Energy functions and their relationship
to molecular conformation

CS/BioE/Biophys/BMI/CME 279
Oct. 3 and 5, 2023

Ron Dror



Outline

* Overview
— High-level questions
— Demo
* Energy functions for biomolecular systems
— Definition and properties
— Molecular mechanics force fields
« What does the energy function tell us about
biomolecular structure/conformation?
— The Boltzmann distribution
— Conformations and conformational states
— Free energy



Overview



A biomolecule adopts many shapes

* The atoms in biomolecules are constantly jiggling
around
— “Everything that living things do can be understood in

terms of the jigglings and wigglings of atoms.” —
Richard Feynman, 1963 (Nobel Prize, 1965)

* A biomolecule adopts many geometries/shapes!

* We refer to each geometry of a molecule (i.e.,
precise arrangement of atoms, specified by 3D
coordinates) as a conformation

— “Conformation” is similar to “structure,” except that
“structure” is often used to describe an average
structure, which is what one typically gets when
determining a structure experimentally



The big questions

« Given a biomolecule (e.g., protein), which
conformations will it adopt? How frequently
will it adopt each conformation?

— Note that this depends on the other molecules

surrounding it, so we typically consider a “molecular
system” consisting of multiple molecules

— It also depends on temperature

— We can ask these questions either for individual
conformations or for sets of similar conformations
(referred to as “conformational states”)



Demo

« Take-aways:
— The system adopts many conformations

— It adopts low-energy conformations more frequently
than high-energy conformations

— If we can define the energy associated with each
conformation, we can determine how often the system
will adopt each conformation

« We'll thus discuss how to calculate energies for
conformations of biomolecules (and biomolecular
systems)



Key difference between demo and
molecular systems

* To specify the “conformation” (horizontal position)
of the cheerio or ball, | need only two numbers

 To specify the conformation of a molecular
system (or a single biomolecule), | need to
specify the x, y, and z coordinates of each atom.

— For N atoms, that's 3N coordinates.
— Energy depends on all of these coordinates!

+ All the take-aways still apply to molecular
systems!



Energy functions for biomolecular
systems



Definition and properties



Specifying atom positions

* For a molecular (X )
system with N atoms, yi
we can specify the 2
position of all atoms by X
a single vector x of |
length 3N * | »
— This vector contains the :

X, ¥, and z coordinates AN
of every atom YN
\ <N




Energy function

* A potential energy function U(x) specifies the total
potential energy of a system of atoms as a function of all
their positions (x)

— In the general case, include not only atoms in the protein but
also surrounding atoms (e.g., water)

* The potential energy function U is also called a force
field, because one can use it to compute forces on atoms
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Types of force fields (energy functions)

* A wide variety of force fields are used in atomic-
level modeling of macromolecules
* Physics-based vs. knowledge-based

— Physics-based force fields attempt to model actual
physical forces

— Knowledge-based force fields are based on statistics
about, for example, known protein structures

— Most real force fields are somewhere in between

* Atoms represented
— Most realistic choice is to model all atoms

— Some force fields omit waters and other surrounding
molecules. Some omit certain atoms within the protein.



Molecular mechanics force fields



Molecular mechanics force fields

« Today, we'll focus on molecular mechanics force
fields, which are often used for molecular
simulations

* These are more toward the physics-based, all-
atom end (i.e., the more “realistic” force fields)

— Represent physical forces explicitly
— Typically represent solvent molecules (e.g., water)
explicitly

« We'll revisit the forces acting between atoms and

write down the functional forms typically used to
approximate them



Bond length stretching

« A bonded pair of atoms is effectively connected
by a spring with some preferred (natural) length.
Stretching or compressing it requires energy.

Natural bond

U(b)=k,(b=b,)

Note: A factor of 1/2 is sometimes included in

this equation. I’'mignoring such constant
factors (they can be folded into kp or the units). Bond Iength (b)

>
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Bond angle bending

» Likewise, each bond angle has some natural value.
Increasing or decreasing it requires energy.

Natural bond
angle (6o)

>

Bond angle (6) 16




Torsional angle twisting

« Certain values of each torsional angle are
preferred over others.
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Torsional angle (@)

U(¢)=Zk¢,n[1+cos(n¢—¢n)]

Typically n takes on one or a few values between 1 and 6 ;



Torsional angle twisting

« Certain values of each torsional angle are
preferred over others.
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1 1 1
240 300 3

3
\;g kJ/mol
1 1 1 1
0 60 120 180

Torsional angle (@)

U(¢):Zk¢,n[l+cos(n¢—¢n)]

Typically n takes on one or a few values between 1 and 6 .
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Electrostatics interaction

< r >

Energy

Repulsive

Attractive

Separation (r)

o Like charges repel.

Opposite charges
attract.

o Acts between all pairs of

atoms, including those
in different molecules.

Each atom carries some
“partial charge” (may be
a fraction of an
elementary charge),
which depends on
which atoms it’s

C cted 8.4

O rj = =/
r

where g; and g; are partial
charges on atoms i and j




Energy

van der Waals interaction

< r' >

A Repulsive

\Mractive

Separation (r)

>

« van der Waals forces act
between all pairs of atoms
and do not depend on
charge.

« When two atoms are too
close together, they repel
strongly.

« When two atoms are a bit
further apart, they attract
one another weakly.

