CS 276B Problem Set #1

Assigned: Tuesday, January 25, 2005

Due: Thursday, February 3, 2005 by 5:30 p.m.

Delivery: Submit your solutions in class or under Professor Manning’s door.

Late policy: Refer to the course webpage.

Honor code: Please review the collaboration and honor code policy on the course webpage. Also note: because some questions may be drawn from previous years’ problem sets or exams, students are forbidden to consult solution sets from previous years unless we explicitly provide them.

#1 Search Engines

Pick a search need for each of the following types defined in class:

1. Informational
2. Transactional

Try each of these needs on 3 distinct public web search engines.

From your observations on the top 5 hits returned by each engine, write down the factor(s) you think weigh the heaviest in the ranking algorithm for that engine. You may find it useful to view the HTML source of the retrieved pages. What we're looking for: good analysis based on your observations, rather than deciphering completely what the engine is doing under the hood.

#2 Collaborative Filtering

Consider the following ratings judgments for 5 users and 6 products. We are trying to recommend a movie to UA from the set of movies he hasn’t rated (D, E or F).

<table>
<thead>
<tr>
<th>Item</th>
<th>User</th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>U4</th>
<th>UA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>U1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>U2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>U3</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>U4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>UA</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>5</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
a. Using the version of the GroupLens collaborative filtering scheme shown on slide 32, work out an ordered list of recommendations for User A (hint: use a spreadsheet!). To do this, you need to make a couple of things concrete in the algorithm shown there:

i) Exactly what value do you give to z_{ij} in each case?

ii) What value do you give to σ_j?

Show your calculations, and the final ordered list of recommendations.

b. Suppose that you remove the z_{ij} via each user’s mean vote. Does this change the ordered list of recommendations? (If so, does it seem better or worse or unclear?)

#3 Markov Chains

(a) Represent the following simplified graph of the web as a Markov chain by providing the corresponding transition probability matrix. Assume teleportation (jumping to any page in the graph with uniform probability) to a random page (including the start page) occurs with 50% probability.

(b) Using the initial probability vector [0 1 0], carry forward the Markov chain 1 time step. (That is, give the probability vector for time $t = 1$)

#4 LR Wrappers

Here is a small (valid!) HTML document:

```html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>People</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
```
a. Suppose one wanted to write individual LR (Kushmerick Left Right) context wrappers for each of the fields Name, Office, Phone, Mail. Which ones can you do it for, and which ones can you not? If you can do it, give a LR wrapper that would work, and if you cannot, briefly explain why.

b. Suppose you enhanced the LR wrapper framework so that they also did a regular expression match on the field content. Now, which fields can you do it for, and which ones can you not? If you can do it, give a LR wrapper that would work, and if you cannot, briefly explain why.

c. Alternatively (i.e., not using a regular expression match on field content, suppose that one had a notion of relation, and assumed that fields were ordered in the wrapper for a relation. Under the assumption of a known ordering, which fields can you do it for, and which ones can you not? If you can do it, give a LR wrapper that would work, and if you cannot, briefly explain why.