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What is protein design, and why do it?
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Problem definition
• Given the desired three dimensional structure of a protein, 

design an amino acid sequence that will assume that structure. 
– Of course, a precise set of atomic coordinates would determine the 

sequence.  Usually we start with an approximate desired structure.  
– Alternatively, we may want to design for a particular function (e.g., the 

ability to bind a particular ligand). 

http://www.riken.jp/zhangiru/images/sequence_protein.jpg

Note: the term “protein design” is sometimes used to describe different problems



Sample applications
• Designing enzymes (proteins that catalyze chemical reactions) 

– Useful for production of industrial chemicals and drugs 
– Potential environmental applications: degrading toxins or producing 

biofuels 
• Designing proteins that bind specifically to other proteins 

– Potential for HIV, cancer, Alzheimer’s treatment 
– Special case: antibody design  

• Designing sensors (proteins that bind to and detect the 
presence of small molecules—e.g., by lighting up or changing 
color) 
– Calcium sensors used to detect neuronal activity in imaging studies 
– Proteins that detect TNT or other explosives, for mine detection 

• Making a more stable variant of an existing protein (to facilitate 
experimental investigation) 

• Environmental applications: e.g., enzymes to degrade toxins 



Overall approach: simplifying the 
protein design problem
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The “direct” approach  
(doesn’t work in practice!)

• Given a target structure, search over all possible 
protein sequences 

• For each protein sequence, predict its structure, 
and compare to the target structure 

• Choose the best match
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Why doesn’t the “direct” approach work?

• Computationally intractable 
– We’d need to use ab initio structure prediction 
– Ab initio structure prediction for even one sequence is 

computationally intensive 
– Huge number of sequences to consider 

• 20N possible sequences with N residues 

• May not be good enough! 
– Ab initio structure prediction remains imperfect, especially for 

proteins substantially different from naturally occurring ones 
– Given an energy function, what we really want is to maximize the 

probability of the desired structure (compared to all other possible 
folded and unfolded structures) 

– We could do this by sampling the full Boltzmann distribution for each 
candidate sequence … but that’s even more computationally 
intensive!  

9



We can dramatically simplify this 
problem by making a few assumptions

1. Assume the backbone geometry is fixed 
2. Assume each amino acid can only take on a 

finite number of geometries (rotamers) 
3. Assume that what we want to do is to maximize 

the energy drop from the completely unfolded 
state to the target geometry 
– In other words, simply ignore all the other possible 

folded structures that we want to avoid 

We’ll first address the problem under these 
assumptions, then consider relaxing them a bit 10



The simplified problem

• At each position on the backbone, choose a rotamer (an amino acid 
type and a side-chain geometry) to minimize overall energy 
– Assume our energy function specifies a free energy.  The Rosetta all-atom force 

field (physics-based/knowledge-based hybrid) is a common choice. 
– For each amino acid sequence, energy is measured relative to the unfolded 

state.   
• In practice a “reference energy” for each amino acid is subtracted off, 

corresponding roughly to how much that amino acid favors folded states 
– Assume that energy can be expressed as a sum of terms that depend on one or 

two rotamers each.  This is the case for the Rosetta force fields (and for most 
molecular mechanics force fields as well).  

• Thus, we wish to minimize total energy ET, where
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ET = Ei (ri )+ Eij (ri ,rj )
i≠ j
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Note that ri specifies both the amino acid residue at position i 
and that residue’s side-chain geometry



Protein design methodology
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Protein design methodology
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Designing the backbone



Designing the backbone
• The first step of most protein design protocols is to 

select one or more target backbone structures. 
– This is as much art as science 
– Often multiple target structures are selected, because some 

won’t work.  (Apparently proteins can only adopt a limited set 
of backbone structures, but we don’t have a great description 
of what that set is.) 

• Methods to do this: 
– Use an experimentally determined backbone structure 
– Use a fragment assembly program like Rosetta, selecting 

fragment combinations that fit some approximate desired 
structure  

– Assemble secondary structure elements by hand 
– Current research direction: generating suitable backbone 

structures by machine learning
14



Example of backbone design
– To design “Top7,” a protein with a novel fold, Kuhlman et al. 

started with a schematic, then used Rosetta fragment 
assembly to find 172 backbone models that fit it. 
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Kuhlman et al., Science 302:1364-8 (2003)

Initial schematic of target fold.  Hexagons = β sheet.  
Squares = α helix.  Arrows = hydrogen bonds.  Letters 
indicate amino acids in final designed sequence 
(these were not determined until much later). 

