interest	model
§ For	compactness,	represent	location	interest	model	
as	a	mixture	of	5-25	2-d	Gaussians	(x is	[lat,	long])

§ Learn	Gaussian	mixture	model	using	EM
§ Expectation	step:	Estimate	probability	that	each	point	
belongs	to	each	Gaussian

§ Maximization	step:	Estimate	most	likely	mean,	covariance,	
weight 26

P(location = x |URL) = wiN(x;µi,∑i
i=1

n
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§ Learn	a	location-interest	model	for	queries
§ Using	location	of	users	who	issued	the	query

§ Learn	a	background	model	showing	the	overall	
density	of	users

More	location	interest	models

27
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Topics	in	URLs	with	high	
P(user	location	|	URL)
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Location	sensitive	features
§ Non-contextual	features	(user-independent)

§ Is	the	query	location	sensitive?		What	about	the	URLs?
§ Feature:	Entropy	of	the	location	distribution

§ Low	entropy	means	distribution	is	peaked	and	location	is	important

§ Feature:	KL-divergence	between	location	model	and	
background	model
§ High	KL-divergence	suggests	that	it	is	location	sensitive

§ Feature:	KL-divergence	between	query	and	URL	models
§ Low	KL-divergence	suggests	URL	is	more	likely	to	be	relevant	to	
users	issuing	the	query
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More	location	sensitive	features
§ Contextual	features	(user-dependent)

§ Feature:	User’s	location	(naturally!)
§ Feature:	Probability	of	the	user’s	location	given	the	URL

§ Computed	by	evaluating	URL’s	location	model	at	user	location
§ Feature	is	high	when	user	is	at	a	location	where	URL	is	popular
§ Downside:	large	population	centers	tend	to	higher	probabilities	for	
all	URLs

§ Feature:	Use	Bayes	rule	to	compute	P(URL	|	user	location)
§ Feature:	Also	create	a	normalized	version	of	the	above	
feature	by	normalizing	with	the	background	model

§ Features:	Versions	of	the	above	with	query	instead	of	URL

30
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Learning	to	rank
§ Add	location	features	(in	addition	to	standard	
features)	for	machine	learned	ranking
§ Training	data	derived	from	logs
§ P(URL	|	user	location)	turns	out	to	be	an	important	feature
§ KL	divergence	of	the	URL	model	from	the	background	
model	also	plays	an	important	role
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Query	model	for	[rta	bus	schedule]
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User in New Orleans
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URL	model	for	top	original	result
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User in New Orleans
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URL	model	for	promoted	URL

34

User in New Orleans

Introduction	to	Information	Retrieval

PERSONALIZED	PAGERANK
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Pagerank	review
§ Let	A be	the	stochastic	matrix	corresponding	to	the	
Web	graph	G over	n nodes
§ No	teleportation	links	(but	assume	no	deadends	in	G)
§ If	node	i has	oi outlinks,	and	there	is	an	edge	from	node	i
to	node	j,	then	Aij =	1/oi

§ Let	p be	the	teleportation	probabilities
§ (n x	1)	column	vector	with	each	entry	being	1/n

§ Pagerank	vector	r is	defined	by	the	following

36

r = (1−α)Ar+αp
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Personalized	pagerank
[Haveliwala	2003]	[Jeh	and	Widom	2003]
§In	the	basic	pagerank	computation,	teleportation	
probability	vector	p is	uniform	over	all	pages
§But	if	the	user	has	preferences	on	which	pages	to	
teleport	to,	that	preference	can	be	represented	in	p

§ p could	be	uniform	over	user’s	bookmarks
§ Or	it	could	be	non-zero	on	just	pages	on	topics	of	interest	
to	the	user

§Pagerank	would	be	personalized	to	user’s	interests

§But	computing	personalized	pagerank	is	expensive 37
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Linearity	theorem
§ For	any	preference	vectors	u1 and	u2,	if	v1 and	v2 are	
the	corresponding	personalized	pagerank	vectors,	
then	for	any	non-negative	constants	a1 and	a2 such	
that	a1+	a2 =	1,	we	have