Energy is minimal when atoms are
“just touching” one another
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Energy

A Repulsive

van der Waals interaction

< r' >

ro
W

>

Separation (r)

A. B.
U(r)=2L-21

12 6
r r

We can also write this as:

o=z ()

Note: Historically, ri2 term was chosen
for computational convenience;
other forms are sometimes used
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A typical molecular mechanics force field

2
— — Bond lengths (“Stretch”
U= k,(b-b,) gths ( )
bonds
2
+ 2 k, (9 —90) Bond angles (“Bend”) | Bonded
angles terms

+ Z Zk¢’n[1+cos(n¢—¢n)] Torsional/dihedral angles

torsions n

9 q Electrostatics
i j>i y Non-
bonded
E E Van der Waals terms

I ]>l U




How are the parameters fit?

« Combination of:
— Quantum mechanical calculations

— Experimental data

 For example: bo can be estimated from x-ray crystallography,
and K from spectroscopy (infrared absorption)

Ub)=K,(b—b,)

ne torsional parameters are usually fit last. They
psorb the “slop.” Fidelity to physics is debatable.

nese force fields are approximations!

— o —




Neural network—based force fields

* Researchers have recently begun developing
force fields by training neural networks to predict

results of quantum mechanical calculations
— See optional reading on course website



What does the energy function tell us about
biomolecular structure/conformation?



The Boltzmann distribution



Relating energy to probability

* Given the potential energy associated with a
particular conformation (i.e., arrangement of
atoms, or set of atomic coordinates), what is the
probability that the molecular system will adapt
that conformation at a given point in time?

* Assumptions:
— System is at constant temperature (so atoms are
constantly jiggling around).

— We watch the system for a really long time (allowing it
to fully equilibrate).



The Boltzmann Distribution

« The Boltzmann distribution relates the potential energy of a
particular arrangement of atoms to the probability of observing
that arrangement of atoms (at equilibrium):

Energy, U(x)

—U(.X‘) Equivalently,
p(x)ocexp( ABTJ p(X)=leXp<_U(X)>

Z kT

where T is temperature and kg is the Boltzmann constant

* Note: Zis chosen such that the probabilities sum to 1 across all
arrangements of atoms. It depends on U and T but not on x.

A
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Probability, p(x)
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Position (x) Position (x)



The Boltzmann Distribution

» Key properties:

Energy, U(x)

— Higher energy gives lower probability

— Exponential relationship: as energy increases, probability goes down
quickly

— Temperature dependence: increasing temperature decreases
differences in probability between high-energy and low-energy
conformations

p(x) o< eXp(_U(%Tj

>

Probability, p(x)

o
. .
.....
------
----------

S
.....

Position (x) Position (x)



Conformations and
conformational states



Protein (or other biomolecular) structure:
what we care about

 We don’t really care about the probability that all
the atoms of the protein and all the surrounding
water atoms will be in one precise arrangement

* Instead, we care about the probability that protein
atoms will be in some approximate arrangement,
with any arrangement of surrounding water



Protein (or other biomolecular) structure: what
we care about

* In other words, we wish to compare probabilities of different
sets (neighborhoods) of atomic arrangements

« We define each of these sets as a conformational state (A, C).
Each conformational state includes many conformations, or
specific atom arrangements x.

— In this example, conformational states correspond to wells in the

energy landscape

— A more general term for “conformational state” is “macrostate,” and a
more general term for “conformation” is “microstate”
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Probabilities of conformational states

* Which has greater probability, A or C?

— C is a deeper well, so the individual atomic
arrangements within it are more likely

— AIs a broader well, so it includes more distinct
iIndividual arrangements

Energy, U(x)

o
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Energy, U(x)

Probabilities of conformational states

Which has greater probability, A or C?

To get probability of a conformational state, sum/integrate

over all conformations within it

P(A)= J P(x) < J exp

At high temperature, P(A) > P(C)

A

xeA

xeA

Position (x)

Probability, p(x)

(_U(%T)dx

At low temperature, P(C) > P(A)
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What does the energy function tell us
about biomolecular conformation?

Free energy



Free energy of a conformational state

So far we have assigned energies only to individual
conformations, but it's useful to assign them to
conformational states as well.

Define the free energy Ga of a conformational state A

such that:
W )
P(A)= A
(A) eXP( k,T

This is analogous to Boltzmann distribution formula:

por=on{ V] )

Key takeaway: Free energy is for a conformational
state (i.e., set of conformations) what potential
energy is for an individual conformation



So which conformational state will a
biomolecule (e.g., protein) adopt?

* The one with the minimum free energy

— Wide, shallow wells often win out over narrow, deep
ones

* This depends on temperature

« At room or body temperature, the conformational
state (macrostate) of minimum free energy is
usually very different from the conformation with
minimum potential energy



Comparing structures (conformations)
of a biomolecule

* The most common measure of the similarity/difference
between two structures of the same molecule is root
mean squared deviation (RMSD), defined as

1 3N
— Z (x; — Wi)2
N i=1

where N is the number of atoms, x gives the coordinates
for one structure, and w gives the coordinates for the
other structure.

 We generally want to align the structures, which can be
done by finding the rigid-body rotation and translation of
one structure that will minimize its RMSD from the other

— The relevant measure of similarity is RMSD after alignment