Final structure



Protein design methodology
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Select sidechain rotamers: the core 
optimization problem



The optimization problem

• Given a desired backbone geometry, we wish to select  
rotamers at each position to minimize total energy 
 
 
 
where ri specifies both the amino acid at position i and its 
side-chain geometry
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ET = Ei (ri )+ Eij (ri ,rj )
i≠ j
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Optimization methods

• Heuristic methods 
– Not guaranteed to find optimal solution, but faster than exact methods 
– Used in great majority of protein design today 
– Most common is Metropolis Monte Carlo 

• Moves may be as simple as randomly choosing a position, then 
randomly choosing a new rotamer at that position 

• May decrease temperature over time (simulated annealing) 

• Exact methods 
– Guaranteed to find optimal solution, but slow for larger proteins 
– Multiple proteins have been designed with the Dead-End Elimination 

method, which prunes branches of the exhaustive search tree by 
proving that certain rotamers are incompatible with the global optimum 

– An alternative: The A* optimization algorithm (originally developed at 
Stanford, for robot path-finding)



Protein design methodology
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Optional: giving the backbone wiggle room



“Flexible backbone” design

• One of our key simplifying assumptions was that 
of a fixed backbone geometry. 

• For many applications, protein design works better 
if you give the backbone some limited “wiggle 
room.” 

• This requires optimizing simultaneously over 
rotamers and backbone geometry. 
– Often addressed through a Monte Carlo search 

procedure that alternates between local tweaks to 
backbone dihedrals and changes to side-chain rotamers 

– One can also refine a designed structure by local 
energy minimization, then re-optimize the side chains 



Protein design methodology
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Optional: negative design



Negative design

• Another simplifying assumption was that we simply 
minimize the energy of the desired structure 
– We do not consider all other possible structures.  It’s 

possible that their energy ends up even lower. 
• In negative design, we identify a few structures that we 

want to avoid, and we try to keep their energies high during 
the design process.   
– This can help, but we cannot explicitly avoid all possible 

incorrect structures without making the problem much 
more complicated.  So the overall approach is still 
heuristic.

22



Protein design methodology
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Optional: complementary experimental 
methods



Complementary experimental methods
• Computational protein design is often combined 

with experimental protein engineering methods 
• For example, computational designs can often be 

improved by directed evolution 
– Directed evolution involves introducing random 

mutations to proteins and picking out the best ones 
– Usually this is done in living cells, with the fittest cells 

(i.e., those containing the “best” version of the protein) 
selected by some measure

Frances Arnold 

2018 Nobel Prize “for 
the directed evolution 
of enzymes”



Examples of successful designs
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Designing proteins that bind specific 
ligands 

• The example below required specification of the 
position of certain side chains that will form 
favorable interactions with the ligand

Tinberg et al., Nature 501:212-6 (2013)  

Protein designed to bind tightly to a specific steroid, but not to related molecules



Designing enzymes
• In the example below, the protein holds two molecules in 

just the right relative positions for them to react.  This 
speeds up the reaction. 

27

Molecule 1

Molecule 2

Siegel et al., Science 329:309-13 (2010)  



Design of a transporter

• De novo design of a protein that transports zinc ions (Zn2+), but 
not calcium ions (Ca2+), across a cell membrane—a process that 
requires the protein to alternate between at least two 
conformations 28

Joh et al., Science 346:1520-24 (2014)  



Designing multi-protein structures

Divine et al., Designed 
proteins assemble antibodies 
into modular nanocages. 
Science 372:eabd9994 (2021) 

“This week we report the 
design of new proteins that 
cluster antibodies into dense 
particles, rendering them more 
effective.”



