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What is protein design, and why do it?



Problem definition

« Given the desired three dimensional structure of a protein,
design an amino acid sequence that will assume that structure.

— Of course, a precise set of atomic coordinates would determine the
sequence. Usually we start with an approximate desired structure.

— Alternatively, we may want to design for a particular function (e.g., the
ability to bind a particular ligand).

EEVTIKANLIFAN Protein Folding
GSTQTAEFKGTKE ———
KALSEVLAYADTL
KKDNGEWT IDKRV =
TNGVIILNIKFAG Protein Design

‘\b

http://www.riken.jp/zhangiru/images/sequence_protein.jpg

Note: the term “protein design” is sometimes used to describe different problems



Sample applications

Designing enzymes (proteins that catalyze chemical reactions)
— Useful for production of industrial chemicals and drugs

— Potential environmental applications: degrading toxins or producing
biofuels

Designing proteins that bind specifically to other proteins
— Potential for HIV, cancer, Alzheimer’s treatment

— Special case: antibody design

Designing sensors (proteins that bind to and detect the

presence of small molecules—e.g., by lighting up or changing
color)

— Calcium sensors used to detect neuronal activity in imaging studies

— Proteins that detect TNT or other explosives, for mine detection
Making a more stable variant of an existing protein (to facilitate
experimental investigation)

Environmental applications: e.g., enzymes to degrade toxins



Overall approach: simplifying the
protein design problem



The “direct” approach
(doesn’t work in practice!)

« Given a target structure, search over all possible
protein sequences

* For each protein sequence, predict its structure,
and compare to the target structure

« Choose the best match



Why doesn’t the “direct” approach work?

« Computationally intractable
— We'd need to use ab initio structure prediction

— Ab initio structure prediction for even one sequence is
computationally intensive

— Huge number of sequences to consider
« 20N possible sequences with N residues

 May not be good enough!

— Ab initio structure prediction remains imperfect, especially for
proteins substantially different from naturally occurring ones

— Given an energy function, what we really want is to maximize the
probability of the desired structure (compared to all other possible
folded and unfolded structures)

— We could do this by sampling the full Boltzmann distribution for each
candidate sequence ... but that's even more computationally
intensive!



We can dramatically simplify this
problem by making a few assumptions

1. Assume the backbone geometry is fixed

2. Assume each amino acid can only take on a
finite number of geometries (rotamers)

3. Assume that what we want to do is to maximize
the energy drop from the completely unfolded
state to the target geometry

— In other words, simply ignore all the other possible
folded structures that we want to avoid

We’'ll first address the problem under these
assumptions, then consider relaxing them a bit 10



The simplified problem

» At each position on the backbone, choose a rotamer (an amino acid
type and a side-chain geometry) to minimize overall energy

— Assume our energy function specifies a free energy. The Rosetta all-atom force
field (physics-based/knowledge-based hybrid) is a common choice.

— For each amino acid sequence, energy is measured relative to the unfolded
state.

* In practice a “reference energy” for each amino acid is subtracted off,
corresponding roughly to how much that amino acid favors folded states

— Assume that energy can be expressed as a sum of terms that depend on one or
two rotamers each. This is the case for the Rosetta force fields (and for most
molecular mechanics force fields as well).

* Thus, we wish to minimize total energy Er, where
E. = | E(:)+ ) E;(r,.r)
i i#]

Note that r; specifies both the amino acid residue at position i

and that residue’s side-chain geometry .



Protein design methodology



Designing the backbone



Designing the backbone

The first step of most protein design protocols is to
select one or more target backbone structures.

This is as much art as science

Often multiple target structures are selected, because some
won't work. (Apparently proteins can only adopt a limited set
of backbone structures, but we don’t have a great description
of what that set is.)

Methods to do this:

Use an experimentally determined backbone structure

Use a fragment assembly program like Rosetta, selecting
fragment combinations that fit some approximate desired
structure

Assemble secondary structure elements by hand

Current research direction: generating suitable backbone
structures by machine learning



Example of backbone design

— To design “Top7,” a protein with a novel fold, Kuhlman et al.
started with a schematic, then used Rosetta fragment
assembly to find 172 backbone models that fit it.

Fig. 1. A two-dimensional schematic of the target fold (hexagon, strand; square, helix; circle, other).
Hydrogen bond partners are shown as purple arrows. The amino acids shown are those in the final
designed (Top7) sequence.

Initial schematic of target fold. Hexagons = 8 sheet.
Squares = a helix. Arrows = hydrogen bonds. Letters Final structure
indicate amino acids in final designed sequence

(these were not determined until much later).
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Kuhlman et al., Science 302:1364-8 (2003)



Select sidechain rotamers: the core
optimization problem



The optimization problem

« Given a desired backbone geometry, we wish to select
rotamers at each position to minimize total energy

k= Z{E,-(I’,-HZE,-(';JJ-)}
i i#]
where r; specifies both the amino acid at position j and its
side-chain geometry
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Optimization methods

 Heuristic methods

— Not guaranteed to find optimal solution, but faster than exact methods
— Used in great majority of protein design today
— Most common is Metropolis Monte Carlo

« Moves may be as simple as randomly choosing a position, then
randomly choosing a new rotamer at that position

« May decrease temperature over time (simulated annealing)
» Exact methods

— Guaranteed to find optimal solution, but slow for larger proteins

— Multiple proteins have been designed with the Dead-End Elimination
method, which prunes branches of the exhaustive search tree by
proving that certain rotamers are incompatible with the global optimum

— An alternative: The A* optimization algorithm (originally developed at
Stanford, for robot path-finding)



Optional: giving the backbone wiggle room



“Flexible backbone™ design

* One of our key simplifying assumptions was that
of a fixed backbone geometry.