§ Proof

38

a1v1 + a2v2 = (1−α)A(a1v1 + a2v2 )+α(a1u1 + a2u2 )

= a1((1−α)Av1 +αu1)+ a2 ((1−α)Av2 +αu2 )
= a1(1−α)Av1 + a1αu1 + a2 (1−α)Av2 + a2αu2
= (1−α)A(a1v1 + a2v2 )+α(a1u1 + a2u2 )

a1v1 + a2v2
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Topic-sensitive	pagerank
§ Compute	personalized	pagerank	vector	per	topic

§ 16	top-level	topics	from	the	Open	Directory	Project
§ Each	ODP	topic	has	a	set	of	pages	(hand-)classified	
into	that	topic

§ Preference	vector	for	the	topic	is	uniform	over	
pages	in	that	topic,	and	0	elsewhere

§ Note:	[Jeh	and	Widom	2003]	provide	a	more	general	
treatment

39

Introduction	to	Information	Retrieval

Query-time	processing
§ Construct	a	distribution	over	topics	for	the	query

§ User	profile	can	provide	a	distribution	over	topics
§ Query	can	be	classified	into	the	different	topics
§ Any	other	context	information	can	be	used	to	inform	topic	
distributions

§ Use	the	topic	preferences	to	compute	a	weighted	
linear	combination	of	topic	pagerank	vectors	to	use	
in	place	of	pagerank

40

Introduction	to	Information	Retrieval

SOCIAL	NETWORKS
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Unicorn
[Curtiss	et	al	2013]
§Primary	backend	for	Facebook	Graph	Search

§Facebook	social	graph
§ Nodes	represent	people	and	things	(entities)
§ Each	entity	has	a	unique	64-bit	id
§ Edges	represent	relationships	between	nodes
§ There	are	many	thousands	of	edge-types

§ Examples:	friend,	likes,	likers,	…
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Data	model
§ Billions	of	nodes,	but	graph	is	sparse

§ Represent	graph	using	adjacency	list
§ Postings	sorted	by	sort-key (importance)	and	
then	id

§ Index	sharded	by	result-id
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Basic	set	operations
§ Query	language	includes	basic	set	operations

§ and, or, difference

§ Friends	of	either	Jon	Jones	(id 5)	and	Lea	Lin	(id 6)
(or(friend:5 friend:6))

§ Female	friends	of	Jon	Jones	who	are	not	friend	of	Lea	Lin
(difference (and friend:5 gender:1)

friend:6)
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Typeahead
§ Find	users	by	typing	first	few	characters	of	their	name
§ Index	servers	contain	postings	lists	for	every	name	
prefix	up	to	a	predefined	character	limit
§ Simple	typeahead	implementation	would	simply	return	ids	
in	the	corresponding	postings	lists

§ Simple	solution	doesn’t	ensure	social	relevance
§ Alternate	solution:	Use	a	conjunctive	query

(and mel* friend:3)
§ Misses	people	who	are	not	friends
§ Issuing	two	queries	is	expensive 45
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§ Provides	a	mechanism	for	some	fraction	of	results	to	
possess	a	trait	without	requiring	trait	for	all	results

§ WeakAnd allows	missing	terms	from	some	results
§ These	optional	terms	can	have	an	optional	count	or	weight
§ Once	the	optional	count	is	met,	the	term	is	required

WeakAnd operator

46

(weak-and (term friend:3 :optional-hits 2) (term melanie) (term mars*))
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Graph	Search
§ Graph	Search	results	are	often	more	than	one	edge	
away	from	source	nodes
§ Example:	Pages	liked	by	friends	of	Melanie	who	like	Emacs

§ Unicorn	provides	additional	operators	to	support	
Graph	Search
§ Apply
(apply likes: (and friend:7 likers:42))

§ Extract
§ Extract	and	return	(denormalized)	ids	stored	in	HitData
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