How well does protein design work?
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How well does protein design work?
• Very impressive recent successes! 
• However, one should keep in mind that: 

– Successful protein design projects often involve making and 
experimentally testing dozens of candidate proteins to find a good 
one 

– Projects and design strategies that fail generally aren’t published 
– Protein design is not yet a matter of simply “turning the crank” 

• Evaluating/quantifying/comparing the effectiveness of 
protein design methodologies is difficult 
– One would need to synthesize and test many designed 

sequences for each methodology 
– One would need to do this for many protein design problems 
– Different protein design projects may have very different goals, so 

there isn’t a universal metric for how “good” a given sequence is



Machine learning methods for protein 
design
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Lots of recent work on machine learning 
for protein design

Nature | Vol 600 | 16 December 2021 | 547

Article

De novo protein design by deep network 
hallucination

Ivan Anishchenko1,2,7, Samuel J. Pellock1,2,7, Tamuka M. Chidyausiku1,2, Theresa A. Ramelot3,4, 
Sergey Ovchinnikov5, Jingzhou Hao3,4, Khushboo Bafna3,4, Christoffer Norn1,2, Alex Kang1,2, 
Asim K. Bera1,2, Frank DiMaio1,2, Lauren Carter1,2, Cameron M. Chow1,2, 
Gaetano T. Montelione3,4 & David Baker1,2,6ಞᅒ

There has been considerable recent progress in protein structure prediction using 
deep neural networks to predict inter-residue distances from amino acid 
sequences1–3. Here we investigate whether the information captured by such networks 
is sufficiently rich to generate new folded proteins with sequences unrelated to those 
of the naturally occurring proteins used in training the models. We generate random 
amino acid sequences, and input them into the trRosetta structure prediction 
network to predict starting residue–residue distance maps, which, as expected, are 
quite featureless. We then carry out Monte Carlo sampling in amino acid sequence 
space, optimizing the contrast (Kullback–Leibler divergence) between the 
inter-residue distance distributions predicted by the network and background 
distributions averaged over all proteins. Optimization from different random starting 
points resulted in novel proteins spanning a wide range of sequences and predicted 
structures. We obtained synthetic genes encoding 129 of the network-‘hallucinated’ 
sequences, and expressed and purified the proteins in Escherichia coli; 27 of the 
proteins yielded monodisperse species with circular dichroism spectra consistent 
with the hallucinated structures. We determined the three-dimensional structures of 
three of the hallucinated proteins, two by X-ray crystallography and one by NMR, and 
these closely matched the hallucinated models. Thus, deep networks trained to 
predict native protein structures from their sequences can be inverted to design new 
proteins, and such networks and methods should contribute alongside traditional 
physics-based models to the de novo design of proteins with new functions.

Deep learning methods have shown considerable promise in protein 
engineering. Networks with architectures borrowed from language 
models have been trained on amino acid sequences and used to gener-
ate new sequences without considering protein structure explicitly4,5. 
Other methods have been developed to generate protein backbones 
without consideration of sequence6, and to identify amino acid 
sequences that either fit well onto specified backbone structures7–10 
or are conditioned on low-dimensional fold representations11; models 
tailored to generate sequences and/or structures for specific protein 
families have also been developed12–16. However, none of these methods 
address the classical de novo protein design problem of simultane-
ously generating both a new backbone structure and an amino acid 
sequence that encodes it.

Deep neural networks trained to predict distances between amino 
acid residues in 3D protein structures from amino acid sequence 
information have increased the accuracy of protein structure predic-
tion1–3. These models take as input large sets of aligned sequences, and 
a major contributor to distance-prediction accuracy is the extent of 

co-evolution between the amino acid identities at pairs of positions. 
Following up an initial observation by AlphaFold in the 13th Community 
Wide Experiment on the Critical Assessment of Techniques for Protein 
Structure Prediction17, we found that the trRosetta deep neural net-
work trained using multiple sequence information could consistently 
predict three-dimensional structure accurately for de novo designed 
proteins from just a single sequence—that is, in the complete absence 
of co-evolution information3. The trRosetta model also predicted 
effects of amino acid substitutions on folding that were consistent with 
biophysical expectation3. These results suggested that during train-
ing, the trRosetta network was going beyond exploiting co-evolution 
information and learning fundamental relationships between protein 
sequence and structure.

