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X-ray crystallography is the most common method for determining three-dimensional structures of proteins
and other molecules. It involves making a crystal of the molecule to be imaged (with many copies of that
molecule packed in a regular three-dimensional grid or “lattice”). The crystal is then exposed to a very bright
x-ray beam. Some of the x-rays shine right through the crystal, but some are scattered (deflected) by
electrons in the crystal. These scattered x-rays form a diffraction pattern, which is basically a set of bright
spots in a regular arrangement (see lecture slides for examples). The diffraction pattern is three-dimensional,
in the sense that the bright spots are distributed throughout a volume. To image them all with a planar
imaging instrument (which captures a 2D image at each point in time), one needs either to rotate the imaging
device or to rotate the crystal itself. Once the three-dimensional diffraction pattern has been reconstructed,
it can be used to reconstruct the electron density of the crystal (and thus the three-dimensional structure of
the crystallized molecule), but this requires solving a challenging computational problem.

1. X-Ray Crystallography: How it works
X-Rays are Electromagnetic Waves

X-rays (like visible light and other types of radiation) are oscillations of electromagnetic fields propagating in
space, known as electromagnetic waves. At any instance in time, along the direction at which the x-ray
travels, the electric field strength E can be described as a function of the distance travelled, Ax:

E = E,cos(2mAx /1)

where E; is the amplitude and 4 is the wave length. The x-rays used in crystallography generally have
wavelengths in the 0.1 — 10 nm range. The argument of the cosine function, namely the quantity ¢ =
(2mAx /) here, is called the phase. (fig. 1)
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X-Ray Crystallography Experiment

When an x-ray beam goes through a crystal, a proportion of it is scattered by electrons. The x-rays following
different paths through the crystal but arriving at the same point on the imaging device (detector) will
interfere with each other and produce patterns on the detector / screen / photograph. X-ray waves that are
in phase with one another will add constructively (i.e., add to form an even stronger wave), but those that
are sufficiently out of phase with one another will tend to cancel one another out. This interference
phenomenon is referred to as diffraction, and it causes the pattern of bright spots.

It turns out that the diffraction pattern is closely related to the Fourier transform of the electron density: the
brightness of the diffraction pattern at each point is proportional to the magnitude of the Fourier transform
coefficient at that point in Fourier space. Then the brightness of each spot in the diffraction pattern specifies
the magnitude (scaling factor) of one Fourier component (i.e., 3D sinusoid) of the electron density. (Any
pattern of electron density can be written as a sum of 3D sinusoids, in a unique way.) Unfortunately, the
phase (shift) of each Fourier component cannot be measured directly in any straightforward manner. If we
knew both magnitudes and the phase for each Fourier component, then we could determine the electron
density by just summing up the shifted and scaled sinusoids, but because we don’t know the phases, figuring
out the electron density is challenging.

You are not responsible for understanding why the observed diffraction pattern ends up being the Fourier
transform of the electron density (or more specifically, the magnitude of each Fourier coefficient), but for
those who are curious, here’s a brief explanation. (This explanation is slightly different—and more
mathematical—than the one given in class, but the two are consistent. Both cut some corners for brevity.)

Consider x-ray paths that originate from the same point source and arrive at the same point on the detector,
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Fig. 2: Bragg diffraction

but in the process were scattered by electrons at different locations inside the crystal. If both the source and
the detector are far away in comparison to the size of the crystal, these paths are approximately parallel to
each other (Fig. 2). Define the bisector of the incident and detecting directions as the z axis (Fig. 2). We’'ll
assume for now that all electrons in the crystal lie along the z-axis (i.e., we’re starting off with a one-
dimensional crystal, for simplicity). From the source to the detector, an x-ray scattered at z = z,, travels a



distance Ax,, = 2z, - sinf longer than one scattered at z = 0. Therefore a phase difference will be
introduced:

2mlAx, 2sin6
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Since the electron density (p) is different everywhere inside the crystal, more x-rays are scattered at some
locations than others (the higher the density of electrons at a location—i.e., the higher the likelihood of
finding an electron at that location—the higher the likelihood an x-ray passing through that location will be
scattered). Suppose the electric field oscillation of the scattered x-ray at position z is proportional to p(2).
Then at the detector, we can determine the electric field strength (at a particular instance in time) by
summing over all incident light paths. The sum will take the following form (where z; = 0):
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You may notice that this expression, as a function of (T) is similar to a one-dimensional Fourier

transform of the electron density of the crystal p(z). This generalizes to three-dimensional crystals: by
measuring the diffraction intensity at different 8 and different orientations of the z axis, a three-dimensional
Fourier transform of the crystal structure can be obtained.

2. Solving the Phase Problem

To determine the electron density of the crystal (and thus the positions of the atoms in the molecule), we
need to determine phases for each of the Fourier components (sinusoids). This computational problem is
referred to as phasing and generally consists of two steps:

(1) First, come up with an approximate solution for the structure and thus an approximate set of
phases. This is called initial phasing.

(2) Then adjust the phases to achieve an estimated structure that better agrees with the observed
diffraction patterns. This is called phase refinement, and it’s usually performed in an iterative
manner.

Initial Phasing

The most common way of determining initial phases is called molecular replacement. Here, one starts with a
rough guess of the structure—usually based on the known structure of a homologous protein—and uses it to
determine approximate phases. To do this, one must search over all the possible ways in which the protein
might be positioned in the unit cell (for example, different rotations of the protein relative to the axes of the
crystal lattice) and find the one that best fits the observed diffraction pattern.

In some cases—particularly when one doesn’t have a good guess of the approximate structure of the
protein—one needs some additional experimental to solve the phasing problem. Many techniques have
been devised to get such information, with different strengths and weaknesses. As an example, one might
replace a few of the atoms of the protein with heavier atoms. The difference between the diffraction



patterns observed before and after replacement provides information about phases. (You're not responsible
for knowing about this technique.)

Phase Refinement

During the phase refinement process, one adjusts the structure to better fit the observed experimental data.
The set of potential protein conformations is far too large to search exhaustively. Thus, one generally
employs a Monte Carlo search method (in particular, simulated annealing). Also, one generally wishes to
focus on protein conformations that seem likely given what is known about the physics of proteins. Thus,
one generally attempts to find a structure that minimizes a sum of two functions. The first function increases
with the difference between the experimentally observed diffraction pattern and the one predicted from the
chosen structure. The second function is a molecular mechanics force field, similar to those used in
molecular dynamics; it is larger for high-energy conformations than for low-energy conformations.