* For many applications, protein design works better
If you give the backbone some limited “wiggle
room.”

* This requires optimizing simultaneously over
rotamers and backbone geometry.
— Often addressed through a Monte Carlo search

procedure that alternates between local tweaks to
backbone dihedrals and changes to side-chain rotamers

— One can also refine a designed structure by local
energy minimization, then re-optimize the side chains



Optional: negative design



Negative design

* Another simplifying assumption was that we simply
minimize the energy of the desired structure

]

— We do not consider all other possible structures. It's

possible that their energy ends up even lower.
 In negative design, we identify a few structures that we

want to avoid, and we try to keep their energies high during

the design process.

— This can help, but we cannot explicitly avoid all possible
incorrect structures without making the problem much
more complicated. So the overall approach is still

heuristic.
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Optional: complementary experimental
methods



Complementary experimental methods

« Computational protein design is often combined
with experimental protein engineering methods

« For example, computational designs can often be
iImproved by directed evolution

— Directed evolution involves introducing random
mutations to proteins and picking out the best ones

— Usually this is done in living cells, with the fittest cells
(i.e., those containing the “best” version of the protein)
selected by some measure

Frances Arnold

2018 Nobel Prize “for
the directed evolution
of enzymes”




Examples of successful designs
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Designing proteins that bind specific
ligands

The example below required specification of the
position of certain side chains that will form
favorable interactions with the ligand

Shape complementarity

‘ ‘.“ ) i 7 ; ‘—’ Binding site pre~organ|zat»on

Define ligand binding interactions Place ligand and interacting residues Select pre-organized sites with
in scaffolds and design binding site sequence high shape complementarity

Protein designed to bind tightly to a specific steroid, but not to related molecules

Tinberg et al., Nature 501:212-6 (2013)



Designing enzymes

* |In the example below, the protein holds two molecules in
just the right relative positions for them to react. This
speeds up the reaction.
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Molecule 1
Molecule 2
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Siegel et al., Science 329:309-13 (2010)




Design of a transporter

* De novo design of a protein that transports zinc ions (Zn2+), but
not calcium ions (Ca2*), across a cell membrane—a process that
requires the protein to alternate between at least two

conformations 28
Joh et al., Science 346:1520-24 (2014)



Designing multi-protein structures

How pocl Idluts Ight aid What happenedt Ma
cancer treatment

Divine et al., Designed
proteins assemble antibodies
into modular nanocages.
Science 372:eabd9994 (2021)

“This week we report the
design of new proteins that
cluster antibodies into dense
particles, rendering them more
effective.”




How well does protein design work?
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How well does protein design work?

* Very impressive recent successes!
 However, one should keep in mind that:

Successful protein design projects often involve making and
experimentally testing dozens of candidate proteins to find a good
one

Projects and design strategies that fail generally aren’t published
Protein design is not yet a matter of simply “turning the crank”

 Evaluating/quantifying/comparing the effectiveness of
protein design methodologies is difficult

One would need to synthesize and test many designed
sequences for each methodology

One would need to do this for many protein design problems

Different protein design projects may have very different goals, so
there isn’t a universal metric for how “good” a given sequence is



Machine learning methods for protein
design



Lots of recent work on machine learning
for protein design

Article Anishchenko et al., Nature 2021

De novo protein design by deep network
hallucination

Article Huang et al., Nature 2022

A backbone-centred energy function of
neural networks for protein design

Anand et al., Nature Communications, 2022

Protein sequence design with a learned potential

Ferruz and Hocker, Nature Machine Intelligence, 2022 (review)
Controllable protein design with language models

And more!



This work addresses various goals
generally related to protein design and
protein engineering

As noted previously, different people use “protein design” to describe different problems

Given sequences designed by a traditional
method, select which ones to test experimentally

Learn energy functions for protein design

Directly learn relationships between protein
sequence and function

Design large libraries of sequences for
experimental screening

Come up with new shapes (“scaffolds™) that a
real protein could adopt



How well do these methods work?

* It's a bit hard to quantify

— Quantifying effectiveness of protein design
methodology is generally difficult (as noted previously)

— These methods tackle many different problems

* Most major successful protein designs to date
didn’t make much use of machine learning

| personally believe these methods and directions

are very promising

— Indeed, many recent papers end by noting that such
methods have great “potential” — i.e., promising
though not mature
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A particularly promising recent method

Article Watson et al., Nature, August 23, 2023

De novo design of protein structure and
function with RFdiffusion

* RFdiffusion (RoseT TAFold Diffusion) is based on
the same machine learning approach as image
generators like DALL-E: “denoising diffusion”
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RFDiffusion

“Learn” an iterative process that converts a protein structure (i.e.,
position, orientations, and identities of amino acids) to random noise.

Then run that process backwards to convert random noise into a
protein

By conditioning this process on desired properties, one can get useful
designs

— For example, condition on desired fold/structure, binding target, functional
motif, or symmetry

This method does very well on a variety of tests and applications,
though they’re certainly not exhaustive
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