Here we investigate whether the information stored in the many 
parameters of protein structure prediction networks can be used to 
generate physically plausible backbones and amino acid sequences that 
encode them. Methods such as Google’s DeepDream18 take networks 
trained to recognize faces and other patterns in images, and invert these 
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Article

A backbone-centred energy function of 
neural networks for protein design

Bin Huang1,4, Yang Xu1,4, Xiuhong Hu1,4, Yongrui Liu1, Shanhui Liao1, Jiahai Zhang1, 
Chengdong Huang1,2, Jingjun Hong1, Quan Chen1,2ಞᅒ & Haiyan Liu1,2,3ಞᅒ

A protein backbone structure is designable if a substantial number of amino acid 
sequences exist that autonomously fold into it1,2. It has been suggested that the 
designability of backbones is governed mainly by side chain-independent or side 
chain type-insensitive molecular interactions3–5, indicating an approach for designing 
new backbones (ready for amino acid selection) based on continuous sampling and 
optimization of the backbone-centred energy surface. However, a sufficiently 
comprehensive and precise energy function has yet to be established for this purpose. 
Here we show that this goal is met by a statistical model named SCUBA (for Side 
Chain-Unknown Backbone Arrangement) that uses neural network-form energy 
terms. These terms are learned with a two-step approach that comprises kernel 
density estimation followed by neural network training and can analytically represent 
multidimensional, high-order correlations in known protein structures. We report the 
crystal structures of nine de novo proteins whose backbones were designed to high 
precision using SCUBA, four of which have novel, non-natural overall architectures. 
By eschewing use of fragments from existing protein structures, SCUBA-driven 
structure design facilitates far-reaching exploration of the designable backbone 
space, thus extending the novelty and diversity of the proteins amenable to de novo 
design.

Computational protein design has exhibited enormous potential, 
with ground-breaking studies demonstrating the design of de novo 
proteins with new structures and functions6–13, most of which were 
carried out using the state-of-the-art RosettaDesign method6,13,14. New 
backbones were built either by parametrically varying relative geom-
etries between existing structural modules (or templates) to design 
helix bundles11,15,16 or repeat proteins17 or by assembling peptide frag-
ments from existing structures6,8. Despite recent improvements18,19, the 
template dependence of these approaches for generating backbones 
still severely restricts the available spectrum of possible new struc-
tures13,20,21, potentially narrowing the scope of the functional activities 
amenable to design.

An explicit representation of the presumed backbone-centred 
energy surface that determines designability may provide a basis for 
a template-free protein design workflow (Fig. 1a); this would be funda-
mentally distinct from—and may substantially complement—existing 
methods. Progress to establish such a representation has been slow, 
probably owing to a lack of methods to represent the relevant molecular 
interactions to the level of comprehensiveness and precision needed for 
de novo protein design tasks. Earlier studies have explored simplified 
backbone energy surfaces, but only to verify the presence of natural 
backbone-like broad minima4,22,23, that is, not in the context of attempt-
ing backbone design. One exception was a Cα-atom-based statistical 
potential that emphasized the accurate modelling of local backbone 

conformations24. This model successfully produced a de novo loop 
designed without using any natural fragment as template25, indicating 
the viability of backbone-centred approaches.

The SCUBA (Side Chain-Unknown Backbone Arrangement) model 
aims to represent factors essential for backbone designability, includ-
ing the local conformational preferences and hydrogen-bonding geom-
etries of peptide backbones and inter-backbone space required for 
chirally attached and tightly packed side chains3–5, doing so with com-
prehensiveness and precision that support de novo protein design. To 
achieve this, we represent the various interactions using statistical 
energy terms, or potentials, trained with a general approach named 
NC-NN (Fig. 1b–d), with this name denoting a two-step process of 
first estimating statistical energy values from raw structural data by 
kernel-based density estimation (that is, neighbour counting) followed 
by training of neural networks (fully connected three-layer perceptrons; 
Fig. 1d and Supplementary Methods) to represent the potentials. NC-NN 
addresses a main technical challenge in constructing statistical poten-
tials, and the resulting potentials, in addition to being continuous and 
providing easily computable function values (and derivatives) for use 
in structure sampling and optimization, can represent the complex, 
high-dimensional and highly correlated distributions of real structural 
data with high fidelity.

We applied SCUBA-driven stochastic dynamics (SD) simulations26 
together with our data-driven fixed-backbone amino acid sequence 
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Protein sequence design with a learned potential
Namrata Anand 1, Raphael Eguchi 2, Irimpan I. Mathews3, Carla P. Perez 4, Alexander Derry 5,
Russ B. Altman1,6 & Po-Ssu Huang 1✉

The task of protein sequence design is central to nearly all rational protein engineering

problems, and enormous effort has gone into the development of energy functions to guide

design. Here, we investigate the capability of a deep neural network model to automate

design of sequences onto protein backbones, having learned directly from crystal structure

data and without any human-specified priors. The model generalizes to native topologies not

seen during training, producing experimentally stable designs. We evaluate the general-

izability of our method to a de novo TIM-barrel scaffold. The model produces novel

sequences, and high-resolution crystal structures of two designs show excellent agreement

with in silico models. Our findings demonstrate the tractability of an entirely learned method

for protein sequence design.
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REVIEW ARTICLE
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Proteins are the universal building blocks of life, having a 
vital role in essentially every cellular process. The custom 
design of specific, efficient and tailored proteins in a fast and 

cost-effective manner would have the potential to tackle many of the 
challenges that humankind faces today and will face in the future. 
For example, we would be able to design enzymes that metabolize 
plastic waste or hydrolyse polluting toxins, or create new vaccines in 
a timely fashion in the event of a pandemic. However, despite great 
advances, contemporary research is still far from designing proteins 
as proficient as those generated naturally1.

Protein design seeks to create custom structures that perform a 
desired function. This enormous challenge has often been referred 
to as the inverse protein-folding problem: instead of finding the 
structure into which a sequence folds, the goal is to obtain an opti-
mal sequence that adopts a certain fold. Mathematically, this prob-
lem is approached with optimization algorithms that search the 
global minimum of a sequence–structure landscape defined by an 
energy function. Despite the relative simplicity of the most widely 
used energy functions2, the number of rotamers and possible com-
binations at each position promotes a combinatorial explosion, 
and, understandably, most protein design packages rely on heuris-
tic algorithms. As a consequence of this complexity—and despite 
remarkable recent progress3—the design of de novo proteins usually 
takes considerable time and effort, and the overwhelming majority 
of functional proteins have materialized by pre-selecting naturally 
occurring scaffolds and subsequently optimizing their function 
in iterative rounds, as opposed to concomitantly designing the 
sequence and structure to perform a certain function1.

Although the protein design problem has been approached 
with physicochemical functions that target their structures, one of 
the most extraordinary properties of proteins is that they entirely 
encode their structure and function in their amino-acid sequence, 
and they do so with extreme efficiency. The fact that sequences 

alone can capture the properties of proteins in the absence of bio-
physical constraints opens an unexplored door for protein research 
by exploiting natural language processing (NLP) methods.

The following sections summarize similarities and differences 
between natural languages and protein sequences and shows how 
NLP research has already influenced protein science. We will 
emphasize the most notable development in the field, namely, the 
transformer architecture. Subsequent sections will introduce how 
the unique generative capabilities of transformers are reshaping 
the protein design field. Finally, we will offer a perspective on how 
they might also dominate the exceptionally challenging cases of 
non-natural enzymatic reactions and tailored novel functions. We 
hope this Review reaches both the artificial intelligence and biology 
fields and encourages further collaborative efforts towards develop-
ing and adapting NLP techniques for protein design. A glossary of 
selected terms is provided in Box 1.

The language of proteins
Several characteristics evidence the similarities between human lan-
guages and protein sequences, with perhaps the most obvious being 
their hierarchical organization. Analogous to human languages, 
proteins are represented by a concatenation of strings: the 20 stan-
dard amino acids. Letters then assemble to form words, and amino 
acids combine to form secondary structural elements or conserved 
protein fragments4. Then, as words combine to form sentences that 
carry meaning, fragments can assemble into different protein struc-
tures that carry a function (Fig. 1a).

The origin and evolution of languages and proteins also show par-
allels. Languages grow and continuously adapt, with words emerging 
that better reflect our evolving society. Today, there are over 8,000 
languages divided into more than 140 linguistic families, all of which 
originated from a common ancestral language spoken in central Africa 
50,000–70,000 years ago5. Similarly, all organisms living on Earth have 

Controllable protein design with language models
Noelia Ferruz! !1,2�ᅒ and Birte Höcker! !1

The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to 
design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a 
timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. 
Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form 
structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surpris-
ing that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein 
research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementa-
tion of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific 
properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to 
dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable 
the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The com-
bination of control tags such as cellular compartment or function will further enable the controllable design of novel protein 
functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our under-
standing of folding principles. Early initiatives show the enormous potential of generative language models to design functional 
sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, 
and we discuss its foreseeable impact on protein design.

NATURE MACHINE INTELLIGENCE | VOL 4 | JUNE 2022 | 521–532 | www.nature.com/natmachintell 521

Ferruz and Hocker, Nature Machine Intelligence, 2022 (review)

And more!



This work addresses various goals 
generally related to protein design and 

protein engineering 

• Given sequences designed by a traditional 
method, select which ones to test experimentally 

• Learn energy functions for protein design 
• Directly learn relationships between protein 

sequence and function  
• Design large libraries of sequences for 

experimental screening 
• Come up with new shapes (“scaffolds”) that a 

real protein could adopt 

As noted previously, different people use “protein design” to describe different problems



How well do these methods work?

• It’s a bit hard to quantify 
– Quantifying effectiveness of protein design 

methodology is generally difficult (as noted previously) 
– These methods tackle many different problems 

• Most major successful protein designs to date 
didn’t make much use of machine learning 

• I personally believe these methods and directions 
are very promising 
– Indeed, many recent papers end by noting that such 

methods have great “potential” — i.e., promising 
though not mature

35



A particularly promising recent method

• RFdiffusion (RoseTTAFold Diffusion) is based on 
the same machine learning approach as image 
generators like DALL-E: “denoising diffusion”

Nature | Vol 620 | 31 August 2023 | 1089

Article

De novo design of protein structure and 
function with RFdiffusion

Joseph L. Watson1,2,15, David Juergens1,2,3,15, Nathaniel R. Bennett1,2,3,15, Brian L. Trippe2,4,5,15, 
Jason Yim2,6,15, Helen E. Eisenach1,2,15, Woody Ahern1,2,7,15, Andrew J. Borst1,2, Robert J. Ragotte1,2, 
Lukas F. Milles1,2, Basile I. M. Wicky1,2, Nikita Hanikel1,2, Samuel J. Pellock1,2, Alexis Courbet1,2,8, 
William Sheffler1,2, Jue Wang1,2, Preetham Venkatesh1,2,9, Isaac Sappington1,2,9, 
Susana Vázquez Torres1,2,9, Anna Lauko1,2,9, Valentin De Bortoli8, Emile Mathieu10, 
Sergey Ovchinnikov11,12, Regina Barzilay6, Tommi S. Jaakkola6, Frank DiMaio1,2, Minkyung Baek13 
& David Baker1,2,14 ✉

There has been considerable recent progress in designing new proteins using deep- 
learning methods1–9. Despite this progress, a general deep-learning framework for 
protein design that enables solution of a wide range of design challenges, including 
de novo binder design and design of higher-order symmetric architectures, has yet to 
be described. Diffusion models10,11 have had considerable success in image and 
language generative modelling but limited success when applied to protein modelling, 
probably due to the complexity of protein backbone geometry and sequence–structure 
relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction 
network on protein structure denoising tasks, we obtain a generative model of protein 
backbones that achieves outstanding performance on unconditional and topology- 
constrained protein monomer design, protein binder design, symmetric oligomer 
design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic 
and metal-binding protein design. We demonstrate the power and generality of the 
method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing 
the structures and functions of hundreds of designed symmetric assemblies, metal- 
binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the 
cryogenic electron microscopy structure of a designed binder in complex with influenza 
haemagglutinin that is nearly identical to the design model. In a manner analogous to 
networks that produce images from user-specified inputs, RFdiffusion enables the 
design of diverse functional proteins from simple molecular specifications.

De novo protein design seeks to generate proteins with specified 
structural and/or functional properties, for example, making a bind-
ing interaction with a given target12, folding into a particular topology13 
or containing a catalytic site4. Denoising diffusion probabilistic models 
(DDPMs), a powerful class of machine learning models recently dem-
onstrated to generate new photorealistic images in response to text 
prompts14,15, have several properties well suited to protein design. First, 
DDPMs generate highly diverse outputs, as they are trained to denoise 
data (for instance, images or text) that have been corrupted with Gauss-
ian noise. By learning to stochastically reverse this corruption, diverse 
outputs closely resembling the training data are generated. Second, 
DDPMs can be guided at each step of the iterative generation process 
towards specific design objectives through provision of conditioning 

information. Third, for almost all protein design applications it is neces-
sary to explicitly model three-dimensional (3D) structures; rotation-
ally equivariant DDPMs can do this in a global representation frame 
independent manner. Recent work has adapted DDPMs for protein 
monomer design by conditioning on small protein ‘motifs’5,9 or on sec-
ondary structure and block-adjacency (‘fold’) information8. Although 
promising, these attempts have shown limited success in generating 
sequences that fold to the intended structures in silico5,16, probably due 
to the limited ability of the denoising networks to generate realistic 
protein backbones, and have not been tested experimentally.

We reasoned that improved diffusion models for protein design 
could be developed by taking advantage of the deep understanding of 
protein structure implicit in powerful structure prediction methods 
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RFDiffusion
• “Learn” an iterative process that converts a protein structure (i.e., 

position, orientations, and identities of amino acids) to random noise. 
• Then run that process backwards to convert random noise into a 

protein 
• By conditioning this process on desired properties, one can get useful 

designs 
– For example, condition on desired fold/structure, binding target, functional 

motif, or symmetry 
• This method does very well on a variety of tests and applications, 

though they’re certainly not exhaustive

Nature | Vol 620 | 31 August 2023 | 1091

(Fig. 2d). RFdiffusion generation is also more compute efficient than 
unconstrained Hallucination with RF, and efficiency can be greatly 
improved by taking larger steps at inference time and by truncating tra-
jectories early, which is possible because RF predicts the final structure 
at each timestep (Extended Data Fig. 2b,c). For example, a 100-residue 

protein can be generated in as little as 11 s on an NVIDIA RTX A4000 
Graphical Processing Unit, in contrast to RF Hallucination, which takes 
around 8.5 min.

It is often desirable to be able to specify a protein fold during design 
(such as triose-phosphate isomerase (TIM) barrels or cavity-containing 
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Fig. 1 | Protein design using RFdiffusion. a, Diffusion models for proteins are 
trained to recover corrupted (noised) protein structures and to generate new 
structures by reversing the corruption process through iterative denoising  
of initially random noise XT into a realistic structure X0 (top panel). The RF 
structure prediction network (middle panel, left side) is fine-tuned with 
minimal architectural changes into RFdiffusion (middle panel, right side); the 
denoising network of a DDPM is also shown. In RF, the primary input to the 
model is the sequence. In RFdiffusion, the primary input is diffused residue 
frames (coordinates and orientations). In both cases, the model predicts final 
3D coordinates (denoted X0 in RFdiffusion). The bottom panel shows that in 
RFdiffusion, the model receives its previous prediction as a template input 
(‘self-conditioning’, Supplementary Methods). At each timestep t of a trajectory 
(typically 200 steps), RFdiffusion takes X

t
0

+1
 from the previous step and Xt and 

then predicts an updated X0 structure (X
t

0
 ). The next coordinate input to  

the model (Xt−1) is generated by a noisy interpolation (interp) towards X
t

0.  
b, RFdiffusion is broadly applicable for protein design. RFdiffusion generates 
protein structures either without further input (top row) or by conditioning on 
(top to bottom): symmetry specifications; binding targets; protein functional 
motifs or symmetric functional motifs. In each case random noise, along with 
conditioning information, is input to RFdiffusion, which iteratively refines  
that noise until a final protein structure is designed. c, An example of an 
unconditional design trajectory for a 300-residue chain, depicting the input to 
the model (Xt) and the corresponding X0

  prediction. At early timesteps (high t), 
X0
  bears little resemblance to a protein but is gradually refined into a realistic 
protein structure.
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